# **Lecture 9: Codes for distributed storage**

March 14, 2019

# **Regenerating codes**

- 1. Introduction
- 2. Regenerating codes

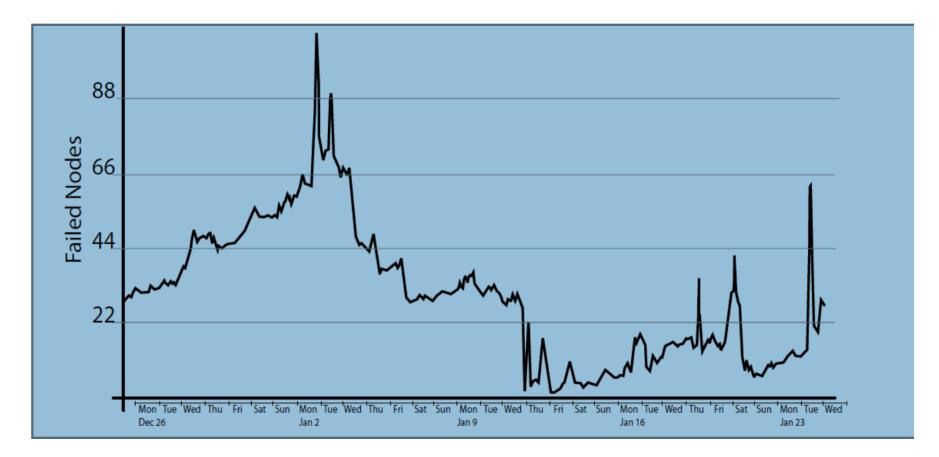
1. introduction

# **Distributed data storage, problem : node failures**

- Example : google center
- 800000 servers, failure rate = 4% per year
- repair in 2 days
- mean number of failed servers in 2 days = 175

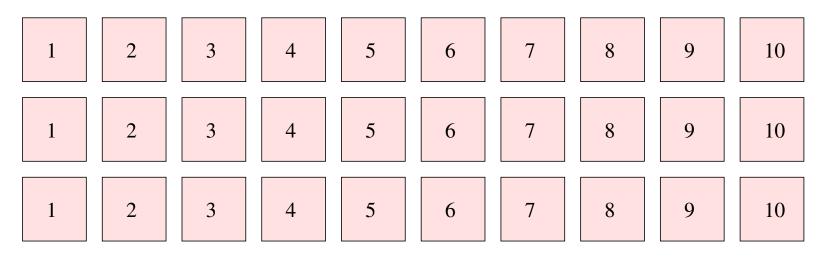
### **Another example**

▶ # failed nodes over a single month in a 3000 node cluster of Facebook



# **Example : Hadoop software**

- Aim : handling massive amounts of data and computation
- Hadoop Distributed File System : default 3× replication for handling node failures
- ► 640 MB files : 10 blocks



Highly inefficient !

1. introduction

# **Facebook cluster**

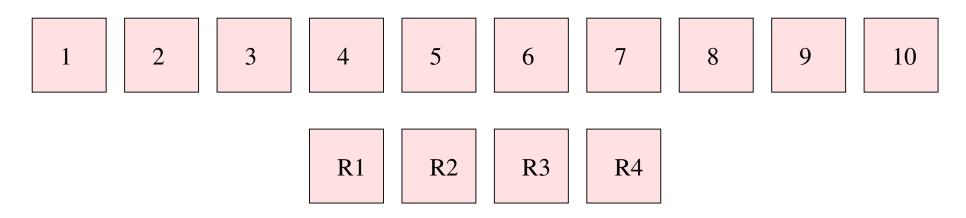
#### Huge Hadoop cluster



- > 2012 : 30 PB  $(3.10^{16} \text{ bytes !})$  of data and this is growing...
- Thousands of nodes
- Storage efficiency : main driver for cost

# HDFS-RAID

- ▶ uses a [n = 14, k = 10, d = 5]-code to recompute blocks in the source file or redundancy file when they are lost or corrupted.
- $\blacktriangleright$  Reduces storage overhead from  $\times 3$  to  $\times 1.4$
- Used for less frequently accessed data
- ► Can tolerate any loss of 4 blocks



# Exercise

- 1. Prove that the minimum distance d of a linear code of length n and dimension k is at most n k + 1.
- 2. When d = n k + 1 the code is called a MDS code. Prove that a parity check matrix of such a code is such that any square submatrix of size n k in a parity-check matrix of such a code is invertible.
- 3. Show that such a code can tolerate all patterns of n k erasures and give a method for recovering the whole codeword when there are n k erasures.

1. introduction

## The problem : speed of access

- ▶ Good news : can tolerate 4 node failures by looking for 10 good nodes
- What if there is only one node failure?
- ▶ Bad news : still needs 10 good nodes



download 10 packets

# Exercise

- 1. Show that any square submatrix of a generator matrix of an MDS code is of full rank
- 2. Explain why this implies that in order to recover a single erasure in an MDS code of dimension k it is necessary and sufficient to use k other code positions.

# **Drawback of MDS codes**

- Do not tolerate better bandwidth consumption when only a few nodes are down and we want only to recover information from those nodes
- High network traffic in this case
- High disk read
  - $\Rightarrow$  need for a scalable solution/number of nodes we want to recover

1. introduction

# **Industry impact**

| piggyback codes &      | f | THE APACHE SOFTWARE FOUNDATION         | <b>NetApp</b> <sup>™</sup> |
|------------------------|---|----------------------------------------|----------------------------|
| Hitchhiker (2013-2014) |   |                                        |                            |
| butterfly codes (2013) |   | <b>Western</b><br>Digital <sup>®</sup> |                            |
| Ye-Barg codes          |   | <b>(</b><br>ceph                       |                            |
| & Clay codes (2017-18) |   | -                                      |                            |

### **Distributed storage system**

- Distributed storage system(DSS) with n storage nodes
- ▶ Block of data of B symbols over a finite alphabet A
- information on some of these symbols is stored in each node of the DSS
- Each storage node is able to store  $\alpha$  symbols
- This block of data can be retrieved by a data collector connecting to any k of these nodes
- ▶ One of the node goes down and has to be repaired by putting all its information in a new node by connecting to d ( $k \le d \le n-1$ ) nodes that are still working and downloading  $\beta \le \alpha$  bits from each of them, locality= d

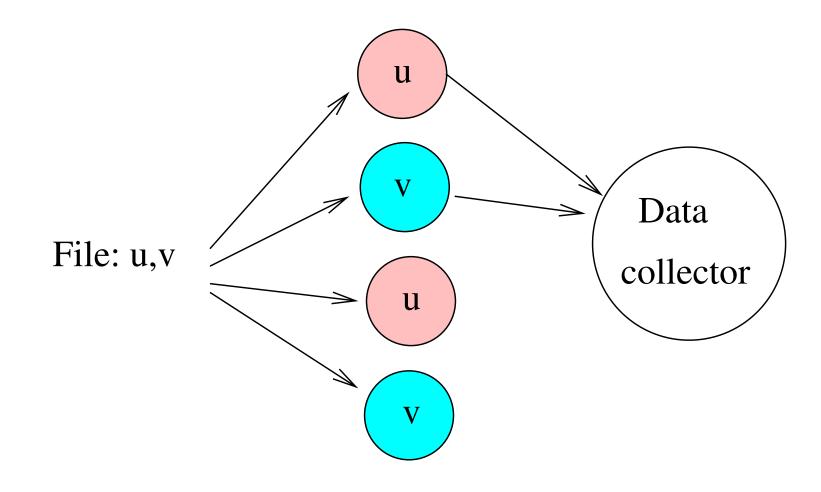
► bandwidth  $\stackrel{\text{def}}{=} d\beta$ 

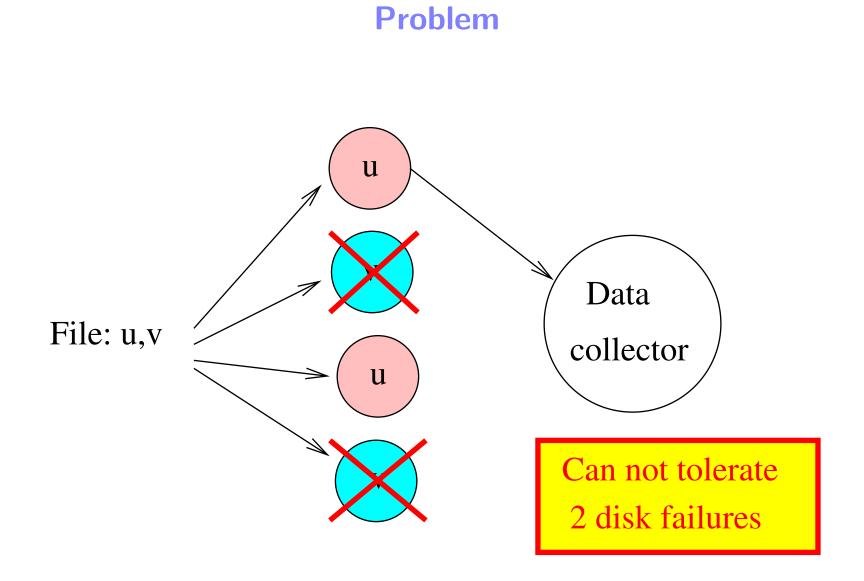
 $\Rightarrow$  minimize bandwidth  $d\beta$ 

# **Three examples**

|             | repetition code | Reed-Solomon code | Regenerating code |
|-------------|-----------------|-------------------|-------------------|
| storage     | $\frac{1}{2}$   | $\frac{1}{2}$     | $\frac{1}{2}$     |
| efficiency  |                 |                   |                   |
| reliability | tolerate $1$    | tolerate any $2$  | tolerate any $2$  |
|             | disk failure    | disk failures     | disk failures     |
| repair      | 1G              | 2G                | 1.5G              |
| bandwidth   |                 |                   |                   |
| locality    | 1               | 2                 | 3                 |

# **Example 1 : 2** $\times$ repetition scheme

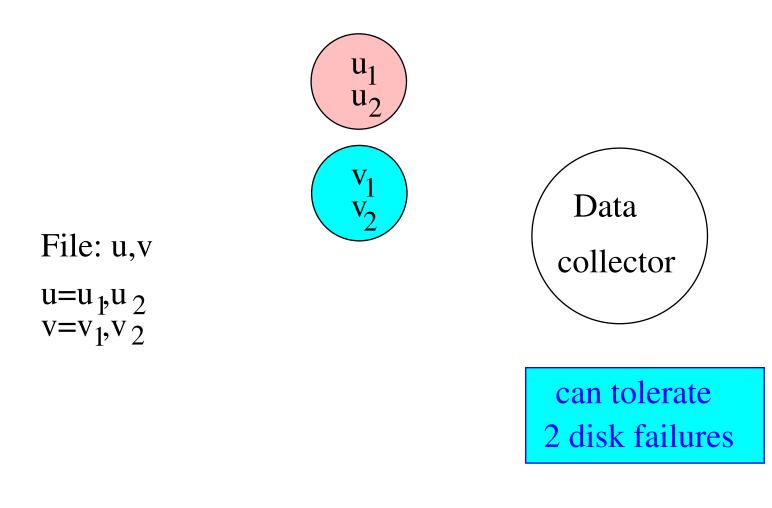




#### Information Theory

15/34

# Example 2 : Reed-Solomon code



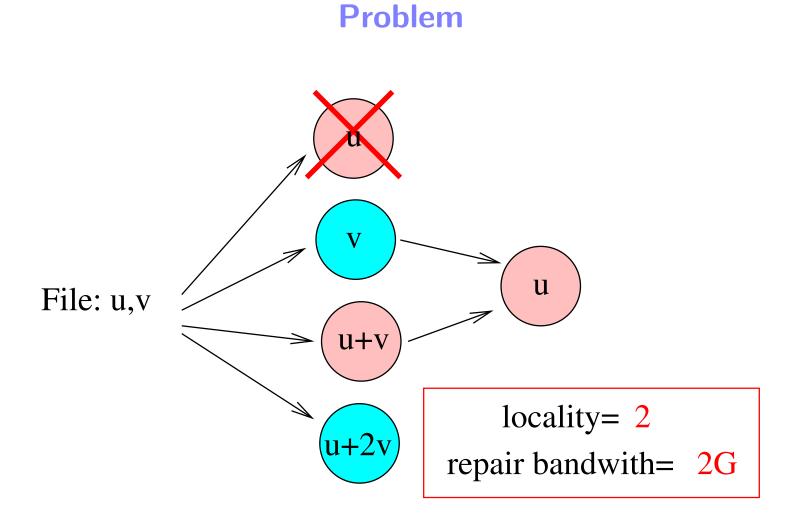
Information Theory

16/34

17/34

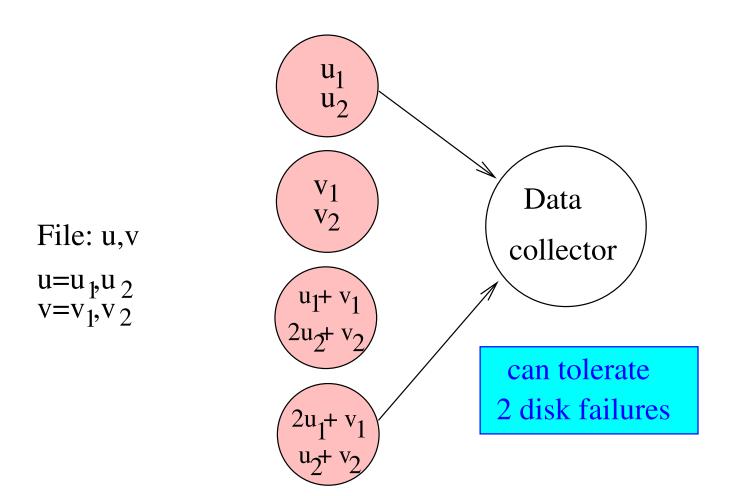
# Exercise

- 1. Show that this corresponds to a linear encoding scheme and give the generator matrix of this scheme
- 2. Show that the corresponding code is an MDS code



repair : decoding the whole file

## **Network code**



# **Repairing a node**



### The fundamental limit

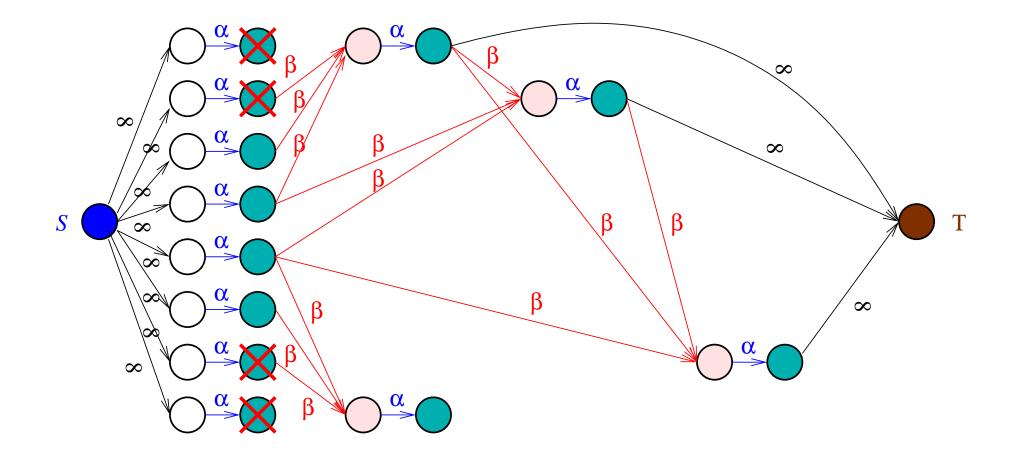
**Theorem 1.** If there exists a code and a recovery procedure meeting these constraints we have

$$B \le \sum_{i=0}^{d-1} \min\left( (d-i)\beta, \alpha \right) \tag{1}$$

**Definition**[regenerating code] A code is said to be regenerating iff its parameters meet the bound (1)

22/34

# **Tool 1 : The information flow graph**



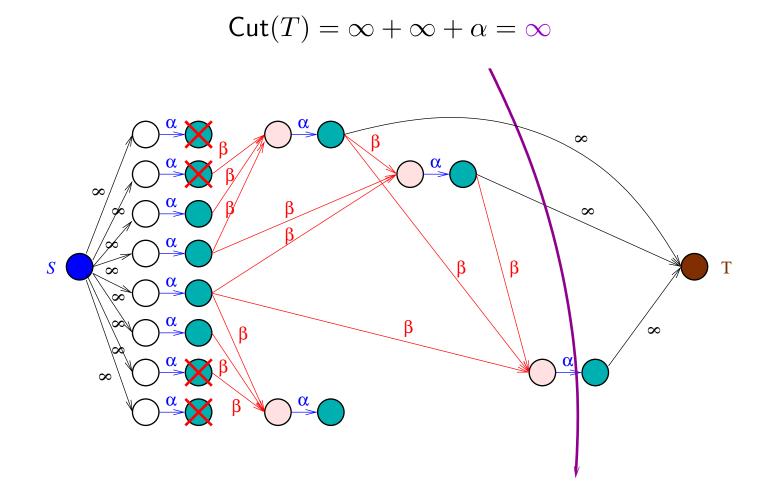
23/34

# **Tool 2 : min cut bound**

Lemma 1.

 $B \leq \min_{G} \textit{MinCut}(T)$ 

## **Example of a cut**

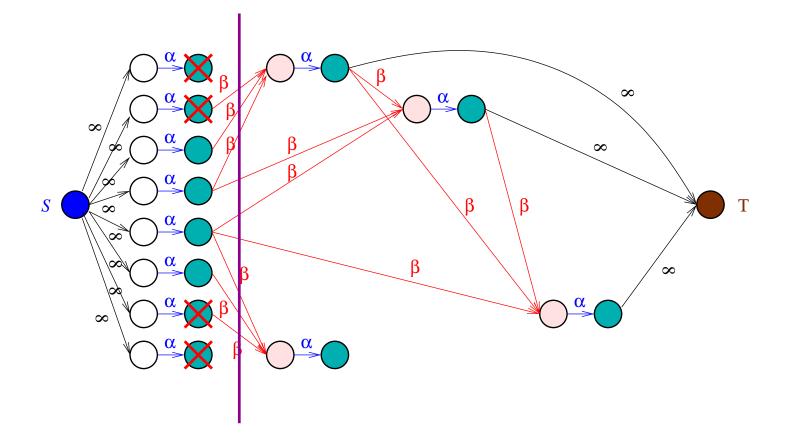


24/34

25/34

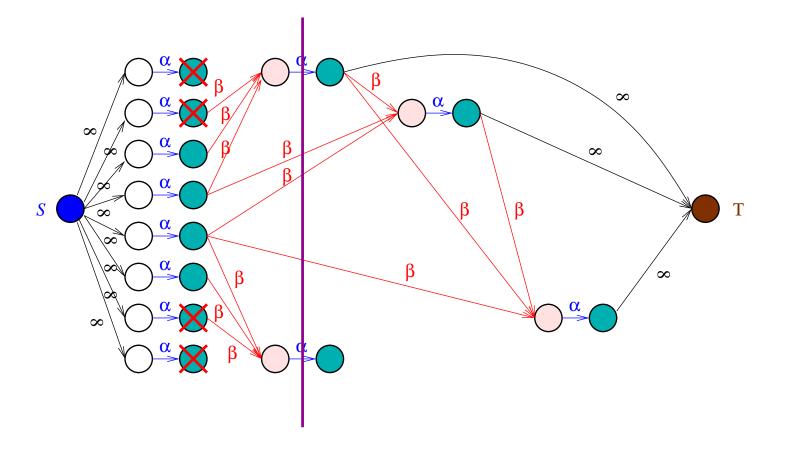
# Example of a cut

 $\operatorname{Cut}(T) = 9\beta$ 



# **Example of a cut**

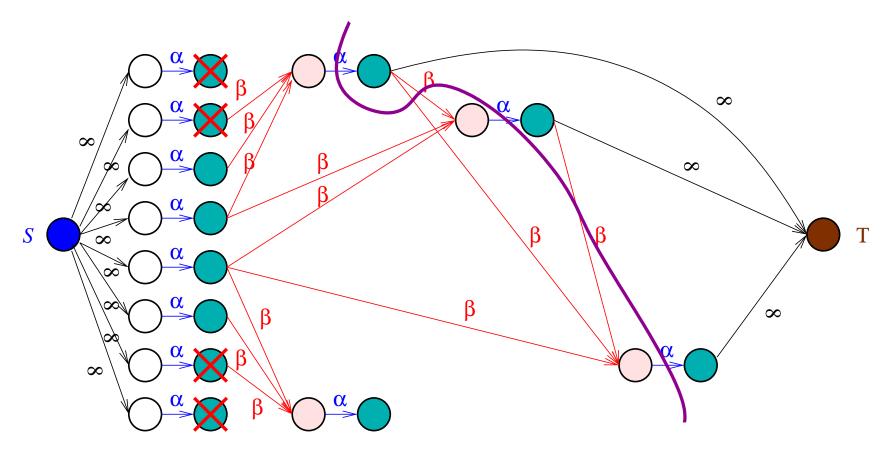
 $\mathsf{Cut}(T)=3\beta+2\alpha$ 



26/34

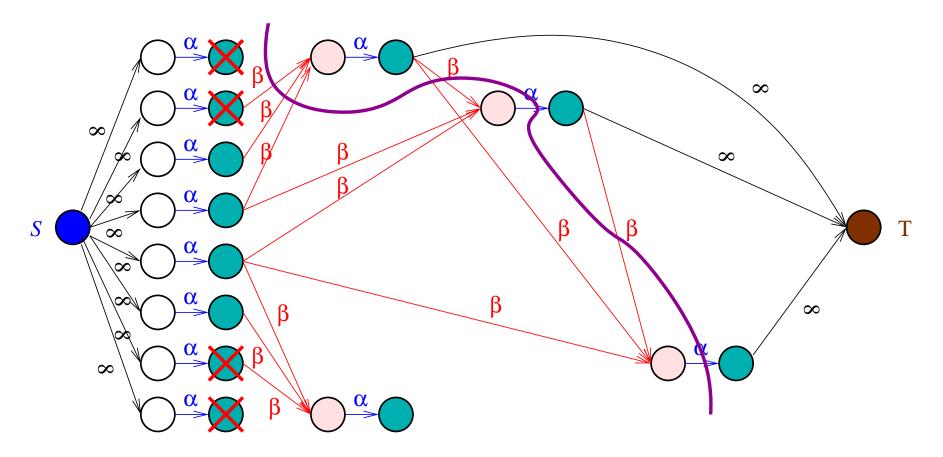
# **Example of a cut**

 $\operatorname{Cut}(T) = 3\alpha$ 



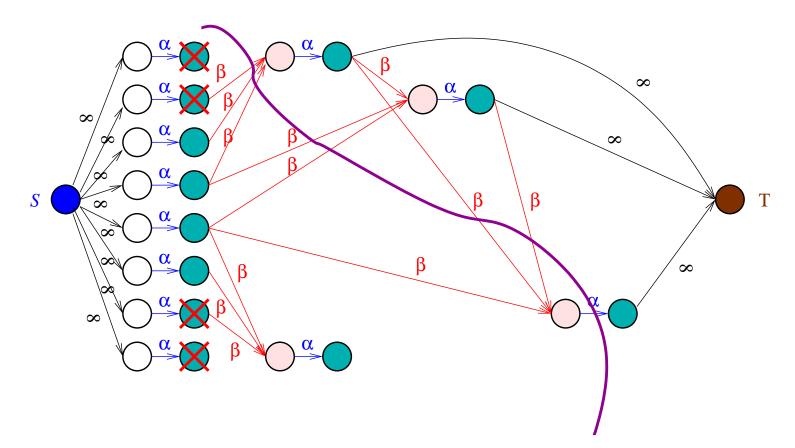
# Example of a cut

 $\mathsf{Cut}(T) = 3\beta + 2\alpha$ 

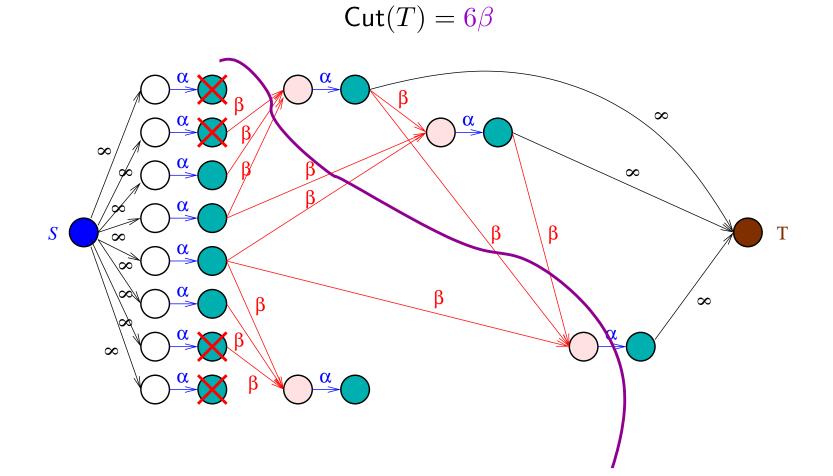


# **Example of a cut**

 $\mathsf{Cut}(T) = 5\beta + \alpha$ 



# Example of a cut



#### An example

► 
$$n = 10$$
,  $k = 9$ ,  $e = 4$ ,  $d = 3$ ,  $\alpha = 4$ ,  $\beta = 1$ 

Corresponding MDS code : single parity-check code C :

$$x_1 \cdots x_{10} \in \mathcal{C} \Leftrightarrow \sum_{i=1}^{10} x_i = 0$$

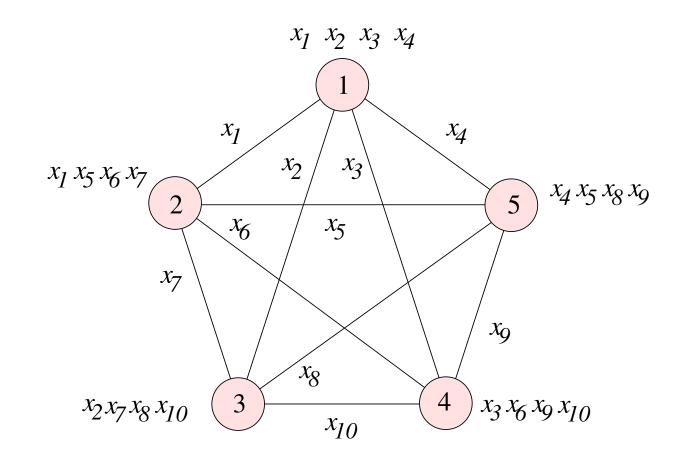
File  $u_1 \cdots u_9$  encoded into  $u_1 \cdots u_{10}$  with  $u_{10} = -\sum_{i=1}^9 u_i$ 

- Complete graph on 5 vertices=nodes
- $\blacktriangleright$  each edge carries an  $x_i$
- $\blacktriangleright$  each node gets the 4  $x_i$ 's attached to its 4 incident edges

each symbol  $x_i$  is replicated twice

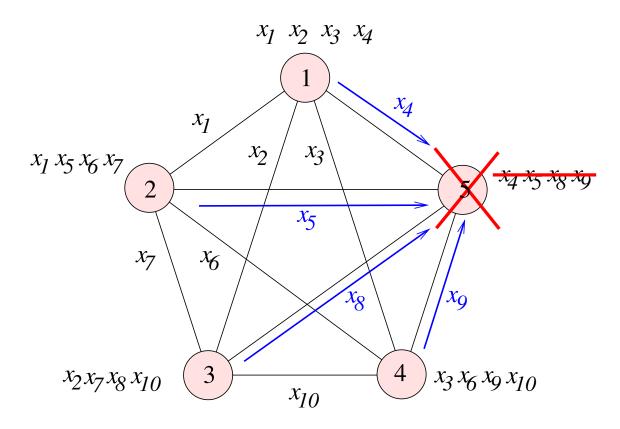
3. example

# Example



# **Repairing a node**

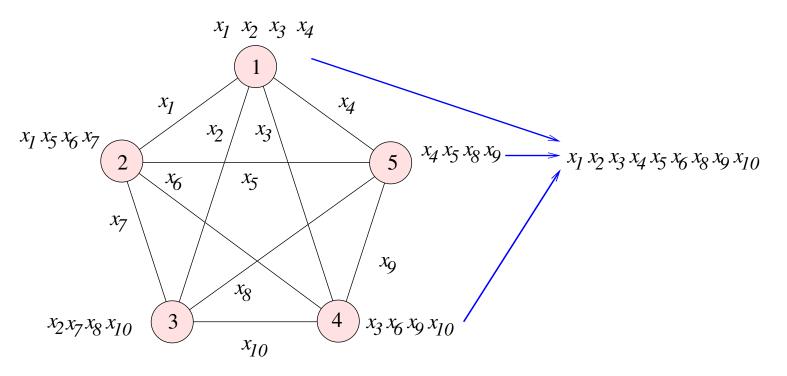
- ▶ if a node fails, request lost symbols from adjacent nodes
- bandwidth=4



3. example

#### **Recovering the whole file**

- any node carries 4 symbols
- any 2 nodes carry 7 different symbols
- any 3 nodes carry 9 different symbols



$$x_7 = -x_1 - x_2 - x_3 - x_4 - x_5 - x_6 - x_8 - x_9 - x_{10}$$

#### Information Theory

34/34