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Abstract— We propose here a new construction of quantum
codes combining an improved version of a family of spatially
coupled quantum LDPC codes, suggested in [1], with a family
of error reducing turbo-codes of [2]. This new construction
displays outstanding performances under iterative decoding for
noise levels very close to the hashing bound, without needing
qubits, protected from noise as in [1].

I. INTRODUCTION

Quantum capacity. One of the most challenging issues in
quantum information theory is determining the maximum rate
at which information can be transmitted through a quantum
channel. In particular we will be interested in the quantum
channel capacity which captures such a notion when the
information to be protected is quantum. Even for very simple
and natural noise models such as the depolarizing channel, this
quantity is not known accurately, there only exist upper and
lower bounds, being rather far apart (see for instance [3]).
The simplest lower bound is known as the hashing bound
or the LSD theorem [4], [5], [6]. It has a very simple form
for Pauli channels and can be attained by random stabilizer
codes. Roughly speaking, the hashing bound corresponds to
the maximum rate for which the information about the error,
obtained by the syndrome measurement, is able to pinpoint the
Pauli error. In some sense, it really corresponds to the classical
notion of capacity. In the case of the depolarizing channel, this
lower bound has only been improved by a tiny amount [7],
[8], [9].

Quantum codes suitable for iterative decoding. Another
very challenging task is to devise coding schemes which
would attain these lower bounds with a decoding algorithm
of low complexity. Recently in [10], a scheme, attaining
the hashing bound of Pauli channels, was proposed. It is
basically a quantum version of polar codes [11]. It presents
the same advantages as classical polar codes, in particular it
inherits the low complexity decoding algorithm of its classical
counterpart. However, this coding scheme needs assistance of
some entangled qubits, which are shared between the encoder
and the decoder and which are noiseless on the decoder
side. Moreover, the performance of classical polar codes is
significantly superseded by the performance of well designed
sparse-graph codes, for instance LDPC codes or turbo-codes,
which have also a low complexity decoding algorithm (i.e. the
iterative decoding algorithm). This is basically due to the fact
that the probability of error after decoding decreases much

slower in the polar code case than for LDPC codes or turbo-
codes.

This motivates us to search for a good quantum analogue
of LDPC codes or turbo-codes. However, it turns out that the
design of high performance quantum LDPC codes is much
more complicated than in the classical setting. In particular,
most constructions suggested in the literature [12], [13], [14],
[15], [16], [17], [18], [19], [20] suffer from having either a
bounded minimum distance or a vanishing code rate. There are
only few exceptions, namely [21], [22], [23], [24]. Moreover
in all these constructions, unlike in the classical setting, there
are issues with the decoder: 4-cycles in their Tanner graph if
decoding is performed over F4 and code degeneracy which
impairs the decoder [25].

On the other hand, the generalization of turbo-codes to the
quantum setting has first been achieved in [26]. However this
construction has rather poor iterative decoding performance.
In [27], it was shown that it was possible to come up with
quantum turbo-codes with good performance under iterative
decoding. However, the families of codes constructed in this
article have bounded minimum distance and the performance
of these codes degrades for large blocklengths. It was even
proved there that it is not possible to obtain quantum serial
turbo-codes with unbounded minimum distance and with an
iterative decoding algorithm that converges. This is due to the
fact that it can be proved that quantum convolutional encoders
which are at the same time non-catastrophic and recursive do
not exist [27].

In summary, all these quantum constructions are very far
away from being able to perform close to the hashing bound.
For instance, if we consider the constructions obtained for rate
1
4 , for which we have the most of experimental data, none of
these codes are able to operate successfully at depolarizing
noise p above p = 0.08 (actually the sustainable noise for
the best of these constructions ranges between p = 0.04 and
p = 0.08) whereas the hashing bound for rate 1

4 corresponds
to the depolarizing noise of about p ≈ 0.127.

Spatially coupled quantum LDPC codes. The difficulty of
obtaining good quantum LDPC codes is arguably the fact that
in order to avoid the deterioration of decoding performance
due to the code degeneracy, LDPC codes of rather large parity-
check weights should used. In the classical case, such LDPC
codes can operate successfully near capacity, if the degree
distribution is carefully optimized. This is much more difficult
to achieve in the quantum setting due to the orthogonality



constraints that the parity-check matrix has to satisfy. There is
however a way in the classical case to operate successfully
near capacity with LDPC codes with large parity-checks
and without the degree distribution optimization – by using
spatially coupled quantum codes [28].

Spatially coupled LDPC have been introduced in [29] (they
were named terminated convolutional LDPC codes there).
They might be viewed in the following way: take several
several instances of a certain LDPC code family (denoted by
layers), arrange them in a row and then mix the edges of the
codes randomly among neighboring layers (ie swapping the
end point of two edges of neigboring layers). Moreover fix
the bits of the first and the last layers to zero. It has soon
been found out that iterative decoding behaves much better
for this code than for the original LDPC code and that it
was easy to get very close to the capacity by starting from
almost any LDPC code without any optimization of the degree
distribution. A breakthrough occurred when it was proved that
a single class of such codes is able to attain the capacity of
all binary input memoryless output-symmetric channels [28].

Quantum spatially coupled LDPC codes. All these nice
features of classical spatially coupled LDPC codes suggest
to study whether they have a quantum analogue. A first step
in this direction was achieved in [30] where a certain family
of quantum spatially coupled LDPC codes was suggested
(but without using well protected qubits which would be
the quantum analogue of fixing bits to zero). However, the
performances of these codes are still very far away from the
hashing bound. Another route was followed in [1], where
a spatially coupled version of a construction of quantum
LDPC codes, suggested by [15] and based on a couple of
orthogonal (classical) LDPC codes obtained from low density
generator matrix (LDGM) codes. They gave a stabilizer code
of rate 1

4 and a few first layers and a few last layers of the
spatially coupled construction are supposed to be error-free. A
tremendous performance improvement over other families of
codes of rate 1

4 is then observed. In this case, the probability
of error after decoding drops down sharply after p = 0.102.

Our contribution. We have revisited the construction of [1]
in several ways. First of all, we have removed the assumption
of having qubits noise-free by protecting the first and the
last layers of the construction by encoding the qubits of
these layers with the quantum turbo-code of [2], which is
a strong error-reducing code. Our code is as in [1] a CSS
code [31], [32]. The two associated binary codes are decoded
separately in [1]. We have changed the decoding algorithm by
coupling both decoders here. Finally we have also devised with
greater care the coupling used in [1]. All these transformations
result in a code construction whose rate goes to 1

4 and which
performs extremely well under iterative decoding for noise
values close to the hashing bound p ≈ 0.127, and this without
needing qubits which are error-free as in [1].

II. CSS CODES

The codes constructed in this paper fall into the category of
Calderbank-Shor-Steane (CSS) codes [31], [32] which belong

to a more general class of quantum codes called stabilizer
codes [33], [34]. The first class is described with the help
of a pair of mutually orthogonal binary codes, whereas the
second class is given by an additive self-orthogonal code over
GF (4) with respect to the trace Hermitian inner product.
Quantum codes on n qubits are linear subspaces of a Hilbert
space of dimension 2n and do not necessarily have a compact
representation in general. The nice feature of stabilizer codes
is that they allow to define such a space with the help of a very
short representation, which is given here by a set of generators
of the aforementioned additive code. Each generator is viewed
as an element of the Pauli group on n qubits and the quantum
code is then nothing but the space stabilized by these Pauli
group elements. Moreover, the set of errors that such a
quantum code can correct can also be deduced directly from
this discrete representation. For the subclass of CSS codes,
this representation in terms of additive self-orthogonal codes
is equivalent to a representation in terms of a pair (CX ,CZ) of
binary linear codes satisfying the condition CZ

⊥ ⊂ CX . The
quantum minimum distance of such a CSS code is given by

dQ , min{dX , dZ}, where (1)
dX , min{|x|, x ∈ CX \ CZ⊥},
dZ , min{|x|, x ∈ CZ \ CX⊥}.

Such a code allows to protect a subspace of kQ qubits against
errors, where

kQ ,dim
(
CX/CZ

⊥
)
. (2)

kQ is called the quantum dimension of the CSS code.
If HX and HZ are parity-check matrices of the binary codes

CX and CZ respectively, the pair (HX ,HZ) is referred to
either as the stabilizer matrix or as the parity-check matrix
of the quantum code, by analogy with the classical case. The
condition CZ

⊥ ⊂ CX translates into HXHT
Z = 0.

The channel error model we will be interested in is called
a Pauli channel. The parameters of such an error model
consist in a triple of non-negative reals pX , pY , pZ satisfying
pX + pY + pZ ≤ 1. In the case of n qubits, an error consists
in a couple of two binary errors eX = (eXi )1≤i≤n and
eZ = (eZi )1≤i≤n of length n which obey to the following
error model

P(eXi = 1, eZi = 0) = pX

P(eXi = 0, eZi = 1) = pZ

P(eXi = 1, eZi = 1) = pY

In the case of a CSS code, the associated decoding problem
can be formalized as follows. Let n be the length of the CSS
code. We want to decode simultaneously the aforementioned
couple (eX , eZ) from the knowledge of the syndrome of both
errors which are given by HXeTX and HZe

T
Z .

III. OUR CONSTRUCTION

A. Outline of the construction

Our construction has two ingredients:



Fig. 1. Rough sketch of the construction. U is the outer spatially coupled
quantum LDPC encoder where the qubits are arranged in layers. The block
structure of U corresponds to these layers and the turbo-code encoder Uin of
[2] can be viewed as an inner encoder protecting the layers at the extremity.
The decoding is done in two steps. First, the inverse inner encoder is applied,
the syndrome is measured and the turbo-code is decoded, and a suitable
correction Udext procedure is applied before decoding the outer spatially
coupled LDPC code.
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• a spatially coupled version of a quantum LDPC construc-
tion due to [35], [15];

• an error-reducing code taken from [2] which reduces
strongly the noise in the outer layers of our construction.

Figure 1 gives a rough sketch of the overall construction.

B. Overviev of the construction of [15]

Before presenting our construction of a spatially coupled
LDPC code, let us recall the approach of [35], [15] which
we followed. Their idea begins with the observation that the
dual of a low density generator matrix code is a low density
parity-check code. This can be exploited to yield a CSS code
at the expense of a constant minimum distance. However, if
the weights of the rows of the low density generator matrix are
chosen to be large enough, this is not necessarily a problem.

A couple of matrices (H̃X , H̃Z) satisfying the orthogonality
constraint H̃XH̃Z

T
= 0 are obtained as follows. Start with

an n/2× n/2 sparse binary matrix P. Let H̃X =
(
P I

)
,

H̃Z =
(
I PT

)
. Obviously, H̃XH̃Z

T
= 0. However this

gives a quantum code of length n, and of rate 0. We can
nevertheless obtain a quantum code of non zero rate by either
choosing a subset of rows in H̃X and H̃Z to form HX and
HZ respectively or by multiplying these matrices from the
left by arbitrary non-square matrices MX and MZ (say of
size l × n/2): HX = MXH̃X and HZ = MZH̃Z .

The resulting CSS code associated to the couple (HX ,HZ)
is still of length n but his rate is now 1− 2l/n. Since we are
interested in codes of rate 1

4 , we choose l = 3
8 . For remaining

parameters, let us proceed as in [15]: P will be chosen to
be of constant row and column weight d. MX and MZ are
chosen as in [15]: they have constant column weight equal
to x, and we fix their row weight to 1 on s1 rows and to y
on the remaining s2 rows. These s1 rows of weight 1 help
the decoding to start. Therefore we have s1 = n 3x−4y

4(x−1) and
s2 = n 4y−3

4(x−1) .
We represent this construction with a Tanner graph which

will be used for decoding (see Figure 2 and [15] for further

Fig. 2. Tanner graph used for decoding. The graph of HX is represented
in the upper part, and the graph of HZ in the lower part. The green boxes
(grey outline) represent the matrix P in the X-part, and PT in the Z-part.
The purple boxes (dashed outline) represent MX and MZ respectively.
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details). There are n variable nodes. Half of them are of degree
1 (they correspond to u1 in the X-part, u2 in the Z-part) in
the Tanner graph, while the other half (which corresponds to
u2 in the X-part and u1 in the Z-part) is of some constant
degree d. There is a first set of check nodes, corresponding
to c1, all of degree d+ 1 which form a bipartite subgraph of
degree d with the variable nodes of degree d. This first level of
the graph represents the matrix P: the check nodes correspond
to the rows of P whereas the variable nodes correspond to the
columns of P. There is an edge between a check node and
a variable node if and only if the corresponding entry in P
contains a 1.

There is a matching of these check nodes with n/2 state
nodes (corresponding to r1 in the figure) and there are two
matchings between the n/2 check nodes of the second level
(corresponding to c2) and the variable nodes of u1 and r1
respectively. Then there is a last matching between the n/2
check nodes of c2 and the n/2 state nodes of r2. Finally the
subgraph of the Tanner graph formed by the state nodes of
r2 and the last level of check nodes corresponding to c3 has
three type of nodes:
- s1 check nodes of degree 1 (this implies that the associated
state node of r2 should be equal to 0),



- s2 check nodes of some constant degree x,
- all the state nodes of r2 are of some constant degree y in the
subgraph. This part of the graph represents the matrix MX in
the same way as P was represented before.

As explained before, the purpose of the check nodes of
degree 1 of the last level is to ensure that iterative decoding
does not get stuck at the initial stage (it corresponds to some
kind of doping of the last level of state nodes corresponding
to r2).

C. The associated spatially coupled construction

The point of choosing the construction of [15] is that it
has already good performances and leads in a natural way to
a spatially coupled version, still preserving the orthogonality
constraints for HX and HZ . The spatially coupled version is
obtained by taking several codes, constructed in the previous
subsection, and swapping the edges of the Tanner graphs of
these codes. More precisely, it is done as follows: we choose
three parameters L, δP and δM . Let δ,max(δM , δP ). Take
L+ 2δ copies of codes of length n coming, index them with
0, 1, . . . , L+2δ−1 and consider the associated Tanner graphs
(let the t-th Tanner graph correspond to layer t). For each
i ∈ {−δP , . . . , δP }, and t ∈ {0, 1, . . . , L+2δP −1}, we swap
a fraction 1

2δP+1 of the edges which link a variable node with
a check node at layer t (and which correspond to P ) with
an edge which links a variable node to a check node at level
t + i mod (L + 2δ) such that the variable node at level t is
now adjacent to the check node at level t+ i mod (L+ 2δ)
and vice versa. The edges which link the state nodes with
check nodes which correspond to MX are treated similarly,
but with δM replacing δP in the explanations above. As seen
in Figure 3, in the X-part, we couple up to a distance δP the
edges from P , and up to a distance δM the edges from MX .

Fig. 3. Coupling the edges of the X-part: each of the four little graphs is
a contracted version of fig 2. The coupling is made by mixing the edges of
MX , MZ , P and PT .

... ...

... ...

δ

δ

M

P

For the Z-part, we just transpose the extended (and spa-
tially coupled) P. Then we naturally have the orthogonality
condition, and each edge is sent to a distance at most δP . MZ

is coupled independently, up to a distance δM . Even if this is

not obvious, this coupling is necessary: suppose that, at some
step of the decoding, the X-part, the u2 section (the half of
the information nodes that are of degree d) has been correctly
decoded. Erase these variable nodes and the adjacent edges
from the graph. Then the resulting Tanner graph is exactly
the one which we use if we want to correct the remaining
errors. It corresponds just to the matrix MX , with the u1 nodes
replacing the r2 nodes. If this section is not spatially coupled,
it is equivalent to L+2δ distinct codes. Therefore the decoding
performances are catastrophic: as L increases, the probability
that at least one of those independent decoding fails tends to
1.

Finally the qubits which are in the layers {0, . . . , 2δ−1} will
be protected by a second encoding which uses the turbo-code
of [2]. This turbo-code is of rate 1

8 and therefore the parameters
of the whole construction can be described as follows.
• length = Ln+ 2δn× 8 = (L+ 16δ)n,
• number of encoded qubits = (L+2δ)n

4

• rate = (L+2δ)n
4(L+16δ)n = L+2δ

4(L+16δ) which tends asymptotically
to 1

4 as L tends to infinity.

IV. RESULTS

The decoding starts by decoding the inner turbo-code first.
It reduces significantly the error noise son the first layers (less
than a fraction of 1

1000 of qubits were incorrectly decoded
by using this decoder). This information is passed directly to
the decoder of the spatially coupled LDPC code, the belief
propagation decoding is performed over the Tanner graph,
associated to the construction. Note that one decoder the X
and Z errors simultaneously (and therefore the correlations of
these errors are taken into account). For the belief propagation
decoder, the window decoder from [36] is used to reduce its
complexity. The used code parameters are given in Table I.

TABLE I
PARAMETERS OF THE CONSTRUCTION .

n L δM δP d x y s1 s2
SC1A 960 150 4 3 20 9 3 15n

64
9n
64

SC1C 3840 150 4 3 20 9 3 15n
64

9n
64

SC2A 960 50 2 2 20 13 4 23n
96

13n
96

The x-axis and the y-axis of the following curves give
respectively the depolarizing error probability and the prob-
ability of error after decoding. We have compared this code to
codes of rate 1

4 , which is the design rate of our scheme when
L grows. The other codes are taken from
• Garcia-Liu: [15]
• turbo codes: [27]
• MacKay: [13]
• Lou-Garcia: [35]
• Camara-Ollivier-Tillich: [14]

As shown in Fig. 4, the spatially coupled code clearly outper-
forms the previously known LDPC code constructions as well
as the quantum turbo-code constructions.



Fig. 4. Comparison with other codes of rate 1
4

. The first dotted vertical line
(B1) is the CSS lower bound (' 0.109), and the second (B2) is the hashing
bound (' 0.127).

B2

The performances are close to the hashing bound, formerly
introduced, that gives R = 1− (h(p) + p log2(3)).

We can even go beyond the CSS lower bound. This bound
corresponds to the case when the X-part and the Z-part are
decoded separately, therefore it corresponds to the lower bound
of the decoding of the classical code given by the X-part, on
a binary symmetric channel of error probability 2p/3. This
bound gives R = 1 − 2 h

(
2p
3

)
, where R is the rate of the

quantum code. Clearly, this shows that decoding the X and
Z-parts together gives a quite good advantage.
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