Lecture 8: Polar Codes

March 8, 2019

Information Theory

Polar Codes

1. Introduction
2. Coding
3. Decoding

1. Introduction

Polar codes, a class of codes which allows to

1. attain the capacity of all symmetric memoryless channels (=those for which the capacity is attained for a uniform input distribution),
2. with an encoding algorithm of complexity $O(N \log N)$ ($N=$ code length),
3. with a decoding algorithm of complexity $O(N \log N)$.

This decoding algorithm borrows many ideas from the decoding algorithm used for LDPC codes.

Polar Codes

1. a coding architecture based on the Fast Fourier Transform by fixing some bits to 0 ,
2. a code construction based on recursive $(U+V \mid V)$ codes.
3. a (suboptimal) decoding algorithm which computes the probability that the input bits are equal to 0 given the previous input bits and the probabilities of the output bits.

Encoding : example

Polar Code : linear code

In the previous case, it is a code of generator matrix

$$
G=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

2. Polar codes $=$ recursive $(U+V \mid V)$ codes

- They can be encoded/decoded by viewing them as recursive $(U+V \mid V)$-codes
- A $(U+V \mid V)$-code is a simple way of constructing a code of length $2 n$ from two codes of length n that keeps/improves the distance properties of the two codes.

Definition $\left[(U+V \mid V)\right.$-code] Let U and V be two linear codes of length n over \mathbb{F}_{q}. The $(U+V \mid V)$-code associated to U and V is defined by

$$
(U+V \mid V) \stackrel{\text { def }}{=}\{(\mathbf{u}+\mathbf{v}, \mathbf{v}): \mathbf{u} \in U, \mathbf{v} \in V\}
$$

Properties

Proposition 1.

1. $\operatorname{dim}(U+V \mid V)=\operatorname{dim} U+\operatorname{dim} V$
2. $d_{\text {min }}(U+V \mid V)=\min \left(d_{\text {min }}(U), 2 d_{\text {min }}(V)\right)$.

Encoding circuit

Encoding circuit of a recursive $(U+V \mid V)$-code

- Basic codes $=$ bits

Decoding of polar codes

- Based on using soft information i.e. $\operatorname{Prob}\left(x_{i}=1 \mid y_{i}\right)$ where x_{i} is a bit that was sent through the channel and y_{i} is the received symbol.

$$
(\mathbf{u}+\mathbf{v}, \mathbf{v}) \xrightarrow{\text { channel }}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)
$$

- Strategy :

1. Decode the \mathbf{u} part first by using a decoder for the U code and $\mathbf{y}_{1}, \mathbf{y}_{2}$
2. Decode the \mathbf{v} part by using a decoder for the V-code based on the knowledge of $\mathbf{y}_{1}, \mathbf{y}_{2}$ and \mathbf{u}

- Recursive decoding of a recursive $(U+V \mid V)$-code, where the end-operation is just decoding a bit x knowing its probability p to be equal to 1 , deciding $x=1$ if $p \geq \frac{1}{2}$ and 0 otherwise.

The basic operation on the erasure channel

- u is not recovered when either $u+v$ or v are erased
- under the assumption that u was recovered v is not recovered when $u+v$ and v were erased

The erasure decoder

- Computes recursively the \mathbf{u} or the \mathbf{v} part, based on the + operation over $\mathcal{A} \stackrel{\text { def }}{=}\{0,1, ?\}$, where $x+?=?+x=?$ for any $x \in \mathcal{A}$ and is the standard addition over \mathbb{F}_{2} otherwise.
- Polar code of length $N=2^{n}$ with n layers of recursion as described before.
- Input vector $z \in \mathcal{A}^{N}$ specifying what is known from the decoder about the encoding process, i.e. $z_{i}=0$ if the i-th input bit is fixed to 0 and $z_{i}=$? otherwise.

$z=(0,0,0, ?, 0, ?, ?, ?)$

Decoding : notation

- Code positions numbered from 0 to $2^{n}-1$, layers from 0 to n (last one corresponding to the polar code positions)
- At layer $n-1$ the positions from 0 to $2^{n-1}-1$ are positions from a U code, positions from 2^{n-1} to $2^{n}-1$ those of a V code
- In general if at layer t the positions from a $(U+V \mid V)$ code are in $[i \cdots j[$, the positions of the corresponding U code at layer $t-1$ are in $\left[i \cdots \frac{i+j}{2}[\right.$ and those of the V code in $\left[\frac{i+j}{2} \cdots j[\right.$.
- matrix $\mathbf{y}[i][j], i \in[0 \cdots n], j \in\left[0 \cdots 2^{n}[\right.$

$$
\begin{aligned}
\mathbf{y}[n][i] & \stackrel{\text { def }}{=} \text { received symbol for the } i \text {-th code position } \\
\mathbf{y}[t][i] & =\text { decoded } i \text {-th bit at layer } t, \text { for } t<n
\end{aligned}
$$

- Decoding is performed by calling Decode $\left(0,2^{n}, n\right)$

Numbering

Layer

Algorithm

```
function \(\operatorname{DECODE}(i, j, t)\)
    if \(t=0\) then
    DecodeDirectly \((i)\)
        else
            \(m \leftarrow \frac{i+j}{2}\)
            \(\operatorname{UPDATEU}(i, m, t-1) \quad \triangleright\) computes soft information for the \(U\) code
            Decode \((i, m, t-1)\)
            \(\operatorname{UpdateV}(m, j, t-1)\)
            Decode \((m, j, t-1)\)
            \(\operatorname{SetPositionsUV}(i, j, t)\)
                    \(\triangleright\) finds \(\mathbf{u}\)
                        \(\triangleright\) computes soft information for the \(V\) code
                            \(\triangleright\) finds \(\mathbf{v}\)
                            \(\triangleright\) computes the \((\mathbf{u}+\mathbf{v}, \mathbf{v})\)-codeword
```


Decoding the last layer

- In the last layer the bit $\mathbf{y}[0][i]$ takes the value $\mathbf{z}[i]$ if it was known and takes a random value in $\{0,1\}$ if $\mathbf{y}[0][i]=$?

```
function DecodeDirectly \((i)\)
    if \(\mathbf{z}[i] \neq\) ? then
        \(\mathbf{y}[0][i] \leftarrow \mathbf{z}[i]\)
    else
    if \(\mathbf{y}[0][i]=\) ? then \(\mathbf{y}[0][i] \leftarrow\) RandomCoin
```


Updating the positions of the U code

- $x+?=?+x=?$ and + is the addition on \mathbb{F}_{2} otherwise

$$
\begin{aligned}
& \text { function } \operatorname{UpdateU}(i, j, t) \\
& \quad \text { for } \ell=i \text { to } j-1 \mathbf{d o} \\
& \quad \mathbf{y}[t][\ell] \leftarrow \mathbf{y}[t+1][\ell]+\mathbf{y}[t+1]\left[\ell+2^{t}\right]
\end{aligned}
$$

Updating the positions of the V code


```
function \(\operatorname{UpdateV}(i, j, t)\)
    for \(\ell=i\) to \(j-1\) do
    if \(\mathbf{y}[t+1][\ell] \neq\) ? then
        \(\mathbf{y}[t][\ell] \leftarrow \mathbf{y}[t+1][\ell]\)
    else
        \(\mathbf{y}[t][\ell] \leftarrow \mathbf{y}[t+1]\left[\ell-2^{t}\right]+\mathbf{y}[t+1][\ell]\)
```


Encoding

- Encodes the t-layer of the $(U+V \mid V)$-code as $(\mathbf{u}+\mathbf{v}, \mathbf{v})$ once the \mathbf{u} part and the \mathbf{v} part is recovered
function SetPositionsUV (i, j, t)

$$
\begin{aligned}
& \text { for } \ell=i \text { to } \frac{i+j}{2}-1 \text { do } \\
& \quad \mathbf{y}[t][\ell] \leftarrow \mathbf{y}[t-1][\ell]+\mathbf{y}[t-1]\left[\ell+2^{t-1}\right]
\end{aligned}
$$

$$
\text { for } \ell=\frac{i+j}{2} \text { to } j-1 \text { do }
$$

$$
\mathbf{y}[t][\ell] \leftarrow \mathbf{y}[t-1][\ell]
$$

An example on the erasure channel

DecodeDirectly(0)

EncodeUV(0, 1, 1)

UpdateV(1, 3, 1)

UpdateU(3, 4, 0)

EncodeUV(0, 4, 2)

UpdateV $(4,8,2)$

UpdateU(4, 6,1$)$

UpdateV $(5,6,0)$

EncodeUV(4, 6, 1)

UpdateV $(6,8,1)$

UpdateU(6, 7, 0)

UpdateV $(7,8,0)$

EncodeUV(4, 8, 2)

EncodeUV(0, 8, 3)

Why does this work?

- How to choose the positions where the input is fixed to 0 , i.e. i such that $z_{i}=0$?
- Why does this procedure work at all?
- Generalizing this to other channels

Modeling the decoder

Decoding of the base code can be modeled by the following transmission over two different channels :

and we know the channels, they provide $\operatorname{Prob}\left(u=1 \mid y_{1}, y_{2}\right)$ and $\operatorname{Prob}(v=$ $\left.1 \mid u_{1}, y_{1}, y_{2}\right)$.

Case of an erasure channel

Assume that

$$
\begin{array}{r}
x_{1}=u+v \\
x_{2}=v
\end{array} \begin{array}{cc}
\text { erasure channel of prob. } p_{1} & y_{1} \\
\text { erasure channel } \\
\rightsquigarrow \sim
\end{array} \text { prob. } p_{2} \quad y_{2}
$$

| $\operatorname{Prob}(u$ stays erased after decoding $)$ | $=$ | $\operatorname{Prob}\left(x_{1} \oplus x_{2}\right.$ erased $)$ |
| ---: | :--- | ---: | :--- |
| | $=$ | $\mathbf{P r o b}\left(x_{1}\right.$ or x_{2} erased $)$ |
| | $=$ | $1-\left(1-p_{1}\right)\left(1-p_{2}\right)$ |
| $\operatorname{Prob}(v$ stays erased after decoding $)$ | $=$ | $p_{1}+p_{2}-p_{1} p_{2}$ |
| | $=$ | $\mathbf{P r o b}\left(x_{1}\right.$ and x_{2} erased $)$ |
| | $=$ | $p_{1} p_{2}$ |

Induced channel model in the case of the erasure channel

y_{1}, y_{2}	decoding	u
u, y_{1}, y_{2}	decoding	\hat{v}
u	Induced channel model : channel 1 of eras. prob. $p_{1}+p_{2}-p_{1} p_{2}$	\hat{u}
v	channel 2 of eras. prob. $p_{1} p_{2}$	\hat{v}

If we denote by $C(p)$ the capacity of the erasure channel of probability $p(C(p)=$ $1-p$) then

$$
\begin{equation*}
C\left(p_{1}\right)+C\left(p_{2}\right)=C\left(p_{1}+p_{2}-p_{1} p_{2}\right)+C\left(p_{1} p_{2}\right) . \tag{1}
\end{equation*}
$$

Equivalent models for $p=0.25$ and $n=3$

We choose the positions in red to be fixed to 0 .

Equivalent models for $n \in\{5,8,16\}$

Why the whole scheme works and attains the capacity of the erasure channel

Point 1 : The equivalent channels"polarize", the erasure probability is either close to 0 or 1 .

Point 2 : The "conservation law" (1) $C\left(p_{1}\right)+C\left(p_{2}\right)=C\left(p_{1}+p_{2}-p_{1} p_{2}\right)+C\left(p_{1} p_{2}\right)$ ensures that

$$
\sum_{i=0}^{N-1} C\left(q_{i}\right)=\sum_{i=0}^{N-1} C\left(p_{i}\right)=N C(p)
$$

with $q_{i}=$ capacity of the i-th equivalent channel at the input and $p_{i}=$ capacity of the i-th output channel.

Point 3 : Since either $C\left(q_{i}\right) \approx 0$ or $C\left(q_{i}\right) \approx 1$,

$$
k \stackrel{\text { def }}{=} N-|\mathcal{F}| \stackrel{\text { def }}{=} \#\left\{i: C\left(q_{i}\right) \approx 1\right\} \approx N C(p)
$$

Generalizing the procedure to other channels

$$
(\mathbf{u}+\mathbf{v}, \mathbf{v}) \stackrel{\text { channel }}{\sim}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)
$$

- UpdateU computes the probability that the bits of \mathbf{u} are equal to 1 knowing \mathbf{y}_{1} and \mathbf{y}_{2} respectively, whereas UpDATEV computes the probabilities of the symbols of \mathbf{v} knowing $\mathbf{y}_{1}, \mathbf{y}_{2}$ and \mathbf{u}.

A simple computation

We know $p_{1}=\operatorname{Prob}\left(x_{1}=1 \mid y_{1}\right)$ and $p_{2}=\operatorname{Prob}\left(x_{2}=1 \mid y_{2}\right)$. We compute

$$
q_{1}=\operatorname{Prob}\left(u=1 \mid y_{1}, y_{2}\right)
$$

The formula

Lemma 1. Let X_{1} and X_{2} be two independent binary random variables and denote by $r_{i} \stackrel{\text { def }}{=} \operatorname{Prob}\left(X_{1}=1\right)$, then

$$
\operatorname{Prob}\left(Z_{1} \oplus Z_{2}=1\right)=\frac{1-\left(1-2 r_{1}\right)\left(1-2 r_{2}\right)}{2}
$$

Application :

$$
q_{1}=\frac{1-\left(1-2 p_{1}\right)\left(1-2 p_{2}\right)}{2}
$$

Another simple computation

We know $p_{1}=\operatorname{Prob}\left(x_{1}=1 \mid y_{1}\right), p_{2}=\operatorname{Prob}\left(x_{2}=1 \mid y_{2}\right)$ and u_{1}. We compute $q_{2}=\operatorname{Prob}\left(v=1 \mid u, y_{1}, y_{2}\right)$.

The formula

Lemma 2. A uniformly distributed random bit B is sent through two memoryless channels, y_{1} and y_{2} are the corresponding outputs. If we denote by $\tau_{i}=\operatorname{Prob}(B=$ $\left.1 \mid y_{i}\right)$, then

$$
\operatorname{Prob}\left(B=1 \mid y_{1}, y_{2}\right)=\frac{r_{1} r_{2}}{r_{1} r_{2}+\left(1-r_{1}\right)\left(1-r_{2}\right)}
$$

Application :

$$
\begin{aligned}
& q_{2}=\frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)} \text { if } u=0 \\
& q_{2}=\frac{\left(1-p_{1}\right) p_{2}}{\left(1-p_{1}\right) p_{2}+p_{1}\left(1-p_{2}\right)} \text { if } u=1
\end{aligned}
$$

Decoding algorithm on general channels

- Sent codeword $\mathrm{x}=\left(x_{i}\right)_{0 \leq i<2^{n}}$, received word $\mathrm{y}=\left(y_{i}\right)_{0 \leq i<2^{n}}$
- matrix $\mathbf{p}[i][j], i \in[0 \cdots n], j \in\left[0 \cdots 2^{n}[\right.$

$$
\begin{aligned}
\mathbf{p}[n][i] & \stackrel{\text { def }}{=} \operatorname{Prob}\left(x_{i}=1 \mid y_{1}\right) \\
\mathbf{p}[t][i] & =\text { probability } i \text {-th bit at layer } t=1 \text {, for } t<n
\end{aligned}
$$

Decoding algorithm

```
function \(\operatorname{DEcode}(i, j, t)\)
if \(t=0\) then
    DecodeDirectly \((i)\)
else
\(m \leftarrow \frac{i+j}{2}\)
\(\operatorname{UpdateU}(i, m, t-1)\)
Decode \((i, m, t-1)\)
\(\operatorname{UpdateV}(m, j, t-1)\)
Decode \((m, j, t-1)\)
SetPositionsUV \((i, j, t)\)
```


Decoding the last layer

```
function DECoDEDirectly \((i)\)
if \(\mathrm{z}[i] \neq\) ? then
    \(\mathbf{p}[0][i]=\mathbf{z}[i]\)
else
    if \(\mathbf{p}[0][i]<\frac{1}{2}\) then \(\mathbf{p}[0][i] \leftarrow 0\)
    else \(\mathbf{p}[0][i] \leftarrow 1\)
```

- The bits are fixed by fixing the probabilities either to 0 and 1

Updating the positions of the U code

$$
\begin{aligned}
& \text { function UPDATEU }(i, j, t) \\
& \quad \text { for } \ell=i \text { to } j-1 \text { do } \\
& \quad \mathbf{p}[t][\ell] \leftarrow \frac{1-(1-2 \mathbf{p}[t+1][\ell])\left(1-2 p[t+1]\left[\ell+2^{t}\right]\right)}{2}
\end{aligned}
$$

Updating the positions of the V code

$$
\begin{aligned}
q_{2} & =\frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)} \text { if } u=0 \\
& =\frac{\left(1-p_{1}\right) p_{2}}{\left(1-p_{1}\right) p_{2}+p_{1}\left(1-p_{2}\right)} \text { if } u=1
\end{aligned}
$$

```
function \(\operatorname{UpdateV}(i, j, t)\)
    for \(\ell=i\) to \(j-1\) do
    \(p_{1} \leftarrow \mathbf{p}[t+1]\left[\ell-2^{t}\right]\)
    \(p_{2} \leftarrow \mathbf{p}[t+1][\ell]\)
    if \(\mathbf{p}[t]\left[\ell-2^{t}\right]=0\) then
        \(\mathbf{p}[t][\ell] \leftarrow \frac{p_{1} p_{2}}{p_{1} p_{2}+\left(1-p_{1}\right)\left(1-p_{2}\right)}\)
    else
    \(\mathbf{p}[t][\ell] \leftarrow \frac{\left(1-p_{1}\right) p_{2}}{\left(1-p_{1}\right) p_{2}+p_{1}\left(1-p_{2}\right)}\)
```


The general case : the basic scheme

Assumption : U_{1} and U_{2} independent and uniformly distributed in $\{0,1\}$.

Same "conservation law" as for the erasure channel :
Theorem 1.

$$
I\left(U_{1} ; Y_{1}, Y_{2}\right)+I\left(U_{2} ; U_{1}, Y_{1}, Y_{2}\right)=I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)
$$

A lemma on the independence of random variables

Lemma 3. U_{1} and U_{2} independent and uniformly distributed, $\Rightarrow X_{1}$ and X_{2} independent and uniformly distributed
$\Rightarrow Y_{1}$ and Y_{2} independent.
proof : X_{1} and X_{2} independent and uniformly distributed (obvious).

Proof (cont'd)

$$
\begin{aligned}
\mathbf{P}\left(Y_{1}=a, Y_{2}=b\right) & =\sum_{c, d} \mathbf{P}\left(Y_{1}=a, Y_{2}=b \mid X_{1}=c, X_{2}=d\right) \mathbf{P}\left(X_{1}=c, X_{2}=d\right) \\
& =\sum_{c, d} \mathbf{P}\left(Y_{1}=a \mid X_{2}=c\right) \mathbf{P}\left(Y_{2}=b \mid X_{2}=d\right) \mathbf{P}\left(X_{1}=c\right) \mathbf{P}\left(X_{2}=d\right) \\
& =S_{1} S_{2} \quad \text { with } \\
S_{1} & =\sum_{c} \mathbf{P}\left(Y_{1}=a \mid X_{1}=c\right) \mathbf{P}\left(X_{1}=c\right)=P\left(Y_{1}=a\right) \\
S_{2} & =\sum_{d} \mathbf{P}\left(Y_{2}=b \mid X_{2}=d\right) \mathbf{P}\left(X_{2}=d\right)=P\left(Y_{2}=b\right)
\end{aligned}
$$

Hence

$$
\mathbf{P}\left(Y_{1}=a, Y_{2}=b\right)=P\left(Y_{1}=a\right) P\left(Y_{2}=b\right)
$$

An important lemma in information theory

Lemma 4. If Y_{i} is the output corresponding to X_{i} after transmission through a memoryless channel

$$
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) \leq I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) .
$$

If Y_{1} and Y_{2} are independent

$$
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)=I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) .
$$

Proof

$$
\begin{aligned}
I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right)= & H\left(Y_{1}, Y_{2}\right)-H\left(Y_{1}, Y_{2} \mid X_{1}, X_{2}\right) \\
& \text { (definition of mutual information) } \\
= & H\left(Y_{1}\right)+H\left(Y_{2}\right)-H\left(Y_{1} \mid X_{1}, X_{2}\right)-H\left(Y_{2} \mid X_{1}, X_{2}, Y_{1}\right) \\
& \text { (independence of the } Y_{i}^{\prime} \text { s) } \\
= & H\left(Y_{1}\right)+H\left(Y_{2}\right)-H\left(Y_{1} \mid X_{1}\right)-H\left(Y_{2} \mid X_{2}\right) \\
& \text { (memoryless channel) } \\
= & I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) \\
& \text { (definition of mutual information) }
\end{aligned}
$$

Proof of Theorem 1

$$
\begin{aligned}
I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) & =I\left(X_{1}, X_{2} ; Y_{1}, Y_{2}\right) \\
& =I\left(U_{1}, U_{2} ; Y_{1}, Y_{2}\right) \\
& =H\left(U_{1}, U_{2}\right)-H\left(U_{1}, U_{2} \mid Y_{1}, Y_{2}\right) \\
& =H\left(U_{1}\right)+H\left(U_{2}\right)-H\left(U_{1} \mid Y_{1}, Y_{2}\right)-H\left(U_{2} \mid U_{1}, Y_{1}, Y_{2}\right) \\
& =I\left(U_{1} ; Y_{1}, Y_{2}\right)+I\left(U_{2} ; U_{1}, Y_{1}, Y_{2}\right)
\end{aligned}
$$

