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Abstract— This paper is the first part of an investigation if the
capacity of a binary-input binary-output memoryless symmetric
channel under ML decoding can be achieved asymptotically by
using non-binary LDPC codes. We consider (l,r)-regular LDPC
codes both over finite fields and over the general linear group
and compute asymptotic binary weight distributions for these
ensembles in the limit of large blocklength and of large alphabet
size. A surprising fact, the average binary weight distributions
that we obtain do not tend to the binomial one for values of
normalized binary weights ω smaller than 1−2−l/r. However, it
does not mean that non-binary codes do not achieve the capacity
asymptotically, but rather that there exists some exponentially
small fraction of codes in the ensemble, which contains an
exponentially large number of codewords of poor weight. The
justification of this fact is beyond the scope of this paper and
will be given in the extended version [1].

I. INTRODUCTION

An important issue in coding theory is whether it is possible
to achieve the capacity of a discrete memoryless symmetric
channel (DMS) by using non-binary sparse-graph codes. If it
were the case, one could probably design non-binary sparse-
graph codes outperforming the binary ones from the point
of view of the performance-complexity tradeoff. A common
belief is that this might be true, and that by increasing the
alphabet size of given code ensembles one comes closer to
the channel capacity.

LDPC codes over non-binary alphabets have already been
considered by Gallager in his PhD thesis [2]. In last years,
there was a number of investigation of non-binary sparse-graph
codes under iterative decoding, and an improvement of iter-
ative decoding performances with the alphabet size has been
observed both for turbo-codes [3]–[6] and for Low-Density
Parity-Check (LDPC) codes [7]–[10]. This improvement is
particularly apparent in the case of 2-regular LDPC codes [8].
It was also put forward in [10], that unlike in the binary case,
where large degrees are needed to approach capacity, there
are very good degree distributions for LDPC codes for large
alphabet sizes, in the sense that all variable nodes have small
degree and there is a very large fraction of variable nodes
of degree 2. It is worthwhile to note however, that the code
performances under iterative decoding do not always improve
when one moves to a larger alphabet. Actually, the investiga-
tion performed for LDPC codes in [11] and for TLDPC codes
in [12] on the binary erasure channel strongly suggests that
for a given degree distribution, the iterative decoding threshold
sustained by the code ensemble is a unimodal function of the

alphabet size : it either always decreases with the alphabet
size or increases up to a certain alphabet size and decreases
afterwards.

What concerns the maximum likelihood (ML) decoding,
the asymptotic error performance of regular non-binary coset
LDPC ensembles has been derived in [13]. The coset mecha-
nism was needed to satisfy a symmetry assumption attributed
to the bounding technique [2] used. In [14] authors have
obtained the average weight distribution of regular LDPC
ensembles defined over the cyclic group of integers where the
group operation is performed modulo an integer. It is also
worth to mention a recent work of Hof et al [15], where
the authors derive a new Gallager-like upper bound on the
decoding error probability of non-binary linear codes under
ML decoding, assuming transmission over DMS channels.

In this paper we consider non-binary (l,r)-regular LDPC
codes, over finite fields and over the general linear group,
and compute their asymptotic binary weight distributions in
the limit of large blocklength and of large alphabet size. This
weight distribution has also been derived very recently in [16],
but without giving the quite intriguing asymptotic behavior for
large alphabet size that we have found here. In order to present
our main result, let us bring in the following quantities.

Definition 1: Denote by Nb (G,nmω) the average number
of codewords of binary weight nmω of a code G of length
n over GFm

2 chosen at random along either of the two
models described in Section II. Define the growth rate by
βm(ω) , limn→∞

log(E(Nb(G,nmω)))
nm and its asymptotic expression

by β(ω) , limm→∞ βm(ω).
We then have

Theorem 1.1:

β(ω) =

{
−ω log(2l/r−1), 0≤ ω < 1−2−l/r,
h(ω)− l

r
, 1−2−l/r ≤ ω≤ 1.

II. PRELIMINARIES

We consider regular non-binary LDPC ensembles, assum-
ing that the alphabet size is a power of 2. Therefore, the
components of a codeword are elements of the binary vector
space of some dimension m denoted by GFm

2 . Non-binary
ensembles are defined in the similar way as in the binary
case, with the help of an ensemble of bipartite graphs G(n, l,r)
(see [17] for definition). In this notation, l and r represent
respective left and right degrees and n is the blocklength. Right
nodes of a bipartite graph represent parity-check equations



and left nodes - variables, participating in the equations. To
each edge of the graph we assign a bijective linear mapping
f : GFm

2 7→GFm
2 . We perform the computation for two classes

of regular non-binary LDPC codes: ensembles over finite fields
and ensembles over the general linear group. The ensemble
over the general linear group is denoted by EGL(n, l,r,m) and
its mappings are chosen uniformly at random from the group
of linear bijective mappings. Thus, the set of mappings is the
general linear group GLm

2 of all the m×m invertible matrices.
The ensemble over finite fields is denoted by EGF(n, l,r,m),
and its mappings are of the form f (x) = ax, where a ∈
GF∗(2m), the multiplicative group of GF(2m). Therefore, the
number of possible mappings in this case is 2m− 1. In what
follows, we perform computations for both ensembles in
parallel as they are very similar.

III. EXPECTATION OF THE WEIGHT DISTRIBUTION

Let us begin by deriving the average weight distribution of
the ensemble EGL(n,l,r,m).

Lemma 3.1 (Average Weight Distribution of EGL(n,l,r,m)):
For EGL(n,l,r,m), the average weight distribution is

E[N(G,nω)] =

( n
nω

)
(2m−1)nω( nl

nlω

)
|GLm

2 |nlω
coef

(
pm(y)

nl
r ,ynlω

)
, (1)

where

pm(y) =
1

2m

[
(1+ |GLm

2 |y)
r +
(

1− |GLm
2 |y

2m−1

)r

(2m−1)
]
.

Proof. The number of codewords of weight nω is given by
N(G,nω) = ∑w∈W 11w(G), W being the set of all the words
of weight nω over GFm

2 and 11w(G) is the indicator function.
Then the expectation is

E(N(G,nω)) = ∑
w∈W

E(11w(G)) . (2)

Because of the symmetry in the permutation of edges and due
to uniform probability of all the possible edge labels on every
edge, 11w(G) is independent of the word w and depends only
on its weight. We fix w to a word with support set {1, . . . ,nω}
and its non-zero symbols are unity. Then Eqn(2) reduces to
E(N(G,nω)) =

( n
nω

)
(2m−1)nω

E(11w(G)) . Now,

E(11w(G)) =
number of graphs for which w is a codeword

total number of graphs
.

The total number of graphs is given by (nl)!|GLm
2 |nl. The

number of graphs for which w is a codeword is given by

(nl−nlω)!(nlω)!|GLm
2 |nl−nlωcoef

(
pm(y)

nl
r ,ynlω

)
.

The factorial terms correspond to permuting the edges carrying
zero value and non-zero value. The term |GLm

2 |nl−nlω takes
care of the fact that we can put any edge label on the edges
carrying the value zero. To describe the polynomial pm(y),
we make the following quantity Fr for EGL(n,l,r,m) and

EGF(n,l,r,m) respectively:

Fr =

∣∣∣∣∣{(M1 . . . ,Mr) :
r

∑
i=1

Mixi = 0,Mi ∈ GLm
2 ,xi ∈ GFm

2 }

∣∣∣∣∣ ,
=
|GLm

2 |r

2m

(
1+

(−1)r

(2m−1)r−1

)
.

Fr =

∣∣∣∣∣{(M1 . . . ,Mr) :
r

∑
i=1

Mixi = 0,Mi ∈ GF∗(2m),xi ∈ GF∗(2m)}

∣∣∣∣∣ ,
=

2m−1
2m

(
(−1)r +(2m−1)r−1) .

Then the polynomial pm(y) is given by pm(y) = 1 +
∑
r
i=1
(
r
i

)
Fiyi,= 1

2m

[
(1+ |GLm

2 |y)
r +
(

1− |GLm
2 |y

2m−1

)r
(2m−1)

]
.

In summary,

E(11w(G)) =
coef

(
pm(y)

nl
r ,ynlω

)
( nl

nlω

)
|GLm

2 |nlω
. (3)

Substituting Eqn(3) in the expression for E(N(G,nω)) in
Eqn(??) gives the desired result.

Using similar arguments we obtain the average weight
distribution for the ensemble EGF(n,l,r,m):

Lemma 3.2 (Average Weight Distribution of EGF(n,l,r,m)):
For EGF(n,l,r,m), the average weight distribution is

E[N(G,nω)] =

( n
nω

)( nl
nlω

)
(2m−1)n(l−1)ω coef

(
pm(y)

nl
r ,ynlω

)
, (4)

with pm(y) =
1

2m [(1+(2m−1)y)r +(1− y)r (2m−1)] . (5)

IV. EXPECTATION OF THE BINARY WEIGHT DISTRIBUTION

In this section we derive average binary weight distributions.
Lemma 4.1 (Binary Weight Distribution of EGL(n,l,r,m)):

Consider the ensemble EGL(n,l,r,m). Let Nb (G,nmω)
denote the binary weight distribution of a randomly chosen
code G. Then the average E(Nb (G,nmω)) is given by

min(n,nmω)

∑
i=nω

(n
i

)
coef

(
((1+ x)m−1)i ,xnmω

)
coef

(
pm(y)

nl
r ,yli

)
(nl

il

)
|GLm

2 |li
,

(6)

where ω ∈ (0,1).
Proof. The average binary weight distribution is given by

E(Nb (G,nmω)) =
min(n,nmω)

∑
i=nω

g(i,nmω)·

P(given weight-i word is cwd of G) , (7)

where g(i,nmω) denotes the number of words with weight i
whose binary weight is nmω and is given by

g(i,nmω) =
(

n
i

)
coef

(
((1+ x)m−1)i ,xnmω

)
. (8)

Combining Eqn(3) and Eqn(8) gives Eqn(6).



Using similar arguments, we obtain the average binary
weight distribution of the ensemble EGF(n,l,r,m):

Lemma 4.2 (Binary Weight Distribution of EGF(n,l,r,m)):
Let Nb (G,nmω) denote the binary weight distribution of
a code G randomly chosen from EGF(n,l,r,m). Then
E(Nb (G,nmω)) is given by

min(n,nmω)

∑
i=nω

(n
i

)
coef

(
((1+ x)m−1)i ,xnmω

)
coef

(
pm(y)

nl
r ,yli

)
(nl

il

)
(2m−1)li ,

where ω ∈ (0,1) and pm(y) is defined by Eqn(5).
Let us recall the Hayman method [18], [19] for approximat-

ing the term coef(q(y)n,ynω) for large n, where q(y) is a finite
degree polynomial satisfying appropriate technical conditions.

Lemma 4.3 (Hayman Method): Let q(y) = ∑i qiyi be a
polynomial with non negative coefficients such that q0 6= 0
and q1 6= 0. Define aq(y) := y dq(y)

dy
1

q(y) and bq(y) := y daq(y)
dy .

Then for n→ ∞ so that nω ∈ N

coef(q(y)n,ynω) =
q(yω)n

ynω
ω

√
2πnbq(yω)

(1+o(1)), (9)

where the term o(1) converges to zero and yω is the unique
positive solution of aq(y) = ω.

Note that pm(y) satisfies technical conditions of Lemma 4.3
for m≥ 2. Therefore, we have the following estimation:

Lemma 4.4 (Average Weight Distribution for m≥ 2):
Consider the regular ensemble EGL(n,l,r,m), where m≥ 2.
The average weight distribution is given by

E(N(G,nω)) =
√
r√

2πnbpm(xω)
·

en(ω ln(2m−1)−h(ω)(l−1)+ l
r ln(pm(yω))−lω ln(|GLm

2 |)−lω ln(xω)), (10)

where xω is the solution of apm(x) = rω and h(ω) =−(ω lnω+
(1−ω) ln(1−ω)) and lnω is the natural logarithm of ω.

Proof. The proof is straightforward and uses the Stirling
approximation of

( n
nω

)
, Lemma 3.1 and Lemma 4.3.

A similar result also holds for EGF(n,l,r,m).

V. GROWTH RATE

Let us characterize the growth rate of the binary weight
distribution of EGL(n,l,r,m) and EGF(n,l,r,m) as m→∞.
We derive it by observing that, for both ensembles, the average
binary weight distribution E(Nb(G,nmω)) can be written as

min(n,nmω)

∑
i=nω

(n
i

)
coef

(
((1+ x)m−1)i ,xnmω

)
coef

(
pm(y)

nl
r ,yli

)
(nl

il

)
Ali

,

(11)
where

pm(y) =
1

2m

[
(1+Ay)r +

(
1− Ay

2m−1

)r

(2m−1)
]
.

Here A = |GLm
2 | for EGL(n,l,r,m) and A = 2m − 1 for

EGF(n,l,r,m).
Let us denote the summation term of Eqn(11) corresponding

to index i by Si. We normalize i by n and write i = γn.

Let βm(ω) be the growth rate of the average binary weight
distribution. To derive the expression of βm(ω), note that
min(1,mω) = 1 for a fixed non-zero ω when n gets large.
Thus, for m large enough, we obtain that

βm(ω)=
1
m

max

(
lim
n→∞

log(Snω)
n

, sup
γ∈(ω,1)

αm(ω,γ), lim
n→∞

log(Sn)
n

)
,

(12)

where

αm(ω,γ)= inf
x>0

inf
y>0
{−(l−1)h(γ)− γl log(A)−(mω−γ) log(x)

+ γ log
(

(1+ x)m−1
x

)
+

l

r
log(pm(y))−lγ log(y)

}
(13)

Here we used the fact that coef
(
((1+ x)m−1)i ,xnmω

)
=

coef
((

(1+x)m−1
x

)i
,xnmω−i

)
. For γ ∈ (ω,1), the values of x

and y corresponding to the infimum in Eqn(13) satisfy two
following conditions:

x(1+ x)m−1

(1+ x)m−1
=

ω

γ
(14)

Ay
(1+Ay)r−1−

(
1− Ay

2m−1

)r−1

(1+Ay)r +
(

1− Ay
2m−1

)r
(2m−1)

= γ, (15)

Let us compute the solutions of Eqns(14, 15), when m→ ∞.
Lemma 5.1: Let xm and ym be the solutions of Eqn(14) and

Eqn(15). For increasing values of m, the solution to Eqn(14)
and Eqn(15) is given by

xm = x∗
(

1+O

((
γ

γ−ω

)−m
))

, x∗ =
ω

γ−ω
, (16)

ym = y∗(1+o(1)), y∗ =
1
A

(
γ2m

1− γ

) 1
r

. (17)

Proof. Let xm be the solution of Eqn(14). Note that for
large values of m, (1+ x)m−1 ≈ (1+ x)m. Using this we get
the desired expression for xm. Now, let ym be the solution of
Eqn(15). Let us make the following assumption on the solution
ym:

Aym = o(2m−1), Aym = Ω(m) . (18)

Then the numerator and the denominator of Eqn(15) become

Aym(1+Aym)r−1−Aym

(
1− Aym

2m−1

)r−1

=(Aym)r+O(Aym)r−1;

(1+Aym)r+
(

1− Aym

2m−1

)r

(2m−1)= (Aym)r+2m +O((Aym)r−1).

Therefore, Eqn(15) becomes (Aym)r

(Aym)r+2m = γ + O
(

1
Aym

)
. Thus

the solution is ym = 1
A

(
γ2m

1−γ

) 1
r (1+o(1)). Note that it satisfies

the conditions given by Eqn(18).
Now we have the following result:
Lemma 5.2: Let γ ∈ (ω,1). Then there is only one positive



root of Eqn(14) and Eqn(15).
Proof. Rewrite Eqn(14) as ∑

m−1
j=0

(m−1
j

)
x j+1 −

ω

γ
∑

m
j=1
(m

j

)
x j = 0. By changing the index of the first

summation term, we get ∑
m
j=1

(
1− ω

γ

m
j

)(m−1
j−1

)
x j = 0. For

j > mω

γ
, the coefficients are positive, otherwise negative as

γ > ω. So, there is only one sign change and by Descarte’s
rule of sign, there is only one positive root to Eqn(14). Now,
rewrite Eqn(15) as

−γ2m +
r

∑
j=1

(
r−1
j−1

)
y jA j

(
1+

(−1) j

(2m−1) j−1

)(
1− γr

j

)
= 0.

For j > γr the coefficients become positive as γ < 1. Again,
there is only one sign change and by Descarte’s rule of sign
there is only one positive solution to the equation.
We now derive a lemma concerning the evaluation of polyno-
mials which will be very useful later:

Lemma 5.3: Let xm and ym be the solutions of Eqn(14) and
Eqn(15) given in Lemma 5.1. Then for γ ∈ [ω,1)

pm(ym) = pm(y∗)(1+o(1)),
(1+ xm)m−1 = ((1+ x∗)m−1)eo(m).

Proof. As the constant term in pm(y) is 1, we obtain

pm(ym)= pm(y)
(

1+
pm(y∗)−1

pm(y∗)
o(1)

)
= pm(y∗)(1+o(1)),

Rewrite the polynomial corresponding to xm as

(1 + xm)m − 1 =
m

∑
i=1

(
m
i

)
(x∗)i(1 + o(1))i.

The term (1 + o(1))i is largest for i = m and it is equal to
(1+o(1))m = emo(1) = eo(m). This proves the lemma.

We start the final calculation and derive the expression for
supγ∈(ω,1) αm(ω,γ) for large m by deriving lower and upper
bounds and by showing that they are tight as m→ ∞.

A. Upper Bound on the Supremum of αm(γ,ω)
To derive the upper bound to αm(ω,γ), for a fixed γ we

can substitute any positive value of x and y on the RHS of

Eqn(13). We choose x = x∗ = ω

γ−ω
, y = y∗ = 1

A

(
γ2m

1−γ

) 1
r
. Now,

for x∗ > 0,

γ log
(

(1+ x∗)m−1
x∗

)
≤ mγ log(1+ x∗)− γ log(x∗)

= mγ log
(

γ

γ−ω

)
− γ log

(
ω

γ−ω

)
. (19)

We obtain the following upper bound on pm(y∗):

pm(y∗) =
γ

1− γ

[(
1+
(

1− γ

γ2m

) 1
r

)r

+

((
1− γ

γ2m

) 1
r

− 1
2m−1

)r

(2m−1)

]
.

(20)
Assume m large, then γ ∈ (ω,min(1,mω)) = (ω,1) and

pm(y∗)≤ γ

1− γ

[(
1+
(

1−ω

2ω

) 1
r

)r

+
(

1−ω

ω

)r
]

. (21)

Substituting Eqns(19, 21) in Eqn(13), we obtain

αm(γ,ω)≤ γ log
(

γ

γ−ω

)
−ω log

(
ω

γ−ω

)
− γl

r

+
1
m

[
−(l−1)h(γ)+

l

r
(1− γ) log

(
γ

1− γ

)
+

l

r
log

((
1+
(

1−ω

2ω

) 1
r

)r

+
(

1−ω

ω

)r
)]

Note that the term normalized by m can be upper bounded by
a constant dependent only on ω. This is because for γ∈ (ω,1),
(1− γ) log(γ)≤ 0 and −(1− γ) log(1− γ)≤ 1. Hence,

α(ω,γ) , lim
m→∞

αm(ω,γ)≤ ᾱ(ω,γ),

where

ᾱ(ω,γ) , γ log
(

γ

γ−ω

)
−ω log

(
ω

γ−ω

)
− l

r
γ log(2). (22)

The derivative of ᾱ(ω,γ) over γ is ∂ᾱ(ω,γ)
∂γ

= log
(

γ

γ−ω

)
−

l
r

log(2) . and becomes zero for γ∗ = ω

1−2−l/r
. The second

derivative is ∂2ᾱ(ω,γ)
∂γ2 = −ω

γ(γ−ω) . So, γ∗ is indeed a maximum
provided γ∗ < 1. This means that for ω ≤ 1− 2−l/r, γ∗ is
maximum. Otherwise, the maximum is achieved at γ = 1. We
obtain the following bound

sup
γ∈(ω,1)

α(ω,γ)≤

{
−ω log(2l/r−1), 0≤ ω < 1−2−l/r,
h(ω)− l

r
loge(2), 1−2−l/r ≤ ω≤ 1.

(23)
In order to obtain the upper bound on βm(ω), we com-
pute the end terms i = ωn and i = n of summation in
Eqn(11). Let us first consider i = ωn and observe that
coef

(
((1+ x)m−1)nω ,xnmω

)
= 1. This gives

lim
n→∞

log(Snω)
nm

=
1
m

(−(l−1)h(ω)−lω log(A))

+ inf
y>0

1
m

{
l

r
log(pm(y))−lω log(y)

}
. (24)

From Lemma 5.1, we know that ym defined in Eqn(17)
corresponds to the infimum. From Eqn(20),

pm(y∗)=
ω

1−ω

[(
1+
(

1−ω

ω2m

) 1
r

)r

+

((
1−ω

ω2m

) 1
r

− 1
2m−1

)r

(2m−1)

]
.

We obtain pm(y∗) = ω

1−ω
(1 + o(1)). Combining these calcu-

lations, substituting them in Eqn(24), and letting m→ ∞,

lim
m→∞

lim
n→∞

log(Snω)
nm

=−lω

r
. (25)

Now, as the coef term corresponding to pm(y) is given by

coef
(

pm(y)
ln
r ,ynl

)
=
(

Ar

2m

(
1+

(−1)r

(2m−1)r−1

)) ln
r

,

the growth rate limn→∞
log(Sn)

nm is



log((1+ xm)m−1)
m

− ω log(xm) − l

r
+

l

mr
log
(

1+
(−1)r

(2m−1)r−1

)
,

xm = x∗(1+o(1)) being given by Eqn(16). From Lemma 5.3,
(1+ xm)m−1 = ((1+ x∗)m−1)eo(m). This gives us

lim
n→∞

log(Sn)
nm

= h(ω)− l

r
. (26)

Finally, we state the upper bound on βm(ω) when m→ ∞.
Lemma 5.4:

β(ω)≤

{
−ω log(2l/r−1), 0≤ ω < 1−2−l/r,
h(ω)− l

r
, 1−2−l/r ≤ ω≤ 1.

Proof. By Eqns(22), (25) and (26), we observe that for
ω≤ 1−2−l/r, the bound in Eqn(22) gives the maximum as it
is positive and other two are negative. For ω > 1−2−l/r, the
bound in Eqn(22) and the growth rate of Sn in Eqn(26) coin-
cide. Consider the difference between the bound in Eqn(22)
and Eqn(25) and denote it by δ(ω). Then δ(ω) = h(ω)− (1−
ω) l

r
. Its derivative dδ(ω)

dω
= 1

loge(2)

(
loge

( 1−ω

ω

)
− l

r
loge(2)

)
,

which is zero for
ω =

1
1+2l/r

.

The second derivative is equal to d2δ(ω)
dω2 = −1

loge(2)ω(1−ω) . Thus,
the first derivative is a strictly decreasing function of ω and it
is negative for ω > 1/

(
1+2l/r

)
. As δ(1) = 0, δ(ω) ≥ 0 for

ω > 1/
(
1+2l/r

)
. Now,

1
1+2l/r

< 1−2−l/r,

we obtain that for ω > 1− 2−l/r, the bound in Eqn(22) is
greater than growth rate of Sn given in Eqn(26).

B. Lower Bound on the Supremum of αm(ω)

By using the upper bound, we choose carefully the values
of γ for a fixed ω in Eqn(13), obtain a lower bound on the
growth rate and show that it matches with the upper bound.
For ω ≥ 1− 2−l/r, we choose γ = 1. So, the lower bound is
given by Eqn(26) which matches with the upper bound. For
ω < 1−2−l/r, we choose γ = ω

1−2−
l
r
. By using Lemmas 5.1,

5.3 and Eqn(20) in the evaluation of RHS of Eqn(13), we
obtain the expression which is equal to ᾱ

(
ω, ω

1−2−l/r

)
, where

ᾱ(ω,γ) is defined in Eqn(22). This matches with the upper
bound. Thus, the upper bound on β(ω) is tight. This proves
Theorem 1.1.

VI. DISCUSSION OF THE OBTAINED RESULT

In this paper, we have shown that when n→∞ and m→∞,
the growth rates of regular LDPC ensembles over finite fields
and over the general linear group have the following form: it
is the straight line for normalized binary weights smaller than
a critical value 1− 2−l/r and is equal to the growth rate of
the binomial distribution for weights greater or equal than 1−
2−l/r. However, does such a pessimistic result on the growth
rate indicate that the channel capacity under ML decoding

cannot be achieved with non-regular LDPC codes? Our further
analysis shows that a regular LDPC ensemble over finite fields
or over the generalized linear group contains an exponentially
small number of codes having an exponentially large number
of codewords of linear weight, which, contributing into the
average weight distribution of the ensemble, produce such
a straight-line behavior. The details of the computation are
beyond the scope of this paper and will be given in its extended
version [1]. Nevertheless, this justification shows that it still
might be possible to show the capacity-approaching property
of LDPC codes over large alphabets under ML decoding,
either by doing an appropriate expurgation or by applying
another averaging method.
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