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Abstract. The main topics where coding theory can be useful for lin-
ear cryptanalysis are finding linear approximations of a cipher [FLT09a,
FLT09b], recovering efficiently key bits from statistical data [BCQ04,
GT09] and estimating the data complexity of a linear cryptanalysis
[GT09]. We give an overview of such results here.

1. Introduction

Linear cryptanalysis is probably one of the most powerful tools available for at-
tacking symmetric cryptosystems. It was invented by Matsui [Mat94,Mat94] to
break the DES cipher building upon ideas put forward in [TCG91,MM92]. It was
quickly discovered that other ciphers can be attacked in this way, for instance
FEAL [OA94], LOKI [TSM94], SAFER [MPWW95].

It is a known plaintext attack which takes advantage of probabilistic linear
equations that involve bits of the plaintext p, the ciphertext c and the key k of
the kind

Pr(π · p⊕ γ · c = 0)
1

2
+ (−1)κ·kε. (1)

ε is called the bias of the equation, π, γ and κ are linear masks and π · p denotes
the following inner product π · p def

=
⊕m

i=1 πipi between π = (πi)1≤i≤m (where m
denotes the message size) and p = (pi)1≤i≤m. There might be several different
linear approximations of this kind at our disposal and we let n be their number.
We denote the corresponding key masks by κi and the corresponding biases by
εi for i ∈ {1, . . . , n}. Another important quantity which will appear repeatedly is
the dimension d of the vector space generated by the κi’s.

There have been several papers during the last years exploiting strong links
between linear cryptanalysis and coding theory to obtain new results on the first
topic. The results obtained by this approach are of several kinds:

• finding good linear approximations can be treated by using efficient algo-
rithms for decoding first order Reed Muller codes;



• the information available for the attacker by using the linear approxima-
tions on the set of available plaintext/ciphertext pairs can be viewed as
obtaining the result of the transmission of several bits of a linear code on a
Gaussian channel, this can be used to bring in linear decoding techniques
to speed up the recovery of the key bits once the relevant statistical data
is computed;
• information theoretic tools can be used to quantify with accuracy the

amount of plaintext/ciphertext pairs which are needed in several different
linear cryptanalyses.

In Section 2, we review the results of [FLT09a,FLT09b,RT09] which deal with
using decoding algorithms of the first order Reed Muller codes to find good linear
approximations. This algorithm which requires to choose a given output mask,
outputs suitable input masks and key masks when they exist. It has complexity
O
(
v
ε2

)
, where v is the sum of the input message size m and the key size k, and

ε is the bias of the linear approximation. This is only slightly worse than testing
whether a certain linear approximation has bias of order ε. This algorithm can be
applied to any cipher (i.e. not just ciphers based on iterated round functions) and
does not rely on the piling up lemma approximation. Moreover its complexity is
optimal in the black box model where the linear combination of the cipher output
γ ·c which is chosen is given by a black box and any query to the ciphering function
has constant cost. Its complexity is of course worse for small biases when we have
a cipher based on iterating several times a given round function and where the
piling up lemma approximation is correct. It is for instance right now still a little
bit too complex to be applied to a full-round DES. However, it proved to be quite
useful for certain side channel attacks [RT09] where all linear masks of the input
could exhaustively be checked by the algorithm.

We will also give another application of decoding techniques, this time for
improving the complexity of recovering the right key (or subkey) once the rel-
evant statistics associated to the n linear approximations have been computed.
The link with error correction techniques comes here from the fact that the statis-
tics available for the attacker can be viewed as the result of the transmission of
the linear combinations of the key bits κi · k through a Gaussian channel. The
naive approach of performing this task would have complexity Ω(n2d). This can
be easily reduced to O(d2d) by a fast Fourier transform and up to O(2

d(n−d)
n )

with decoding techniques based on ellipsoids [Dum00]. We present here another
decoding algorithm for performing this task whose complexity has never been
analyzed rigorously but which is simple to implement and is one of the fastest in
practice.

Finally, we also point out that information theory can also be used to give
a rather sharp bound on the number N of plaintext/ciphertext pairs which are
needed for performing linear cryptanalysis. We depart here from the usual notions
of advantage [Sel08,HCN09b] and gain [BCQ04] and quantify here the entropy of
the key given the statistical data at hand.There are several reasons for this:

• First, this notion is probably the most relevant quantity to quantify the
amount of random bits left in the key knowing the statistics deduced from
the available data. It is definitely relevant for linear cryptanalysis: for in-



stance a good rule of thumb to run linear cryptanalysis is to take a list
size of order 2h, where h is the conditional entropy of the key given the
statistical data (see [GT09]).
• Second, the gain is in general not an accurate tool for this purpose. This

comes from the fact that we are precisely in a setting where the median
and the expected value of the rank of the right key differ significantly. This
is elaborated on in Section 5.
• Finally, there is a very handy tool for lower bounding this quantity which

is at the same very general, easy to apply and surprisingly sharp, namely
Theorem 1 which is a well known result in information theory. Even if
the amount N of data which is needed for linear cryptanalysis is now well
understood [Jun01,Sel08] in the case of one linear approximation, this is
not really the case when many linear approximations are available. The
results given in [BCQ04] are quite pessimistic as been observed in [GT09].
In the more general setting of multiple linear cryptanalysis it is by no means
obvious to have an accurate estimate of the amount N which is needed for
a given list size and success probability. In this case, having a handy tool
for estimating the entropy of the key together with the aforementioned rule
of thumb is quite useful. It should be mentioned that information theoretic
tools can also be brought in to prove that this rule of thumb is indeed
correct in certain situations but this is beyond the scope of this paper.

2. Finding linear approximations using a decoding algorithm for order 1
Reed-Muller code

In this section we explain how to find good linear approximations for a Boolean
function F , by making as few queries to the function as possible. Basically we
provide here an algorithm for performing this task which has time complexity of
order O

(
v
ε2

)
, where v is the number of variables of the Boolean function and ε is

the bias of the linear approximations which is sought (that is the linear approxi-
mation and the Boolean function agree on a fraction of inputs which is 1

2 +ε). The
complexity of this algorithm is essentially optimal in the black box model (where
F is given by a black box and where any query to the black box has complexity
Θ(1)). Indeed, we show in this section that any algorithm performing this task
has to use at least Ω

(
v
ε2

)
entries of F . It can be noticed that the time complexity

of the algorithm depends only weakly in the number of variables of the Boolean
function and that it has about the same time complexity as the apparently much
simpler task which is testing whether a certain linear approximation has a bias
of order ε: any algorithm of this kind must use at least Ω

(
1
ε2

)
entries of F .

This algorithm can be used in the linear cryptanalysis context to check
whether a certain linear combination of the output bits of a cipher can be well
approximated by a certain linear combination of the key bits and the message
input bits. When considering ciphers, there exists other techniques that provide
good estimates of the biases of linear approximations with better time complexity
when the cipher is an iterated cipher by using the piling-up lemma. Nevertheless,
the algorithm presented here is of great interest in the scope of side-channel at-



tacks. The attack proposed in [RT09] is equivalent to a linear cryptanalysis using
several approximations where the ciphertext is replaced by an intermediate value
I(p,k) of the cipher. More precisely, in the Hamming weight (or distance) model,
the information that can be obtained about this value is a power consumption
trace that is correlated with the Hamming weight |I(p,k)| of this register. Hence,
each measurement of a trace gives to the attacker the corresponding value of
|I(p,k)|. Linear approximations of the form p · π⊕ c · γ = k · κ are thus replaced
by p ·π⊕ |I(p,k)| · γ = k ·κ. Then, the attack is performed as for any other non-
distinguishing linear cryptanalyses using many approximations. In these attacks,
the data complexity is linked to the biases of the approximations (the greater
they are, the smaller the complexity is). That is the reason why finding good
approximations of the boolean function

F : (p,k) 7→ |I(p,k)| · γ,

is of interest here. Notice that in order to be sure to get the best approximations,
one has to run the algorithm with all possible values for the output mask γ.
Here this is not a real problem since the number of bits for |I(p,k)| is of course
relatively small. In some contexts, the attacker may not know which cipher is used
and reverse engineering may be costly. In such a case, having a twin device allows
the attacker to consider F as a black box and thus to find linear approximations
using the algorithm presented here.

Now that the motivation has been exposed, let us focus on the core of the
problem. First, we will see that a linear approximation of a Boolean function can
be viewed as a decoding problem of Reed-Muller codes of order 1. The problem
is that for cryptanalytic issues, codewords are so large that we are not even able
to store one of them in computer memory. Then, we will present the probabilistic
algorithm provided in [FLT09a,FLT09b] that decodes large length order 1 Reed-
Muller codes which solves this issue and uses only a tiny fraction of the codeword.
Finally, we will discuss the time and space complexities of this algorithm.

2.1. Reed-Muller codes of order 1

The order 1 Reed-Muller codes are related to linear cryptanalysis via Boolean
functions. Let us recall that these codes are defined as follows.

Definition 1 A Boolean function g in v variables is a function from Fv2 to F2.
The truth table of a Boolean function g is the vector composed of its eval-
uations: (g(u))u∈Fv2 . The Algebraic Normal Form (ANF) of a Boolean func-
tion g is the unique polynomial in F2[x1, . . . , xv] of the form f(x1, . . . , xv) =∑
J⊂{1,...,v} aJΠj∈Jxj such that

∀a ∈ Fv2, g(a) = f(a1, . . . , av).

The degree of a Boolean function is the degree of its ANF.

Now we can define Reed-Muller codes in terms of Boolean functions.



Definition 2 The order o Reed-Muller code of length 2v is the set of truth tables
of Boolean functions in v variables of degree less than or equal to o.

When considering linear cryptanalysis, we are interested in order 1 Reed-Muller
codes. Such codes are composed of the truth tables of all affine functions in a
given number of variables. Hence, finding the closest codeword to a given vector
y (in terms of Hamming distance) is finding the best affine approximation of the
Boolean function with truth table y. This is the approach followed in [FLT09a].

There are two main obstacles with this approach when applied to linear crypt-
analysis.

• A cipher E : (x,k) 7→ y is not a Boolean function.
• The size of the truth tables considered by this approach. Indeed, the number
of variables is the size of the input plus the size of the key. Nowadays, the
smallest parameters would be about 64 bits for the input and 80 bits for
the key, what leads to a minimum of 144 variables. In other words, it is
impossible in this case to consider the whole truth table of the Boolean
function which would have 2144 entries.

The first point implies that in order to find affine approximations using this
Reed-Muller code approach, the output mask γ has to be fixed, i.e. we consider
the Boolean function g : (x,k) 7→ E(x,k) · γ. The necessity of fixing an output
mask is not the main problem since for many ciphers it is easy to guess the form
of such good masks. Once an output mask is fixed, the second point remains,
finding affine approximations of the cipher amounts to decoding a vector obtained
by computing the values E(x,k) · γ for all possible x and k’s, that is a vector of
length 2144 obtained by 2144 encryptions in the example at hand. It is clear that
classical decoding algorithms for Reed-Muller codes are not suitable for this case.
The solution is a probabilistic algorithm presented in [FLT09a] that reconstructs
the best affine approximation by computing only a tiny fraction of the received
vector.

2.2. Reconstruction algorithm

The probabilistic solution proposed in [FLT09a] is based on the following obser-
vation.

Let g be a Boolean function with v variables and π an input mask that pro-
vides a good linear approximation of this Boolean function. Let I ⊂ {1, 2, . . . , v},
πI (resp. πĪ) be the restriction of π to its indices that belong to I (resp. that
do not belong to I). Using the same notation for x: g(x) = g(xI ,xĪ), then, for
a fixed value xĪ , XI · πI is a good linear approximation of the Boolean function
f(XI) = g(XI ,xĪ)

1.
Hence, the best linear approximation can be reconstructed variable per vari-

able. This is the main idea underlying Algorithm 1. For simplicity, we denote
by X1, . . . , Xv the random variables corresponding to the plaintext/key bits.
An affine approximation corresponds to a polynomial of degree at most 1 in

1While this statement is true for a random Boolean function, it may not be true anymore for
a cipher (think about the Hull Effect). We will discuss this point at the end of the subsection.



p ∈ F2[X1, . . . , Xv]. The algorithm deals with a list L of possible (truncated) affine
approximations. We denote for a given list L and a polynomial q in F2[X1, . . . , Xv],
by L+ q the following list

L+ q
def
= {p+ q; p ∈ L}

To begin with, we will present a simplified version of the algorithm presented
in [FLT09a] that works for random Boolean functions (and ciphers with no Hull
Effect).

Algorithm 1 Reconstruction of linear approximations.
Parameters:

• ε the minimum bias of approximations what we want to keep,
• T the number of samples to generate for the estimation of the bias,
• a rejection parameter c < 1.

Input: A Boolean function g : Fv2 → F2 to approximate.
Output : A list L of affine approximations of g of bias of order Ω(ε).
1: L ← {0, 1};
2: I ← ∅;
3: for 1 ≤ i ≤ v do
4: L ← L ∪ (L+Xi);
5: I ← I ∪ {i};
6: for p ∈ L do
7: t← 0;
8: Randomly choose an xĪ ;
9: for 1 ≤ j ≤ T do

10: Randomly pick a value xI in Fi2;
11: t← t+ p(xI)⊕ g(xI ,xĪ);
12: end for
13: if t

T ≥
1
2 − cε then

14: L ← L\{p};
15: end if
16: end for
17: end for
18: return L;

The first point to discuss about this algorithm is its applicability to ciphers.
Actually, since only one xĪ is chosen for each iteration, it is possible for a good
approximation to be deleted due to the Hull Effect. Indeed, some bits of xĪ may
correspond to bits of the key and the randomly chosen value for these bits can be
those of a key for which the approximation has a very small bias. The solution to
this problem is to take several values for xĪ as proposed in the original algorithm
from [FLT09a]. The number of values to take in order to bypass this problem
is only of order θ(1) and thus this improvement does not increase so much the
complexity of the algorithm. Then, there are two ways of deciding whether the
approximation has to be kept or not. The first is the one proposed in [FLT09a]



that consists in summing the counters obtained for these different values of xĪ
and to compare the sum to a fixed threshold. The other way of doing this is to
individually compare these counters to the threshold and to delete the approxi-
mation if none fulfills the condition. In the first case, the rejection parameter c
has to be significantly larger than the one taken in the second approach.

The second point of this discussion is T . The required number of samples to
detect a bias ε is known to be of order Ω(ε−2). For sets I with small cardinality,
it is impossible to generate that many different samples since we only have 2#I

possible values for xI and thus many unbiased approximations may be kept until
#I reaches log2(ε−2). This is a matter of concern since the time complexity of
the algorithm heavily depends on the size of L. Actually, this size is growing
exponentially at the beginning of the algorithm and then decreases to 1 till the
end of the process. The point where the size of the list decreases to 1 is given
in [HKL03]. For a value m of #I, the probability of the list to be reduced to a
singleton is upper-bounded by 2−2mε2 . This induces that for #I ≥ log2(ε−2), the
size of the list is likely to be one. This remark is the basis of the improvement
presented in the next subsection.

2.3. Improving the algorithm

In order to bypass the first iterations and to directly begin the algorithm with a
small size of list, the idea is to perform a classical decoding of the code restricted
to the first variables. The v iterations are thus divided in v = v1 + v2. After a
classical decoding on the v1 first variables, Algorithm 1 is used to reconstruct the
v2 others.

The decoding of the v1 variables can be efficiently performed using the Fast
Walsh Transform Algorithm. We recall that the Walsh transformed of a real
valued vector y = (ya)a∈Fv12 is

ŷx
def
=
∑

a∈Fv12

(−1)x·aya.

The Walsh coefficient ŷx when applied to ya
def
= (−1)g(a,xv2 ) (where xv2 denotes a

certain vector in Fv22 ) is related to the distance ∆ between the truth table of the
function u 7→ g(u,xv2) and the truth table of the linear function u 7→ u · x, by

ŷx = 2v1 − 2∆

Therefore the distances between all linear functions u 7→ u · x and the function
u 7→ g(u,xv2) can be computed with time complexity Θ(v12v1) and memory com-
plexity Θ(2v1). The resulting improved algorithm for finding linear approxima-
tions is given in Algorithm 2.

The ideal value for v1 is log2(ε−2) (as mentioned before) for which the list
has a size of 1 with good probability. Nevertheless, this step may be impossible
to run with v1 ≈ log2(ε−2) due to memory complexities. In that case, on has to
take v1 as large as possible and to run the reconstruction algorithm with a large
list for the first iterations.



Algorithm 2 Reconstruction algorithm using FFT.
Parameters:

• ε the minimum bias of approximations what we want to keep,
• T the number of samples to generate for the estimation of the bias,
• a rejection parameter c < 1.
• v1,v2 such that v1 + v2 = v.

Input: A Boolean function g : Fv2 → F2 to approximate.
Output : A list L of affine approximations of g of bias of order Ω(ε).
1: for a ∈ Fv12 do
2: ya ← (−1)g(a,xv2 );
3: end for
4: Compute ŷ using the FFT algorithm;
5: L ← ∅;
6: for a ∈ Fv12 do
7: if ŷa

2v1 −
1
2 ≥ 2cε then

8: L ← L ∪ {
∑v1
i=1 aiX

i};
9: end if

10: if ŷa
2v1 −

1
2 ≤ −2cε then

11: L ← L ∪ {1 +
∑v1
i=1 aiX

i};
12: end if
13: end for
14: I ← {1, 2, . . . , v1};
15: perform now Algorithm 1 starting directly at step 3 with the value i = v1 +1.

2.4. Complexities and use of the algorithm

If v1 can be chosen close to log2(ε−2), then this algorithm has the following
complexities.

• Time complexity: O
(
v
ε2

)
.

• Memory complexity: O
(

1
ε2

)
.

It should be noted that this complexity is optimal in the black-box model:
the Boolean function we want to approximate is given by a black box and we
can make queries to the black box by asking the corresponding output of the
Boolean function for a certain entry. We are also allowed to choose the next query
according to the results of the queries which have already been made. Each query
has an algorithmic cost of Θ(1). In this model, it is straightforward to check by
information theoretic arguments that the number of queries which have to be
made to the black-box is of order v

ε2 . To verify this claim, we can think of the
following game between a sender and a receiver. The sender chooses a random
element a of Fv2. Then he chooses a random Boolean function F as follows. He
chooses the output corresponding to an entry x as a ·x with probability 1

2 + ε and
1⊕a ·x otherwise. The receiver has at his disposal the black box corresponding to
the function F and an algorithm which computes the best affine approximation of
F . Let us say that he is able to find the best affine approximation of F (which is
the linear function x 7→ a·x with very high probability) with n queries to the black



box. This would imply that we could send v bits of information through a binary
symmetric channel of crossover probability 1

2 − ε with vanishing error probability
(as v goes to infinity) by sending only n bits through the channel. Recall here
that such a channel acts as follows: the bits are sent reliably with probability
1
2 + ε and get flipped with probability 1

2 − ε independently of each other. The
feedback capacity of this channel (that is the capacity of the binary symmetric
channel when we are allowed at the sender side to choose the next bit which has
to be transmitted by using the knowledge of the bits which have been received at
the receiver side, see [CT91][Sec. 8.12], which is the relevant notion when we can
make adaptable calls to the black box such as here ) is equal to the capacity of
the same channel without feedback [CT91][Theorem 8.12.1]. Therefore it is equal
to 1 − h (1/2− ε) = θ(ε2), where h(x)

def
= −x log2 x − (1 − x) log2(1 − x). This

implies that any transmission scheme of this kind should verify (asymptotically
in v)

v

n
≤ 1− h (1/2− ε) = θ(ε2),

from which it follows that

n = Ω
( v
ε2

)
.

As noticed before, this complexity is only slightly larger than the complexity
of checking whether a certain affine approximation has a bias of order ε. However,
despite of this, this algorithm is still too complex for finding linear approxima-
tions of recent ciphers. In this case, the only tools at hand make use of the iter-
ated structure of the cipher and approximations based on the piling up lemma.
Nevertheless, this algorithm does not require the knowledge of the function to
approximate and only uses this one as a black box. This is the main advantage
of this algorithm that has shown its usefulness for certain side-channel attacks
[RT09] as mentioned earlier. Indeed, the number of output bits is the size of a
register and thus the number of possible output masks is quite small so that all
those masks can be exhaustively tested. Moreover, the biases considered are large
enough for the algorithm to have a reasonable complexity.

3. Multiple linear cryptanalysis and decoding linear codes over the Gaussian
channel

As mentioned in [BCQ04], the problem of multiple linear cryptanalysis can be
viewed as a decoding problem over a noisy channel. This remark is the starting
point of the work presented in [GT09] where performing multiple linear crypt-
analysis can be treated as a linear decoding problem over a binary white additive
Gaussian noise channel.

After a short definition of the Gaussian channel, we present the framework
proposed in [GT09] that is based on the fact that a certain function of the counters
used in linear cryptanalysis behaves like the output of such a channel. We also
recall several relevant notions of maximum likelihood and list decoding.



3.1. Binary additive white Gaussian noise channel

For the first version of linear cryptanalysis (namely Algorithm 1 of [Mat94]),
the attacker has access to N pairs (pi, ci) enciphered with the same key k and
computes the number T of pairs such that p · π ⊕ c · γ = 0. Writing the linear
approximation as

Pr [p · π ⊕ c · γ = 0] =
1

2
+ (−1)k·κε,

we deduce that the counter T follows a binomial distribution of parameters N and
1
2 +(−1)k·κε. ε is quite small here, therefore this distribution can be approximated
by a Gaussian distribution N

(
N
2 + (−1)k·κNε,N

(
1
4 − ε

2
))
. If we bring in the

following affine function of T

Y
def
=

2T −N
2Nε

.

then we immediately obtain that Y is normally distributed with an expected value
(−1)k·κ and variance 1−4ε2

4Nε2 . For simplicity, and since ε� 1, we will now suppose
that Y follows the normal distribution N ((−1)k·κ, 1/4Nε2).

Let us now bring in the definition of a Gaussian channel

Definition 3 (Binary Additive White Gaussian noise channel) Let Y be the ran-
dom variable corresponding to the output of a Binary Additive White Gaussian
Noise (BAWGN) channel of variance σ2 and let X ∈ {0, 1} be the related input
variable. Then,

Y = (−1)X + Z,

where Z is a centered normally distributed variable with variance σ2.

The link between linear cryptanalysis and the Gaussian channel is now obvious.
Matsui’s Algorithm 1 that recovers one bit of information about the key k · κ can
be seen as a process that guesses the input value (−1)X = (−1)k·κ that has been
sent over a BAWGN channel with variance σ2 = 1

4Nε2 thanks to the knowledge
of the output Y . The optimal way of guessing the value of X is

(−1)X =

{
1 if Y > 0,
−1 otherwise.

This is equivalent to guess that

k · κ =

{
0 if T > N/2,
1 otherwise.

In the case of multiple linear cryptanalysis, the attacker has n linear approx-
imations with plaintext masks γi, ciphertext masks πi and key masks κi with
biases εi. The computation of n counters gives him n variables Yi corresponding



to (−1)k·κi + Zi and from this, his task is to recover the values of k · κi. Notice
that the Zi’s are not identically distributed since σi depends on the bias εi of the
i-th approximation:

σ2
i

def
=

1

4Nε2
i

.

We may notice that if the κ’s are not linearly independent, the attacker should
not recover each Xi independently. This can be illustrated by the following simple
example. Suppose that we get three linear approximations with respective key
masks κ1, κ2 and κ3 = κ1 ⊕ κ2. Then, recovering each bit independently could
lead to guess that k · κ1 = k · κ2 = k · κ3 = 1, what is impossible since the scalar
product is linear. This problem arises as soon as the dimension of the vector space
K spanned by the n key masks κi (say d) is smaller than n. This situation is
precisely the setting of error-correcting codes. The vector (k · κ1, . . . ,k · κn) can
be viewed as the vector obtained by encoding d bits of information about the key
using the linear code defined by the key masks

Cκ1,...,κn
def
=
{

(k · κi)1≤i≤n;k ∈ Fd2
}
.

Hence, recovering k from Y is equivalent to decoding Y as a codeword of Cκ1,...,κn

that has passed through the particular BAWGN channel that has noise variance
σ2
i at position i. We will assume that the Gaussian random variables Zi’s which

affect each coordinate k · κi are independent, which means that the channel is
memoryless.

On the memoryless property of the channel. While in the multidimensional ap-
proach [HCN09b,HCN08], this independence of the Zi’s is not a matter of concern,
the results obtained in [BCQ04,GT09] rely on this hypothesis. In [Mur06], the
framework of [BCQ04] is questioned and it turns out that it can be proved that
the vector (Zi)1≤i≤n is a Gaussian vector. The dependencies between counters
are therefore entirely captured by the covariance matrix

Σ
def
= (Cov(Zi, Zj))1≤i≤n

1≤j≤n
.

This kind of dependency is easily treated by a simple linear transformation on
the Yi’s. Indeed, there exists a unitary matrix P = (Pij)1≤i≤n

1≤j≤n
such that PΣP t is

diagonal and takes the following form

PΣP t =


σ′1

2
0 · · ·

0 σ′2
2

0 · · ·
· · ·

· · · 0 σ′n
2


This implies that the vector (Z ′i)1≤i≤j where Z ′i

def
=
∑

1≤j≤n PijZj is a Gaussian
vector formed by independent Gaussian variables of variance σ′i

2. It would be



straightforward to extend the approach followed here to the dependent case by
performing the linear transformation associated to P . We would have to con-
sider a slightly more general channel than the binary input additive white Gaus-
sian noise channel, because we would have to calculate the corresponding linear
transformations on the counters, namely

Y ′i
def
=

∑
1≤j≤n

PijYj =
∑

1≤i≤n

Pij(−1)k·κj + Z ′i.

It should be added that for the 8-round DES, experiments have been handled
in [GT09] to show that these covariances are negligible and that the Zi’s are
essentially independent random variables. To simplify the discussion, from now
on, we will assume that the Zi’s are independent random variables.

3.2. Maximum likelihood list decoding

The natural way of handling the analysis phase in linear cryptanalysis is to com-
pute the likelihoods (or at least an equivalent statistic) of all the candidates and
to choose the most likely key. In coding theory, this process is known as a complete
maximum likelihood decoding algorithm.

Definition 4 A complete maximum likelihood decoding algorithm is given a vector
y for input and returns a codeword cret that maximizes the probability of being
sent knowing the output y of the channel:

cret
def
= argmax

c∈C
Pr [X = c|Y = y] .

In our scope, the cryptanalyst is able to check the correctness of a codeword 2.
Thus, getting not one but the `most likely codewords may be of interest. Although
it makes less sense in coding theory to get many codewords at the output of a
decoder, this kind of problem is well known as list decoding.

Definition 5 A list decoding algorithm takes the received vector y for input and
returns a list L = {c1, c2, . . . , c`} of the ` most likely codewords.

∀ci ∈ L,∀c ∈ C\L, Pr[X = ci|Y = y] ≥ Pr[X = c|Y = y].

The following section presents two maximum likelihood list decoding algo-
rithms that can be applied to the linear code Cκ1,...,κn considered in a multiple
linear cryptanalysis.

2Indeed, a codeword corresponds to a class of keys that can be used to encrypt a plaintext
for which the ciphertext is known.



4. Finding bits of the key using a list decoding algorithm of a linear code

Regarding the model presented in the previous section, multiple linear cryptanal-
ysis can be addressed as a maximum likelihood list decoding problem of the lin-
ear code generated by the key masks over a Gaussian channel. The point is that
decoding algorithms may reduce significantly the cost of finding the most likely
key. For instance, the method using ellipsoids [Dum00] works with complexity
O
(

2
d(n−d)
n

)
where d is the dimension of the vector space spanned by the κi’s, if

we bound and quantize the Yi’s. This is strictly better than the naive algorithm
consisting in trying all the possible keys.

We present here two other algorithms that have been suggested in literature
to decrease the complexity of the naive approach. The first one is an efficient
global computation of all the likelihoods using a Walsh transform that is actually
a complete soft decoding algorithm of first order Reed-Muller code over an erasure
channel [FLT09a,FLT09b]. This algorithm is deterministic and provides the list
of all codewords and their likelihood with a complexity of O(d 2d) but requires to
make an assumption of stochastic independence on the approximations used. The
second one is a soft list decoding algorithm for random linear codes [Val00b]3.
Here, not all the codewords’ likelihoods are computed: only a subset of potentially
correct codewords are treated. This algorithm is thus a probabilistic algorithm
that returns a list of the ` most likely codewords considered. This last algorithm
fails when the correct codeword is not considered4.

4.1. Decoding Reed-Muller codes on the erasure channel

It is straightforward to check (see for instance [GT09]) that the quantity v(c)
defined below induces the same ordering on the codewords c’s as the probabilities
Pr [X = c|Y = y] if the channel is memoryless.

v(c)
def
=

n∑
i=1

(−1)ci
Yi
σi
. (2)

In order to compute this quantity, O(n) sums and floating point divisions have
to be performed thus the cost of individually computing the likelihood of each
single codeword may be prohibitive (of order O(n 2d)).

The main tool used here is the Walsh transform of a real valued function g
that maps Fd2 to R. We denote by ĝ this function that is defined as

ĝ(t)
def
=
∑
a∈Fd2

(−1)a·t g(a).

3More details are given in Valembois’ thesis [Val00a].
4If the correct codeword is considered but is not in the list of the ` most likely codewords,

then any algorithm will fail. On the other hand, it is possible that the second algorithm succeeds
where the first fails if, by chance, some codewords more likely than the correct one are not
considered. If this second algorithm has a low failure probability, then this last event is unlikely
to occur.



This function can be efficiently computed using the Fast Walsh Transform Algo-
rithm. The complexity of this algorithm is of order O(d 2d).

The link to the decoding of Reed-Muller codes is the following. The code
generated by all the key masks of the subspace spanned by the n masks κ’s is the
order one Reed-Muller code of dimension d. The vector Y can be extended to a
vector Ŷ of length 2d by adding zeros corresponding to the key masks belonging
to the aforementioned subspace that have no corresponding counters. This cor-
responds to receiving a vector that passes through a channel with erasures (the
corresponding Yi’s are set to 0). This vector Ŷ is then a noisy vector correspond-
ing to an initial codeword of the order 1 Reed-Muller code of dimension d for
which an efficient complete soft decoding algorithm consists in performing the
Fast Walsh Transform Algorithm.

The key masks κi span a vectorial subspace of Fk2 of dimension d. This one
can, thus, be identified to Fd2 thanks to an isomorphism Ψ : Fd2 → K ⊂ Fk2 . Let us
define

g(a)
def
=

{
Yi/σi if ∃i,Ψ(a) = κi,
0 else.

Then, the Walsh transform ĝ of g applied to a key class k ∈ Fd
2 is

ĝ(k) =

n∑
i=1

(−1)κi·k
Yi
σi
.

This is precisely the likelihood of a key class and thus the Fast Walsh Trans-
form Algorithm performs the analysis phase of a multiple linear cryptanalysis
in O(d 2d) time. Notice that this complexity does not depend on n the number
of approximations but on d the dimension of the subspace spanned by the key
masks. Thus, adding approximations with a key mask that belongs to this sub-
space only increases the counters generation but not the complexity of computing
likelihoods.

4.2. Stochastic resonance algorithm

Using Fast Walsh Transform Algorithm decreases the complexity of computing
the likelihoods of the candidates. Nevertheless, when the number of candidates
is too large, increasing the speed of exhaustive search will not be enough. In this
case, the attacker has to skip candidates for the attack to have a reasonable time
complexity.

The way of choosing which likelihoods will be computed is a soft decoding
problem. Here the code C we consider is defined by

C = {(κi · k)1≤i≤n;k ∈ {0, 1}k}

This code has a priori no particular structure and thus, the problem is the one of
decoding a random linear code that is known to be hard.

Nevertheless, there exists a probabilistic algorithm of relatively low exponen-
tial complexity for performing maximum likelihood decoding or list decoding with



small list sizes. This algorithm is the Stochastic Resonance Decoding Algorithm
that has been presented in [Val00b]. We denote by d the dimension of the code
(that corresponds to the number of information bits recovered) and n its length
(the number of approximations). We present this algorithm in what follows.

Basically the algorithm tries to look only for "rather" likely candidates. This
is performed by considering a set of d+h “rather reliable” positions. The algorithm
is summarized by Algorithm 3.

Algorithm 3 Stochastic Resonance Algorithm [Val00a,Val00b].
Parameters:

• r a certain number of iterations
• ` a list size
• h a small parameter (typically smaller than 20 )
• p (typically either 1 or 2)

Input: Y the received vector.
Output : a subset L contains the ` most likely codewords met by the algo-
rithm
1: L → ∅.
2: for 1 ≤ t ≤ r do
3: Step 1: A set I of d+ h “rather reliable” positions is chosen
4: Step 2: A vector ỹI consisting in the most likely values for κi · k for i

belonging to I is computed:
5: for i ∈ I do
6: if Yi > 0 then ỹI(i) = 0

else ỹI(i) = 1
7: end for
8: Step 3: A list C(2p, I, ỹI) of codewords (i.e. elements of C) is computed

such that any codeword c in it disagrees with ỹI on at most 2p positions of
I, that is |{i ∈ I; ci 6= ỹI(i)}| ≤ 2p

9: Step 4:
10: for all c ∈ C(2p, I, ỹI) do
11: compute its reliability v(c)
12: if |L| < ` then L = L ∪ {c}

else if v(c) larger than the smallest reliability of the elements of L, replace
the element in L of smallest reliability by c

13: end for
14: end for
15: return L

The first step for obtaining sets of rather reliable positions (but which differ
substantially from each other) uses the recipe given by Algorithm 4.

Let us now explain how the third step works. The idea is that the most likely
codeword has decent chances to agree on most positions of I with ỹI and therefore
to try all

∑2p
j=1

(
d+h
j

)
possibilities of codewords if we check all possibilities of

up to 2p disagreements on I. Note that not all these possibilities might be valid



Algorithm 4 Stochastic way of producing “good” subsets I [Val00a,Val00b].
Parameters: h a small parameter (typically smaller than 20)
Input: Y the received vector.
Output : a subset I ⊂ {1, . . . , n} such that |I| = d+h

1: for 1 ≤ i ≤ n do
2: Y ′i ←− Yi + Ni with Ni a Gaussian variable with expected value 0 and

variance σ2
i

4
3: end for
4: Sort the Y ′i ’s according to their reliability |Y ′i |
5: I ←− d+ h most reliable positions
6: return I

codewords. Indeed, if we let CI be the projection πI of C onto the coordinates
that are in I which is given by the mapping

πI : Fn2 → F|I|2

x = (xj)1≤i≤n 7→ xI
def
= (xi)i∈I

then we would like to check only the elements which disagree with ỹI in at most
2p positions and which are in CI . There is a way to check a good fraction of these
possibilities with a complexity only of order

∑p
j=1

(b d+h2 c
j

)
if h is such that

p∑
j=1

(
bd+h

2 c
j

)
= O(2h), (3)

by splitting I into two subsets I1 and I2 of almost equal size and to look only
at codewords of CI which disagree with ỹI in at most p positions of I1 and p
positions in I2. The point is the following. We can find with standard Gaussian
elimination a parity-check matrix for CI , namely a matrixM whose kernel is equal
to CI :

CI = {x ∈ F|I|2 ;Mx = 0}.

In other words, we want to find all possible e1, e2 ∈ F|I|2 both of weight ≤ p, with
the support of ei being contained in Ii, such that

M(ỹI ⊕ e1 ⊕ e2) = 0.

We may perform this operation by using a hash table as detailed in Algorithm
5. It remains to explain how we perform Instruction 10 in Algorithm 5, that is
how we extend a codeword in CI into a codeword of C. This is performed by
computing by standard Gaussian elimination a matrix G of size |I| ×n such that
the right multiplication of an element xI of CI yields the element of C whose
projection by πI is xI . Such a matrix always exists if the dimension of CI is d.
This happens with probability very close to 1 for h satisfying Bound (3).



Algorithm 5 An algorithm to generate C(2p, I,y).
Parameters: 2p a bound on the number of positions in I on which the input and
the elements of the output differ.
Input:

• a subset I ⊂ {1, 2, . . . , n} with |I| = d+ h
• a vector y = (yi)i∈I ∈ Fd+h

2

Output : a list of elements c of C such that |{i ∈ I; ci 6= yi}| ≤
2p

1: C ←− ∅
2: Initialise an empty hashtable H[·] of length 2h

3: Find a parity-check matrix M for CI
4: Randomly split I in two sets I1 and I2 such that ||I1| − |I2|| ≤ 1
5: for all possible e1 ∈ Fd+h

2 of support in I1 and weight ≤ p do
6: H[Me1]← H[Me1] ∪ e1

7: end for
8: for all possible e2 ∈ Fd+y

2 of support in I2 and weight ≤ p do
9: for all e1 in H[Me2 ⊕My] do

10: C ← C ∪ {extend(e1 ⊕ e2 ⊕ y)};
11: end for
12: end for
13: return C

4.3. Comparison of the two algorithms

Let us have a small discussion on the choice of the algorithm to use when we want
to perform multiple linear cryptanalysis. If the dimension d is small enough, the
first algorithm of Subsection 4.1 is clearly the one to use. However, if d is too large
for d 2d to be negligible regarding the final exhaustive search of the attack (for
instance if the κi’s span all the key space), then, the first algorithm has prohibitive
complexity and Algorithm 3 should be preferred. There is no known complexity
analysis known for this algorithm, but it is expected to run successfully to find the
most likely candidate with an exponential complexity which is significantly smaller
than the ellipsoid method of [Dum00] which runs with complexity O

(
2
d(n−d)
n

)
.

5. Estimating or Bounding the data complexity using entropy

In a statistical cryptanalysis, the rank of the correct key among the list of all
existing key classes is an essential factor, for instance the time complexity depends
heavily on it through the list size ` of the key candidates which are kept. Two
notions can be used to quantify the power of an attack.

• The advantage adv: in [Sel08], the advantage of an attack for a success
probability PS is defined as log2

(
|Z|
`

)
where |Z| is the total number of key

classes considered by the attack, whereas ` is such that keeping ` candidates
among |Z| will lead to a success probability PS . Since for reasonable PS ,



the advantage of an attack does not vary so much, an alternative definition
can be used which does not depend on PS (see [HCN09] for instance). We
will use this alternative definition, that is we take ` in the formula above
such that PS = 0.5.
• The gain : this quantity is defined in [BCQ04] and is derived from the
expected value of the rank R of the correct key by the formula log2

|Z|
2E(R)−1 .

These quantities seem to be quite similar. Indeed, we may write ` as the list size
such that

PS
def
= Pr(R ≤ `) =

1

2
.

In other words, ` is the median of R, which we denote by median(R), and we
may expect that the median is roughly equal to E(R) (i.e. the expectation of R).
Therefore, we may think that

adv = log2

|Z|
median(R)

≈ log2

|Z|
E(R)

≈ log2

2|Z|
2E(R)− 1

≈ gain + 1.

Unfortunately, this intuition turns out to be wrong in many cases. The reason
for this is that R is rather concentrated and the median of it is not far away
from its typical value. However the expectation of R is in general far away from
the median. This is related to the fact that R is in general a very large quantity
which is in many cases of interest exponential in the key size k. Very often, the
expectation turns out to be dominated in such cases by rare events: in certain
rather unlikely cases, R is quite larger than the median of R and this is taken
heavily into account into the expectation and leads to an expectation E(R) which
is significantly larger than median(R).

We present in Proposition 1 which follows an example where this phenomenon
occurs. Basically for the multilinear cryptanalysis attack analyzed there, the ad-
vantage is equal to the whole key size d (meaning that with success probabil-
ity of 1

2 the best ranked key is the right one, that is ` = 1) for a number of
plaintext/ciphertexts pairs of order

N ≈ d ln(2)

2
∑n
i=1 ε

2
i

,

where the εi’s are the biases of the n linear approximations used for the attack.
In other words, for N of this order, we have median(R) ≈ 1. However, the
calculations of [BCQ04] show that E(R) is exponential in d for such values of N .
It becomes of order O(1) only for values of N which are twice as large.

On the other hand, the advantage can be quite hard to compute. This can
be illustrated, for instance, by the case of multidimensional linear cryptanalysis
of type 1 [HCN09c] where the computation of the advantage requires to compute
an order statistic of 2d dependent Gaussian variables with different negative ex-
pected values and same variance. In that case the only way of deriving a formula
for the advantage is to make some simplifying hypotheses. The formula for the
advantage in [HCN09c] is actually derived assuming that all these variables are in-



dependent and identically distributed. Moreover, the common distribution taken
is the Gaussian distribution with expected value 0 what is clearly a pessimistic
assumption.

A way of overcoming the problem of the bad behavior of the expectation of R
is to take the expectation of other quantities related to R. For instance, it is shown
in [GT09], that considering the entropy of the key is a much better statistic than
the expectation of the rank R. This entropy measures the number of random bits
remaining in the key knowing certain statistics. In a certain sense, it is related
to the expectation of the logarithm log2(R). The logarithm of R varies much
less than R and this is why the typical size of log2(R) coincides quite well with
the expectation. Calculating the expectation of log2(R) is probably a very tough
task. However, it is relatively easy to estimate the entropy by using a well known
information theoretical inequality, namely Theorem 1. This theorem gives a lower
bound on the entropy which is very easy to compute even in rather complicated
cases and is surprisingly sharp in general.

By using this theorem we obtain lower bounds for the key entropy for various
kinds of linear cryptanalyses. Our formula is compared to the data complexity
given in [BCQ04] for multiple linear cryptanalysis MK1 and it turns out that our
resulting formula gives an estimate smaller by a factor of 2 than the one given in
[BCQ04]. Then, its application to simple linear cryptanalysis is considered. The
result obtained there can be put in perspective with a remark of Pascal Junod
in [Jun01]: “We observe that Theorem 1 seems to give a pessimistic rank expected
value. It is difficult to explain this fact because of the small statistical sample size”.

To conclude, this approach is applied to the multidimensional cryptanalysis
of SERPENT presented in [HCN09]. In this case also, the entropy approach is
closer to the experimental results than the theoretical estimates given by the
attack designers.

5.1. Estimating the key entropy

The entropy of a random variable quantifies its uncertainty. It will give a very
handy tool to quantify the information gained analysing plaintext/ciphertext
pairs.

Definition 6 The (binary) entropy H(X) of a random variable X is given by the
expression:

H(X)
def
= −

∑
x

Pr[X = x] log2 Pr[X = x] (for discrete X)

def
= −

∫
f(x) log2 f(x)dx (for continuous X of density f).

Definition 7 The conditional (binary) entropy H(X|Y ) of a random variable X
under the knowledge of another random variable Y is given by the expression:

H(X|Y )
def
=
∑
x,y

Pr[Y = y]H(X|Y = y) (for discrete Y )

def
=

∫
f(y)H(X|Y = y)dy (for continuous Y ).



where

H(X|Y = y)
def
= −

∑
x

Pr[X = x|Y = y] log2 Pr[X = x|Y = y] (for discrete X)

def
= −

∫
f(x|y) log2 f(x|y)dx (for continuous X).

Conditional entropy can be used to measure the amount of randomness (i.e.
the amount of random bits) left in a key given a certain amount of statistics
derived from plaintext/ciphertext pairs. More precisely, if we denote by K denote
the random variableK = (κi·k)1≤i≤n and byY the random variable that contains
the information extracted from the available samples, then H(K|Y) quantifies the
uncertainty the attacker has on K knowing the plaintext/ciphertext pairs. For
instance, if H(K|Y) = 0, the attacker has a complete knowledge of K and thus
the correct candidate is top ranked with probability 1. More generally, taking
` = 2H(K|Y) should be enough to reach a good success probability.

Themutual information I(X;Y ) betweenX and Y is a related quantity which
quantifies the information on X brought by the knowledge of Y . It is defined by

I(X;Y )
def
= H(X)−H(X|Y ). (4)

It is straightforward to check [CT91] that this quantity is symmetric and that

I(X;Y ) = I(Y ;X) = H(Y )−H(Y |X).

5.2. The main tool

The main tool used in [GT09] to estimate the conditional expectation of the key
is the following theorem which relates the whole entropy to quantities which are
easier to compute.

Theorem 1 (Lemma 1 of [GT09]) Let Y and K be two vectors of n random vari-
ables such that

f(Y|K) =

n∏
i=1

f(Yi|Ki), (5)

where f(Y|K) denotes either the conditional probability of Y given K when Y is
discrete or the conditional density when Y is continuous. Then,

H(K|Y) ≥ H(K)−
n∑
i=1

I(Ki;Yi). (6)

Since keeping a list of 2H(K|Y) candidates guarantees a success probability close
to 1 and since I(Ki;Yi) is an increasing function of N , this lower bound on the
entropy is a lower-bound on the number N of plaintext/ciphertext pairs required
for a successful cryptanalysis.

This theorem will often be applied together with the following observation
(which is straightforward consequence of the definition of the conditional entropy)



lemma 1 If g is a one to one mapping, then H(K|Y) = H(g(K)|Y).

The point of this lemma is that it even if the vectors K and Y do not satisfy the
conditional independence relation (5), we might be able to choose a one-to-one
mapping g such that

f(Y|g(K)) =

n∏
i=1

f(Yi|K ′i)

where K ′i is the i-th coordinate of g(K).

5.3. Application to various linear cryptanalyses

We give here several applications of Theorem 1 to various cryptanalyses that can
be found in [GT09,Gér10]. It should be mentioned that Theorem 1 has a much
broader range of applications than the four examples which are given here (it
could be applied to many other scenarios in statistical cryptanalysis for instance).

Attack 1. This attack corresponds to the first attack proposed in [Mat94] and to
algorithm MK1 of [BCQ04]. For each linear approximation, a counter Ti contain-
ing the number of couples (pj , cj) such that pj · π ⊕ cj · γ = 0 is computed and
we want to recover the key K from these counters. We are exactly in the setting
explained in Subsection 3.1. We use Theorem 1 with

Yi
def
= (−1)k·κi + Zi

Ki
def
= (−1)k·κi

and obtain (for more details, see [GT09])

H(K|Y) ≥ d−
n∑
i=1

Cap(σ2
i ), (7)

where d is the dimension of the subspace spanned by the key masks κi’s and
Cap(σ2

i ) stands for the capacity of a BAWGN channel of variance σ2
i . It is given

by the following expression that can be found in [RU08] for instance

Cap(σ2) = 1− σ√
8π

∫ ∞
−∞

e−
(σ2 t−2)2

8σ2 log2(1 + e−t) dt;

It can be expanded in the following series

Cap(σ2) =
1

ln(2)

(
1

2σ2
− 1

4σ4
+

1

6σ6
+O

(
σ−8

))
.



Attack 2 and 3. The second kind of linear cryptanalyses are distinguishing at-
tacks. In such attacks, the attacker uses a linear approximation over r−r′ rounds
of the cipher where r is the targeted number of rounds (i.e. samples are encrypted
using r rounds of the cipher) and r′ is a small number of rounds chosen by the
cryptanalyst. This kind of attacks have been proposed by Matsui as Algorithm
2 and have been extended to multiple linear cryptanalysis under the name Al-
gorithm MK2 in [BCQ04]. In these attacks, the attacker recovers both the outer
key kO, that is key bits involved in the r′ last rounds and the inner key kI that
is the one recovered in Attack 1. Attack 2 is a distinguishing attack where only
kO is recovered and Attack 3 corresponds to the cryptanalyses in [Mat94,BCQ04]
where both kO and kI are considered. It is important to differentiate these two
attacks since Attack 3 might not be applicable to ciphers with complex key sched-
ules where the key masks do not make sense while Attack 2 does not consider
these masks.

In both case, for each of the n approximations, ciphertexts are partially de-
crypted with all possible values for the bits of the outer key involved in the pro-
cess. Notice that the bits involved may not be the same from an approximation to
another. We denote by Zi the set of possible values for the bits of the outer key
involved in the partial decryption corresponding to the i-th approximation and
by kO

i the part of the outer key involved in it. Then, a counter can be computed
for each of these possible values of kO. For the i-th approximation, we denote by
Y zi the statistic obtained using the value kO

i = z.
In the case of Attack 2, we define

K
def
= kO

g(K)
def
= (kO

i,z)1≤i≤n
z∈Zi

with kO
i,z

def
= kO

i

Y
def
= (Y zi )1≤i≤n

z∈Zi

We apply Theorem 1 to g(K). If we denote by 2k
O
the number of possible values

for K, we obtain (for more details see [GT09])

H(K|Y) ≥ kO −
n∑
i=1

∑
z∈Zi

I(kO
i ;Y zi ).

If we denote by ϕαi (t) = 1√
2πσ2

i

exp
[
− (t−α)2

2σ2
i

]
, then, the formula for I(kO

i ;Y zi )

is, for Attack 2:

I(kO
i ;Y zi ) =

∫ ∞
0

ri(t)

|Zi|
log

(
ri(t)

si(t)

)
dt+

∫ ∞
0

(1− |Zi|−1)wi(t) log

(
wi(t)

si(t)

)
dt,

with ri(t) = ϕ1
i (t) + ϕ−1

i (t), wi(t) = 2ϕ0
i (t) and si(t)

def
= |Zi|−1ri(t) + (1 −

|Zi|−1)wi(t).



In the case of Attack 3, we obtain in a similar way (see [GT09])

H(K|Y) ≥ kO+I −
n∑
i=1

∑
z∈Zi

Ii,z.

where 2k
O+I

is the total number of possible pairs (kO,kI) and

Ii,z =

∫ ∞
−∞

ϕ1
i (t)

|Zi|
log

(
ϕ1
i (t)

ψi(t)

)
dt+

∫ ∞
−∞

(1− |Zi|−1)ϕ0
i (t) log

(
ϕ0
i (t)

ψi(t)

)
dt,

with ψi(t)
def
= (1− |Zi|−1) ϕ0

i (t) + |Zi|−1 ϕ
−1
i (t) + ϕ1

i (t)

2
.

Multidimensional linear cryptanalysis. The last application of Theorem 1 we
present is the case of multidimensional cryptanalysis [HCN09b,HCN08]. We will
later compare the obtained results to experimental results provided in [HCN09].

Here, d base approximations are considered. Hence, for each pair (pj , cj), we
can derive d counters

T ji
def
=

{
1 if pj · πi ⊕ cj · γi = 0,
0 otherwise.

Both extensions of Algorithm 1 and 2 are based on the study of the distribution
of T j def

= (T j1 , . . . , T
j
d ) ∈ Fd2. This distribution depends on the value of the inner

key kI and thus is denoted by pkI . If we bring in Y = (T 1, . . . , Tn), K = kI we
can apply Theorem 1 to the couple (g(K),Y) with g(K)

def
= (kI, . . . ,kI︸ ︷︷ ︸

N times

), what

leads to

H(K|Y) ≥ d−
N∑
j=1

I(kI;T j). (8)

Using the properties of the distribution of T j , it is straightforward to check
the following expression which works for both multidimensional versions of Attack
1 and 3 (the whole derivation can be found in [Gér10]).

I(kI;T j) = d−H(Tj |kI = 0). (9)

Notice that this is the entropy of an uniformly distributed random variable on Fm2
minus the entropy of the distribution induced by the correlations. The conditional
distribution of Tj given that kI is equal to 0 is straightforward to obtain and
therefore we have an efficient way of lower bounding H(K|Y).

5.4. Accuracy and relevance of the bound

The entropy approach is very general and really captures the good behavior of
the rank of the good key. While for some special cases such as Matsui’s algorithm



2, some significant work can lead to a very precise formula for the distribution
of this rank ([Jun01]), there are cases of multilinear or multidimensional linear
cryptanalysis where it is not known how to compute the advantage of the attack.
The approach of [GT09] gives in this case a simple lower bound on the conditional
entropy which is tight enough to give a good idea of the power of a cryptanalysis.

We propose here to emphasise the relevance and the accuracy of this approach
for some linear cryptanalyses.

Entropy and list size. The conditional entropy H(K|Y) measures the number of
unknown key bits knowing the counters derived from the available samples. Thus,
it is natural to suggest 2H(K|Y) for the list size of candidates. It should be noted
that in the case of the multilinear Attack 1, when our bound becomes negative
a theoretical work based on typical joint sequences (Theorem 1 and Lemma 2 in
[GT09]) proves that the probability that the right key is the best candidate is
quite close to 1.

The accuracy of the bound (7) given for Attack 1 together with the fact that
taking ` = 2H(K|Y) induces a good success probability, was verified experimen-
tally in [GT09]. For instance, an experimental cryptanalysis of the full DES was
performed 19 times using 239 pairs and 32968 approximations. In this setting, the
bound (7) suggests to keep a list of size 240. The rank of the correct key in the
19 experiments are listed below.

231.34, 233.39, 234.65, 235.24, 236.56, 237.32, 237.72, 237.99, 238.11, 238.52, 238.97,

239.04, 239.19, 239.27, 239.53, 239.85, 240.28, 240.82, 240.88.

We can see that in 3 out of 19 experiments, the attack fails that is a success
probability of 0.84.

Attack 1. The accuracy of the bound on entropy is experimentally tested for
Attack 1 in [GT09]. A toy cryptanalysis of 8-round DES using 76 linear approx-
imations and recovering 13 bits of the key was performed. The curves in Figure
1 corresponds to the empiric entropy and the bound obtained on it as a function
of the number of samples N . We can see that the bound is tight for small values
of N (that are actually the values considered in cryptanalysis) while for bigger N
it becomes slightly less precise. Nevertheless, the previous paragraph has shown
that when the bound approaches zero, the probability of the correct key to be
top ranked is close to 1 and thus this loss of precision is not as important as it
could be thought at first sight.

Theorem 2 from [BCQ04] (Attack 1). The second thing we would like to empha-
size is a comparison between the formulas obtained from both papers [BCQ04]
and [GT09] in the case of top-ranking for Algorithm MK1 (Attack 1):

Proposition 1 Proposition 3.1 in [GT09].
Suppose that N is in a range where ∀i,Nε2i = o(1). We consider the data com-
plexity required to achieve top ranking on a d-bit key for Algorithm 1. Using (7)
gives the following estimate
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Figure 1. Theoretical and empirical entropies for a type 1 attack on 8-round DES [GT09].

N ≈ d ln(2)

2
∑n
i=1 ε

2
i

(1 + o(1)) . (10)

The estimate obtained using Theorem 2 in [BCQ04] is

N ≈ d ln(2)∑n
i=1 ε

2
i

(1 + o(1)) . (11)

The approximation given by (10) is sharp as shown in [GT09]. Notice the factor
2 between the two estimates. This is due to the fact that Theorem 2 in [BCQ04]
is derived by estimating the gain of the attack that is, itself, derived from the ex-
pected rank of the correct key among the candidates. This is an illustration of the
unfortunate behavior of the expected value of the rank in statistical cryptanalysis
which was mentioned at the beginning of this section.

Matsui’s Algorithm 2 [Mat94,Jun01] (Attack 2). Applying the formula for At-
tack 2 to Matsui’s Algorithm 2, one obtains that for a time complexity of 243, 241

pairs are enough. This is also what has been experimentally observed by Junod
while his Theorem 1 in [Jun01] predicted a complexity of 243.

The theoretical framework provided by Junod about the distribution of the
rank of the correct key class is really tight as shown by the experiments. For
different values of ψ, theoretical and empirical probabilities of the rank to be less
than ψ are really close. Nevertheless, when considering the expected rank, the
relatively small number of experiments (21) induces a gap between expected and
observed values. Since the distribution of ranks is concentrated, it is very unlikely
that one in 21 experiments leads to a rank value not in the typical set of ranks.
Hence, the mean of experimental ranks is close to the median and far from the
expected value. The work of Junod [Jun01] is a good perfect illustration of this
statement.



Multidimensional cryptanalysis [HCN09]. An illustration of the fact that the
advantage of an attack may not be easy to compute is multidimensional crypt-
analysis. The theoretical results obtained in [HCN09] differ significantly from the
experimental values which are observed. We have presented a bound on the con-
ditional entropy H(K|Y) earlier in the section. Here, we propose to compare the
results obtained using this bound to both theoretical and experimental results
that can be found in [HCN09].

Keeping 2H(K|Y) candidates is expected to give a cryptanalysis with a good
probability of success. Thus, I(K;Y) that equals d−H(K|Y) should be a good
estimate of the advantage of an attack. We have plotted in Figure 2 both the
empirical and the theoretical advantage given in [HCN09] together with the ex-
pression for I(K;Y) obtained using (8) and (9). The values taken in [HCN09]
are the ones obtained by using the LLR method. The reason is that the infor-
mation theoretical bound has been derived without taking care of the way the
information is processed. Thus, it is a bound on the information obtained by an
optimal cryptanalysis and has to be compared with the LLR method. The results
can be seen in Figure 2. The bound on the mutual information I(Y;K) seems
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Figure 2. Theoretical and empirical advantages for multidimensional cryptanalysis of SER-
PENT with m = 4 [HCN09].

to be more suitable than the estimate for the advantage provided in [HCN09].
Notice that the mutual information is, for small N , smaller than the empirical
advantage. This might be explained by the fact that the experimental curve is
obviously very noisy (it is not even decreasing in N ) which seems to be due to
the fact that the number of experiments is not large enough to give an accurate
experimental picture.
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