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Abstract— We construct here a new family of quantum codes
related to serial turbo-codes which are excellent error-reducing
codes under iterative decoding for very large channel noise
values. Moreover we also show that this family of codes has
unbounded minimum distance.

I. INTRODUCTION

Quantum codes suitable for iterative decoding. Turbo-
codes [1], LDPC codes [2] and their variants are one of
the most satisfying answer to the problem of devising codes
promised by Shannon’s theorem. They display outstanding
performances for a large class of error models with a decoding
algorithm of reasonable complexity. Generalizing these codes
to the quantum setting seems a promising way to efficiently
approach the quantum capacity, and quantum generalizations
of LDPC codes have indeed been proposed in [3].

However, it has turned out that the design of high per-
formance quantum LDPC codes is much more complicated
than in the classical setting. In particular, most constructions
suggested in the literature [4], [3], [5], [6], [7], [8], [10], [11],
[12] suffer from having a bounded minimum distance. There
are a few exceptions, namely [9] or quantum LDPC codes
based on tessellations of surfaces which have been proposed
in [13], [14], [15]. The latter family provides for instance
quantum LDPC codes with non vanishing rate and logarithmic
minimum distance. More recently, quantum LDPC codes with
non vanishing rate and minimum distance growing like the
square root of the block length have been proposed [16].
However in all these constructions, unlike in the classical
setting, there are issues with the decoder. The Tanner graph
associated to a quantum LDPC code necessarily contains many
4-cycles which are well known for their negative effect on the
performances of iterative decoding. Moreover, quantum LDPC
codes are by definition highly degenerate but their decoder
does not exploit this property, rather it is impaired by it, see
[17].

On the other hand, generalizing turbo-codes to the quantum
setting first requires a quantum analogue of convolutional
codes. These have been introduced in [18], [19], [20] and
followed by further investigations [21], [22]. Quantum turbo-
codes can be obtained from the interleaved serial concatenation
of convolutional codes. This idea was first introduced in [23].
There, it was shown that, on memoryless Pauli channels,
quantum turbo-codes can be decoded similarly to classical
serial turbo-codes. The construction given in [23] had rather
poor performance under iterative decoding. In [24] it was

shown that it was possible to come up with quantum turbo-
codes with good performance under iterative decoding. How-
ever, the families of codes constructed in this article have
bounded minimum distance and the performance of these
codes degrades for large blocklength. It was even proved
there that it is not possible to obtain quantum serial turbo-
codes with unbounded minimum distance and with an iterative
decoding algorithm which converges. For this, we should have
quantum convolutional encoders which are at the same time
non-catastrophic (to ensure convergence of iterative decoding)
and recursive (to avoid having bounded minimum distance).
Unfortunately such codes do not exist [24].

A new approach. Our purpose is to present here a
modification of the construction presented in [24] to meet
both requirements, namely good performance under iterative
decoding and unbounded minimum distance. Our strategy for
achieving this goal can be described as follows. In order to
obtain families of codes with unbounded minimum distance
we first choose in the quantum serial turbo-construction a
recursive inner encoder. Because of the non existence result
of [24], such an encoder will necessarily be catastrophic and
the standard iterative decoding algorithm will be helpless in
this case : due to its catastrophicity, in the first iteration the
inner code is unable to pass useful information to the outer
code, which in turn is not able to pass a better information to
the inner code and so on and so forth.

We circumvent this problem by changing a little bit the
structure. First, we do not feed all qubits of the outer code into
the inner encoder. A small fraction of these qubits will be sent
directly to the channel. We also choose in an appropriate way
the outer code in such a way that the first decoding iteration
of the outer code is able to pass useful information to the
inner code. It turns out that the structure which is needed at
the outer code in order to decrease the noise level at the first
iteration also prevents the iterative decoding to converge to
zero. Actually, the codes we obtain from our approach will
be excellent error-reducing codes : they are able to reduce
the noise level of the channel up to a tiny fraction of noise
and this even under very bad channel conditions. They are
able to operate at noise levels for which the only known
quantum codes of reasonable decoding complexity operating
successfully at this regime are families of codes with vanishing
rate, such as for instance the toric codes [25], [26]. This is not
the case in our construction, since we have a fixed rate of 1

8 .
However, our codes are not error-correcting codes when

decoded by standard iterative decoding: when the block size



tends to infinity, the block error goes to one. On the other
hand, the minimum distance of this family is unbounded.
We prove that most of these codes have minimum distance
at least Ω

(
logn

log logn

)
, where n stands for the code length. It

would be interesting to study whether or not the few remaining
qubits which are still in error after iterative decoding could be
corrected by changing the decoding procedure.

II. STABILIZER CODES

Quantum LDPC codes were constructed by using the stabi-
lizer code construction [27], [28]. We also use this construction
for the variant of quantum turbo-codes we suggest here. We
recall in this section a few facts about this construction. We
depart slightly from the classical way of presenting these codes
since we need to address for turbo-codes encoding issues. The
style of presentation we adopt here is to suit a readership
familiar with classical codes but not with quantum information
theory.

Let us recall that the trace hermitian inner product between
E = (Ei)1≤i≤n and F = (Fi)1≤i≤n in Fn4 is given by:

E ? F ,
∑

TrEiF̄i, (1)

where ū = u2 and Tru = u+ ū for u in F4. For a set C ⊂ Fn4
we denote by C⊥ the set {E ∈ Fn4 |E ? F = 0, ∀F ∈ C}. A
stabilizer code is defined by

Definition 1 (stabilizer code): Any (n−k)×n matrix over
F4 whose rows are independent over F2 and orthogonal with
respect to the trace hermitian inner product defines a stabilizer
code of length n and rate k

n . It is called a parity-check matrix
for the stabilizer code. Such a code is said to be of type [[n, k]].
The associated stabilizer group is the group generated by the
rows of the parity-check matrix.
An important property which allows to speak about the stabi-
lizer group of a stabilizer code is that

Property 1: Two parity-check matrices with the same sta-
bilizer group define the same stabilizer code.

We refer to [24] for further explanations about how such a
discrete object defines a continuous space encoding k qubits
by embedding it into a larger n-qubit system. We call this
space the continuous stabilizer code. Such codes are tailored
to correct errors belonging to Fn4 . An important error model
is here

Definition 2 (Depolarizing channel): The depolarizing
channel on n qubits of error probability p picks up an
element E ∈ Fn4 by choosing randomly the coordinates Ei
of E independently of each other according to P(Ei = 0) =
1− p,P(Ei = 1) = P(Ei = ω) = P(Ei = ω̄) = p

3 .
Moreover, there is a quantum measure associated to any

parity-check matrix for the stabilizer code which enables to
gain information on the error which has affected the quantum
system. Its outcome belongs to Fn−k2 and is defined by

Definition 3 (error syndrome): The error syndrome associ-
ated to an error E = (Ei)1≤i≤n ∈ Fn4 with respect to a parity-
check matrix H with rows H1, . . . ,Hn−k is the binary vector

s(E),(E ? Hi)1≤i≤n−k.

Apart from the fact that the rows of the parity-check matrix
have to satisfy the aforementioned orthogonality conditions
there is another fundamental difference with the classical
setting. It can be checked that not all errors change the
quantum state belonging to a stabilizer code. More precisely

Fact 1: The set of errors which leaves the continuous
stabilizer code invariant is given by its stabilizer group.

This fact has an important consequence, namely that
maximum-likelihood decoding of a stabilizer code does not
mean we look for the most likely error satisfying the syndrome
which was measured, but we look for the most likely coset of
the stabilizer group (see [24] for further information about
this).

For a classical linear code the minimum distance of the
code is equal to the minimum weight of an nonzero error of
zero syndrome. The minimum distance of stabilizer codes is
defined by

Definition 4 (minimum distance): The minimum distance
of a stabilizer code is the minimum Hamming weight of
an error with zero syndrome which does not belong to the
stabilizer group.

With this definition of the minimum distance it is readily
seen that a stabilizer code of minimum distance d can cor-
rect up to bd−12 c errors by choosing the error of minimum
Hamming weight satisfying the syndrome.

Turbo-codes are defined in the classical setting with the help
of convolutional codes and their properties are strongly related
to the way the constituent convolutional codes are encoded. To
generalize these notions properly to the quantum setting we
need a notion of encoding matrix and a suitable definition of
a quantum convolutional code. An encoding matrix is given
by

Definition 5 (encoding matrix): An encoding matrix with
syndrome positions set S ⊂ {1, . . . , n} (where |S| = n − k)
for a stabilizer code of type [[n, k]] and stabilizer group C0

is any 2n× n matrix over F4 with rows X1, Z1, . . . , Xn, Zn
satisfying
(i) Xi ? Zj = δij , Xi ? Xj = Zi ? Zj = 0, where δij stands
for the Kronecker symbol,
(ii) C0 =< Zs, s ∈ S >.

Convention 1: When the stabilizer positions set S is not
specified we assume that S = {k + 1, . . . , n}.
Notice that such an encoding matrix contains as a sub-matrix a
parity-check of the stabilizer code, namely the matrix formed
by the rows {Zs, s ∈ S}. If we define

Xi , (0 . . . 0 ω︸︷︷︸
ith position

0 . . . 0)

Zi , (0 . . . 0 1︸︷︷︸
ith position

0 . . . 0)

then
Definition 6 (Encoding transformation): The encoding

transformation associated to an encoding matrix with
rows {X1, Z1, . . . , Xn, Zn} is given by the F2-linear
transformation which maps Xi to Xi and Zi to Zi for any
i ∈ {1, . . . , n}.



Notice that this transformation preserves by definition the
trace-hermitian inner product (since the Xi’s and the Zi’s share
the same orthogonality relations as the Xi’s and the Z

′
is).

It allows to define the serial concatenation of two stabilizer
codes, which is defined similarly as in the classical setting
through the encoding procedure. More precisely the serial
concatenation of two stabilizer codes is defined as follows.

Definition 7 (serial concatenation of two stabilizer codes):
Consider two stabilizer codes of type [[nout, kout]] and
[[nin, kin]] respectively which are such that nout = kin. The
first one is called the outer code, whereas the second one is
called the inner code. Choose for the inner code an encoding
transformation U out and for the outer code U in. We assume
that the set Sin of syndrome positions for U in are the nin−kin

last positions. We denote the set of syndrome positions of
the outer code by Sout and we extend U out to Ũ out to act on
(F4)n

in
as follows. We view (F4)n

in
as (F4)n

out × (F4)n
in−nout

and for (E,F ) ∈ (F4)n
out × (F4)n

in−nout
we let

Ũ out.(E,F ) = (U out.E, F ).

Then the serial concatenation of the outer code and the
inner code is the stabilizer code defined by the encoding
transformation U inŨ out with syndrome positions set Sin∪Sout.

A quantum convolutional code corresponds to the serial
concatenation of a same encoding transformation shifted in
time. More precisely

Definition 8 (Quantum convolutional code): A quantum
convolutional code of type ((n, k,m)) composed of N blocks
and associated to a seed encoding transformation U acting on
Fn+m4 with syndrome positions set S is a stabilizer code of
type [[Nn+m,Nk +m]] and
(i) encoding transformation given by UNUN−1 . . . U1 where
the Ui’s act on FNn+m4 as follows
we view elements of FNn+m4 as triples (E,F,G) in Fn(i−1)4 ×
Fn+m4 × Fn(N−i)4 and we let Ui.(E,F,G),(E,U.F,G),
(ii) stabilizer positions set S0 ∪ · · · ∪ SN−1 where
Si = {s+ ni, s ∈ S}.

Finally we will also need the notion of quantum interleaver
Definition 9 (quantum interleaver): A quantum interleaver

of size n is an encoding transformation U of the form

U.(E1, . . . , En) = (f1(Eπ(1)), . . . , fn(Eπ(n)))

where π is a permutation of {1, . . . , n} and the fi’s are
permutations of F4 which leave 0 invariant.

III. THE CONSTRUCTION

Our construction is obtained from a particular form of inter-
leaved concatenation of quantum stabilizer codes. It consists
in taking in the serial concatenation:
(i) an outer quantum code of type [[8K,K]] consisting in the
juxtaposition of K identical stabilizer codes of type [[8, 1]]
and minimum distance 3. There is a position in this code of
type [[8, 1]] which has a special status.
(ii) an intermediate quantum interleaver of size 8K acting
trivially on K positions which are precisely the union of the

Fig. 1. The lines on the left-hand side carrying a |0〉 correspond to syndrome
positions of the [[8, 1]] code whereas the blue lines correspond to positions
which have a special status and which do not participate in the quantum
interleaver or in the inner encoding.
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positions of each code of type [[8, 7]] which have a special
status.
(iii) an inner code which is a quantum convolutional code of
type ((2, 2, 1)) consisting of N blocks with N satisfying 2N+
1 = 7K. The encoding transformation for this convolutional
code acts only on the 7K positions corresponding to the 7K
positions over which the quantum interleaver has (potentially)
some non trivial action.

The concatenated code obtained in this way is therefore of
type [[8K,K]]. Figure 1 illustrates the construction.

The [[8, 1]] stabilizer code we use is given by the following
parity-check matrix



ω ω 0 0 0 0 0 0
ω 0 ω 0 0 0 0 0
1 1 1 1 0 1 0 0
ω 0 0 ω 1 1 ω 0
0 0 0 0 ω 1 1 ω
0 0 0 ω 0 ω 1 1
0 0 0 1 ω 0 ω 1


(2)

The first position is the distinguished position which partici-
pates neither in the subsequent interleaving nor in the inner
encoding process. The crucial property which explains the
choice of this code is the following fact

Proposition 1: Let C be the stabilizer code over 8 qubits
defined by the parity-check matrix specified in (2) Let C0 be
its stabilizer group. The code is of minimum distance 3 and

P1 . . . P8 ∈ C⊥0 \ C0 ⇒ |{i : Pi 6= 0, i ≥ 2| ≥ 3.

The reason of this choice will be given in what follows.

The interleaver is chosen at random whereas the convolu-
tional code of type ((2, 2, 1)) is given by the following seed



transformation

X1 = (ω, ω, ω)

Z1 = (1, 1, 1)

X2 = (0, ω, ω)

Z2 = (1, 1, 0)

X3 = (ω, 0, ω)

Z3 = (0, 1, 1)

This encoder is recursive but also catastrophic in the sense of
[24].

Ideas underlying the construction
As explained in the introduction, the issue with the construc-

tion considered in [24] is that the constituent convolutional
encoders had to be chosen to be non catastrophic to make
the iterative decoding scheme which is used there to work
properly. This decoding algorithm basically consists in passing
information back and forth between the inner and outer code.
The decoding starts with the inner code and if a catastrophic
encoder is chosen for the inner code, then the outer code gets
no useful information at all, and in turn it is not able to give
back any useful information to the inner code. Further expla-
nations about iterative decoding of a concatenated scheme are
provided in [24].

The slight modification what we consider here, namely by
allowing certain qubits encoded by the outer code not to
participate to the inner encoding changes the whole picture.
Indeed, we can choose now an inner catastrophic encoder.
This does not change the fact that at the first iteration of the
decoding algorithm no useful information is passed from the
inner decoder to the outer decoder (actually this first pass of
the decoding can just be skipped), but the fact that now certain
qubits of the outer code get some information coming from the
channel model (these are precisely the K qubits which do not
participate to inner encoding), allows the outer encoder to give
some useful information to the inner encoder. This enables
potentially the iterative decoding algorithm to converge to the
right error. In other words, it is now possible to choose in this
modified scheme an inner encoder which is recursive. This
is a crucial issue if the purpose is to devise an interleaved
concatenated code family with unbounded minimum distance.

We make another modification in the construction of [24],
instead of choosing a convolutional encoder for the outer code
we choose a small stabilizer code C which has minimum
distance 3 and which satisfies Proposition 1. This is essential
to obtain an unbounded minimum distance for the whole
construction if we proceed as follows. The outer code will just
be a juxtaposition of copies of C . In each copy of C we will
leave one qubit which will not be given to the inner encoder.
The point which allows an unbounded minimum distance is the
following property (we assume that it is the first position of C
which does not participate in the subsequent inner encoding,
that C is of length n and that C0 is the stabilizer group of C )
there is no element (P1P2 . . . Pn) in C⊥0 \ C0 such that the
Hamming weight of (P2, . . . , Pn) is less than 3. The code

we have chosen is the smallest example we could find which
meets such a property.

Finally, in order that the first decoding of the outer code
to be able the reduce the noise level at the first iteration it is
readily checked that there should be elements in the stabilizer
group C0 of the code which have weight 2 and which involve
the position which is left out the inner encoding process. In
our case there are three such elements. However, it is also
readily checked that if we have such codewords, then it is
not possible to reduce to 0 the noise level for the positions
which are involved in these weight 2 words in C0. Therefore,
the very same reason which helps the first steps of iterative
decoding is also the reason which prevents iterative decoding
to reduce completely the noise level. This is why we obtain
with this approach an error-reducing code family and not an
error-correcting code family.

IV. MINIMUM DISTANCE PROPERTIES

It turns out that the minimum distance of the concatenated
scheme which is constructed here is unbounded. More pre-
cisely we have here

Theorem 1: Let α be any constant smaller than 1. Then
the probability that the concatenated coding scheme defined
in Section III is of minimum distance greater than α logK

log logK
goes to 1 as K goes to infinity.
To prove this result, we use the proof technique of [29] that
investigates the minimum distance of classical serial turbo-
codes. However, there are also new ingredients, for instance a
new notion of detour and another way of counting elements in
the orthogonal space C⊥0 to the convolutional code stabilizer
group C0. It relies on upper-bounds on the number of elements
of C⊥0 of a certain form. The proof is too long to be included
and we refer to [30] for a full proof.

Let us just give here a few indications about what is
going in our case. Let us denote the quantum convolutional
inner encoding transformation by V and call the logical qubit
positions all positions which are not syndrome positions.
Denote by M the length of the inner convolutional code and by
C0 its stabilizer subgroup. For an element (P1 . . . PM ) ∈ FM4 ,
we define its logical weight as the number of i’s which are
logical qubit positions for which Pi is different from 0. The
physical weight of this element is just the total number of
Pi’s which are different from 0. An assignment of the logical
positions is of type (w, d), if it is of logical weight w and if it
is possible to assign the other positions such that the resulting
element P = P1 . . . PM if such that P ′ = P.V belongs to C⊥0
and if P ′ is of physical weight d. With this definition we have

Proposition 2: For a given recursive convolutional encoder
of type ((n, k,m)) and total length M , there exists some
constant η such that the number aw,d of assignments of logical
positions of type (w, d) is upper bounded by

O

(
6w
(
M

dw2 e

)(
ηnd+ (2 + η)nw

bw2 c

))
.

Unlike in the classical setting, it turns out that we also need
to prove in the quantum concatenated code scheme the dual



Fig. 2. Probability of error after decoding per qubit for various code lengths.
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ηnw + (2 + η)nd
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))
. (3)

In the quantum setting, this dual upper-bound does not seem
to be a consequence of the fact that the encoder is recursive.
These two bounds can now be used in a similar way as in
[29] to derive Theorem 1. The logn

log logn term which arises in
Theorem 1 is somewhat unusual and is never encountered
for classical codes. It is related to the fact that we count the
number of elements of a certain weight in C⊥0 \ C0 and not
C⊥0 \ {0}.

However there are cases where this “dual” bound can be
derived directly from Proposition 2. This happens for instance
for the convolutional encoder of type ((2, 2, 1)) we chose in
Section III.

It is an open question to determine simple sufficient condi-
tions which would ensure (3). This would enable to perform
a computer search for such concatenated code schemes which
would then have polynomial minimum distance with the
hope of obtaining families of codes with record breaking
performance under iterative decoding.

V. RESULTS

We have implemented standard iterative decoding and run
experiments on randomly chosen interleavers over the depo-
larizing channel (see Figure 2). We have fixed the number of
iterations to be 30 and have observed a qubit error probability
after decoding close to 10−3 for a depolarizing error prob-
ability of p = 0.142 and K = 17143. There is a threshold
close to p = 0.149 below which the qubit error probability is
a decreasing function of K.
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