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1. Maximum Likelihood Decoder

Consider a memoryless channel (A,B,Π).

Definition Let C be a code of length n over A. A decoding algorithm for
C is a procedure that maps any element of Bn to a codeword of C or that
fails ( 7→ symbol ∞).

ϕ : Bn → C ∪ {∞}
y 7→ ϕ(y)

Definition A decoding algorithm ϕ for C is a maximum likelihod decoder
if for all y ∈ Bn, the codeword x = ϕ(y) is in C and maximizes the
probability P( x sent | y received ).
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Maximum likelihod decoder

I Needs to know the channel and the input distribution of x.

P( x sent | y received) = P( y received | x sent ) · P( x sent)

P( y received)

The x’s which attain these maxima coincide when P( x sent) = constant =
1/|C| (commonly made assumption). This is the uniform codeword distri-
bution assumption.
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q-ary symmetric channel

Symmetric channel (A,B,Π) with A = B, |A| = q and

PB|A(b|a) =

{
1− p if a = b
p

q−1 otherwise

{
p error probability
p

q−1 transition/crossover probability

Proposition 1. In a q-ary symmetric memoryless channel with transition
probability < 1/q, under the uniform codeword distribution assumption, the
most likely codeword x ∈ C given the received word y ∈ Bn is a word
minimizing dH(x, y), where dH(x, y) is the Hamming distance between x

and y : dH(x, y)
def
= #{i|xi 6= yi}.
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Proof

P(y | x) =

(
p

q − 1

)dH(x,y)

(1−p)n−dH(x,y) = (1−p)n
(

p

(q − 1)(1− p)

)dH(x,y)

p
q−1 <

1
q =⇒ p < 1− 1

q =⇒ 1− p > 1
q

therefore
p

(q − 1)(1− p)
<

p

1− 1
q

< 1

⇒ seek for the closest codeword in terms of the Hamming distance.
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Other decoders

NCP (Nearest Codeword Problem, Maximum Likelihood Decoding)

LD (List Decoding) A bound e is given. The problem is to find all
(there might be none) codewords at distance ≤ e from the received
word.

BDD (Bounded Distance Decoding) A bound e is given. The problem
to find one (there might be none) codeword at distance ≤ e from the
received word.

UD (Unambiguous Decoding) Here e = (d − 1)/2, where d is the
minimum distance of the code, and we look for the unique codeword
at distance ≤ e from the received word (when it exists).
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Minimum distance – Decoding

Let C be a code of minimum distance d.
– Two balls of radius (d− 1)/2 centered around two distinct codewords are

disjoint.
⇒ a code of minimum distance d can correct b(d− 1)/2c errors

– A ball of radius d − 1 centered around a codeword does not contain
another codeword.
⇒ a code of minimum distance d can detect d− 1 errors.
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Performance

Definition A decoding algorithm ϕ for a code C is bounded by t if for all
x ∈ C, dH(x, y) ≤ t⇒ ϕ(y) = x

If the converse is true and φ(y) 6= ∞ for all y, the algorithm is a perfect
bounded decoder. Every code of minimum distance d has a bounded decoder
with t = b(d− 1)/2c.

Proposition 2. The probability of error after decoding on a binary
symmetric channel of crossover probability p for a perfect bounded decoder
bounded by t is equal to

n∑
i=t+1

(
n

i

)
pi(1− p)n−i
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2. Reminder : finite field

A finite field Fq is a set of cardinality q, with (+,−,×, /) satisfying the
appropriate Abelian group equations and distributive law.

I We necessarily have q = pm, p prime.

I Structure : Fpm = Fp[X]/Pm(X) where P is an irreducible polynomial
in Fp[X] of degree m.

Example :

F4 = F2[X]/(1 +X +X2) = {0, 1, X, 1 +X}
X(1 +X) = X2 +X ≡ 1 mod (1 +X +X2)
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Linear codes

When the alphabet is a finite field (for example A = F2 = {0, 1}) the
Hamming space An is a vector space.

Definition A linear block code of length n over Fq (the finite field with q
elements) is a subspace of Fn

q .

We say that this is an [n, k]q-code if the code is of dimension k and we say
it is an [n, k, d]q-code if its minimum distance is d.

Such a code has qk elements, and its (q-ary) rate is equal to

logq q
k

n
=
k

n
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The two matrices

A linear code C[n, k]q is characterized by
– a generator matrix G (of size k × n over Fq) :

C =
{

(u1, . . . , uk)G | (u1, . . . , uk) ∈ Fk
q

}
The rows of G form a basis for C.

– or a parity-check matrix H (of size (n− k)× n over Fq) :

C =
{

(x1, . . . , xn) ∈ Fn
q | H(x1, . . . , xn)T = 0

}
The rows of H form a basis of the dual code C⊥ of C :

C⊥def
= {(v1, . . . , vn)|∀(c1, . . . , cn) ∈ C,

n∑
i=1

vici = 0}.
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Linear codes – Properties

Proposition 3. For any linear block code C

min
x 6=y|x,y∈C

dH(x, y) = min
x6=0|x∈C

wH(x)

(the minimum distance is equal to the minimum nonzero weight of a
codeword)

Proposition 4. Let C be a code of parity-check matrix H(
C of minimum
distance ≥ d

)
⇔
(

any set of d− 1 columns of
H are linearly independent

)
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Linear codes – Syndrome decoding

The following syndrome mapping is associated to any parity-check matrix
H of C

σ : Fn
q → Fn−k

q

y 7→ HyT

Consider σ−1(s) = {y ∈ Fn
q | σ(y) = s}. We obtain

σ−1(HyT ) = y + C = {y + c | c ∈ C}

For all s ∈ Fn−k
q , denote by LH(s) the word of minimal weight in σ−1(s)

(if there are several of them, one of them is just chosen arbitrarily).

Proposition 5. The decoder y 7→ y−LH(HyT ) is a maximum likelihood
decoder over the q-ary symmetric channel.
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Syndrome decoding

Table lookup decoder : Put LH(s) in a lookup table.

Algebraic decoding : Find in an algebraic fashion LH(s) for certain values
of s.
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Example

[7, 4, 3] Hamming code.

I Can be obtained by solving the following question : find the longest
binary linear code of type [n, k, 3] such that n− k = 3.
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The Hamming code

[7, 4]2 Hamming code. Parity-check matrix :

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



For every received word y ∈ F7
2, there are 8 syndromes which are possible

Hy
T ∈


 0

0
0

 0
0
1

 0
1
0

 0
1
1

 1
0
0

 1
0
1

 1
1
0

 1
1
1

 ,

⇒ every word in the Hamming space {0, 1}n can be written as x + e
with x in the code and e being of weight at most 1 ( perfect code =
code of minimum distance d with balls of radius bd−12 c centered around the
codewords which partition the ambient space).
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Hamming Code of length 2m − 1

It is a code of length 2m − 1 and dimension 2m − m − 1, whose parity-
check matrix columns are vectors in Fm

2 \ {0}. It is an [n = 2m − 1, k =
2m −m− 1, d = 3] perfect code

22
m−m−1

((
n

1

)
+ 1

)
= 22

m−m−12m

= 2n

Theorem 1. The parameters of perfect codes are known : they are those
of the repetition code in odd length, those of the Hamming code, those of
the [23, 12, 7]2 binary Golay code and those of the [11, 6, 5]3 ternary Golay
code.
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3. Bounds : Singleton bound

Proposition 6. (Singleton bound)
For all [n, k, d]-codes we have d ≤ n− k + 1.
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Proof

The parity-check matrix has n − k rows. There exists therefore a set of
n − k + 1 columns of H which are linearly dependent (actually any set of
n− k + 1 columns has this property) :

=⇒ d ≤ n− k + 1.

A code such that k + d = n+ 1 is MDS (Maximum Distance Separable).
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Reed-Solomon Codes

These are codes defined over large alphabets Fq. We choose n distinct
elements x1, . . . , xn ∈ Fq .

Let ev be the evaluation function :

ev : Fq[X] → Fn
q

f 7→ ev(f) = (f(x1), . . . , f(xn))

and
L = {f ∈ Fq[X] | deg f < k}.

The Reed-Solomon code of dimension k is given by

C
def
= ev(L).
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Parameters

Proposition 7. If k ≤ n, this is a code of dimension k and minimum
distance d = n− k + 1, correcting t = bn−k2 c errors.

Proof :
– If k ≤ n, then ev is one-to-one.
– a polynomial of degree < k has at most k − 1 zeros. There are therefore

at least n− k + 1 non-zero coordinates in a non-zero codeword.

Moreover, the polynomial
∏k−1

i=1 (X − xi) has exactly k − 1 zeros.
The Reed-Solomon codes are MDS.
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Reed-Solomon decoding by interpolation

Let y = (y1, . . . , yn) be the received word and c be the closest codeword
with c = ev(f(X)) where deg f(X) < k.

let I be the set of positions where there is an error :

I = {i ∈ {1, . . . , n}, f(xi) 6= yi} ,

and construct the polynomial E(X) =
∏

i∈I(X − xi). Then we have

E(xi)yi = E(xi)f(xi), i ∈ {1, . . . , n}. (1)
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Decoding (II)

let

Xt +

t−1∑
i=0

eiX
i def

= E(X)

t+k−1∑
i=0

aiX
i def

= E(X)f(X)

I 2t+ k unknowns and n affine equations :

E(xi)yi = E(xi)f(xi), i ∈ {1, . . . , n}. (2)

I One can hope to correct in this way n−k
2 = d−1

2 errors.
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Hamming bound

Let C be a code of cardinality M , error-correction capacity t = bd−12 c, and
length n over the alphabet Fq. Then

M

(
t∑

i=0

(q − 1)i
(
n

i

))
≤ qn

Asymptotic form

hq(δ/2) ≤ 1−R with

δ
def
= d/n

R
def
= logqM/n

hq(x)
def
= −x logq

x

q − 1
− (1− x) logq(1− x)
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Existence of good codes – Gilbert-Varshamov bound

Theorem 2. (Gilbert-Varshamov bound)

d−2∑
i=0

(q − 1)i
(
n− 1

i

)
< qn−k ⇒

(
∃ a code
[n, k, d]q

)
Theorem 3. (Asymptotic Gilbert-Varshamov bound)
Let 0 ≤ δ ≤ (q − 1)/q. For all 0 ≤ R < 1 − hq(δ) there exists an

infinity of [n, k, d]q-codes such that d ≥ δn and k ≥ Rn where hq(x)
def
= −

x logq

x

q − 1
− (1− x) logq(1− x) is the q-ary entropy function.

Information Theory 26/40



Proof

We construct the columns of a parity-check matrix of such a code one
by one, with the property that any subset of d − 1 columns is linearly
independent.

Assume now that the i first columns are such that any subset of columns
of size d− 1 is linearly independent.

Number N of linear combinations involving at most d− 2 columns among
i columns :

1 +

(
i

1

)
(q − 1) + · · ·+

(
i

d− 2

)
(q − 1)d−2

If N < qn−k, one can add a column which is not a linear combination of at
most d− 2 columns.
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This can be done as long as

1 +

(
i

1

)
(q − 1) + · · ·+

(
i

d− 2

)
(q − 1)d−2 < qn−k

We finish the proof with the following bounds for i ≤ n− 1 :

1 +

(
i

1

)
(q − 1) + · · ·+

(
i

d− 2

)
(q − 1)d−2

≤ 1 +

(
n− 1

1

)
(q − 1) + · · ·+

(
n− 1

d− 2

)
(q − 1)d−2

≤ 2(n−1)hq(d−2
n−1) (3)

≤ 2nhq(d
n) (4)

Exercise : Show (3) with an information theoretic proof.
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Gilbert-Varshamov – Binary case
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Curves for q ∈ {2, 4, 8, 16}
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Codes attaining the bounds

I The Hamming bound : the perfect codes : repetition codes, Hamming
codes, binary and ternary Golay codes.

I Singleton bound : MDS codes : Reed-Solomon codes (n ≤ q),. . .

I Gilbert-Varshamov bound : almost any linear code...
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Error correction on average/worst case
On a binary symmetric channel of probability p there are typically ≈ pn
errors in a code of length n and rate R.

One can almost always correct these errors as long as R < 1−h(p), that is

p < h−1(1−R).

The minimum distance d of a linear code of length n and rate R is almost
always of the form d ≈ nh−1(1−R). One can correct t = d−1

2 errors in all
cases with such a code. Note that in this case

t

n
≈ h−1(1−R)

2

Therefore on average we correct twice as many errors as in the worst case.
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4. Concatenated Codes

Idea : use a second level of encoding to reduce the probability of error after
decoding.

virtual channel

M ∈ {0, 1}k coding−−−→ C ∈ {0, 1}n channel−−−−→ C ′ ∈ An decoding−−−−→ M̂ ∈ {0, 1}k

Let B
def
= {0, 1}k, a code of type [N, ?] over B is chosen to protect the binary

codewords (now viewed as symbols in B).
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Encoding

M = (x1 . . . xK) ∈ BK outer encoding−−−−−−−−→ C = (y1 . . . yN) ∈ BN

inner encoding yi−−−−−−−−−→ C ′ = (c1 . . . cnN) ∈ {0, 1}nN

outer code : code of length N and rate K
N over B = F2k,

Inner code : binary code of length n and rate k/n.

Rate of the concatenated code =
kK

nN
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Decoding

C ′ = (c1 . . . cnN) ∈ {0, 1}nN channel−−−−→ W = (a1 . . . anN) ∈ AnN

inner decoder−−−−−−−→ C ′′ = (y′1 . . . y
′
N) ∈ BN

outer decoder−−−−−−−→ M ′ = (x′1 . . . x
′
k) ∈ BK.

Information Theory 35/40



General scheme

outer encoder

information

inner encoder channel 

outer channel user

inner decoder outer decoder

1. A word whose symbols are taken over a large alphabet is encoded.

2. each symbol is encoded by the inner encoder

3. the codeword is transmitted

4. each symbol is decoded

5. the decoded word is then decoded with the outer decoder.
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Concatenated Codes, tool : decoding erasures

An erasure can be viewed as an error whose location is known. In other
words, it is the outcome of the following channel

ε

1
1−p

0 0

1−p

1

p

p

For any code of minimum distance d, there exists a decoding algorithm
correcting d− 1 erasures.

(There is a single codeword which coincides with the received word on the
positions which were not erased)
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Error/erasure correction

Proposition 8. For any code of minimum distance d, there exists a
decoding algorithm correcting ν errors and ρ erasures iff

2ν + ρ < d

let J be the set of non-erased positions and

CJ = {cJ ; c ∈ C}

The minimum distance of CJ is ≥ d− ρ.

One can therefore correct 2ν errors, if 2ν < d− ρ.

After this, one recovers the erasures.
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Concatenated codes– Decoding

the received word is of the form

(y1,1, . . . , y1,n)︸ ︷︷ ︸ ‖ (y2,1, . . . , y2,n)︸ ︷︷ ︸ ‖ . . . ‖ (yN,1, . . . , yN,n)︸ ︷︷ ︸
y1 y2 yN

Each of the N blocks is decoded with the inner decoder

ϕ : {0, 1} → Cinner ∪ {∞}
yi 7→ zi

Each symbol (z1, . . . , zN)↔ a symbol of B or an erasure (symbol∞). This
word is then decoded with the outer code Couter.

⇒ not necessarily optimal to take an optimal inner decoder, ∃ optimal value
for number of erasures / number of errors.
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