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Abstract— This paper deals with the design of low-rate sparse-
graph codes with linear minimum distance in the blocklength.
First, we define a necessary condition that a quite general family
of graphical codes has to satisfy in order to have linear minimum
distance. The condition is formulated in terms of degree-1 and
degree-2 variable nodes and of low-weight codewords of the
underlying code, and it generalizes results known for turbo codes
[8] and LDPC codes. Then, we present a new ensemble of low-
rate codes, which is itself a subclass of TLDPC codes [3], [4], and
which is designed under this necessary condition. The asymptotic
analysis of the ensemble shows that its iterative threshold is close
to the Shannon limit. In addition to the linear minimum distance
property, it has a simple structure and enjoys a low decoding
complexity and a fast convergence.

I. INTRODUCTION

Low rate codes play a crucial role in communication
systems operating in the low signal-to-noise ratio regime,
such as power-limited sensor networks, ultra-wideband com-
munications schemes and code-spread CDMA systems. More
recently, it has also been found out that powerful low-rate
codes with a fast decoding algorithm can be used in the recon-
ciliation phase of continuous-variable quantum key distribution
protocols and allow to increase significantly the range of the
protocol [18].

Since the invention of turbo codes [7], a lot of effort was
put into designing sparse-graph codes for various applications.
This is due to nice features of the iterative decoding algo-
rithm which is used in such codes, namely its low decoding
complexity and good performance. But, although the design
of good low-rate sparse-graph codes is of great interest, it is
not straightforward. By a good low-rate code ensemble we
mean an ensemble with iterative decoding threshold close to
the channel capacity and a good minimum distance, which is
necessary to obtain a low error floor. The problem lies in the
fact that, in order to design a low rate code with performance
close to the channel capacity, it seems crucial to have a large
fraction of variable nodes of degrees 1 and 2 in the code
structure (we are going to elaborate on this in Section III).
But the presence of a large number of variable nodes of low
degrees is not favorable for the minimum distance growth.
It may become logarithmic or, even worse, constant. This
phenomenon has been quantified in several papers, such as for
instance in [20], [?], [19]. A way to circumvent the problem is
to introduce some structure in the bipartite graph of a low-rate
ensemble, preventing the formation of low-weight codewords.

Recently, some high-performance low-rate schemes have
been proposed. A rate-1/10 multi-edge LDPC ensemble with

the threshold -1.09 dB on the AWGN channel was presented in
[22]. This construction can be viewed as a serial concatenation
of a (3,15) LDPC code and of an LT code and it possesses a
complex structure. Its minimum distance growth inherits the
minimum distance property of the underlying (3,15) LDPC
inner code, i.e. it is linear in blocklength. In [11], authors
introduced low-rate ARA-type LDPC codes of different rates
in the range from 1/3 to 1/10. The proposed ensembles
have iterative thresholds close to the channel capacity and
a simpler structure, compared to the previous multi-edge
ensemble, but their minimum distance grows polynomially in
the blocklength1. Also, in [17], authors presented a parallel
concatenation of Zigzag-Hadamard (ZH) codes. These codes
are decoded in a turbo-like fashion, by using the fast Hadamard
transform for small Hadamard component codes. This yields a
rather low complexity decoding algorithm. The concatenated
ZH ensembles have rates down to 0.00105. What concerns
their minimum distance properties, the reasoning from [27]
can be adapted to show that the minimum distance of such a
construction is of order n(M−1)/M , where n is the blocklength
and M is the number of component ZH codes. This case is
treated in [5].

In this work, we propose an alternative low-rate code
structure, which enjoys good minimum distance, a good iter-
ative threshold behavior and a low decoding complexity. Our
approach avoids to fix a complex bipartite graph structure and
enables to get a flexible irregular construction. The point is that
the degree distribution of this construction can be optimized
by a simple one-dimensional optimization. The procedure that
we adapt is the following:

a) we first provide a necessary condition to ensure linear
minimum distance,

b) then we design a low-rate code ensemble which satisfies
this condition based on a component code that enjoys a
low-complexity decoding algorithm.

To fulfill the first point, we define a special graph, called the
graph of codewords of partial weight 2. This graph is derived
from connections of variable nodes of degrees 1 and 2 and
of low-weight codewords of component codes. In some sense
it is a generalization of the subgraph induced by degree-2
variable nodes for LDPC codes [10] to any sparse-graph code
ensemble.

Tail-biting Trellis LDPC (or TLDPC) codes have been
introduced in [3], [4]. This family enjoys an iterative threshold

1more precisely, it is of order O(n3/4), see [5]



close to the channel capacity, a linear minimum distance and
a very low decoding complexity. Examples of TLDPC codes
of rates 1/3 and 1/2 were presented in [3], [4]. In this paper,
we utilize the framework of TLDPC codes to design a code
ensemble of lower rate. We propose a new TLDPC component
code, having a very simple structure and, therefore, a low-
complexity decoding algorithm. Moreover, the proposed com-
ponent code has another interesting feature, which makes the
obtaining of linear minimum distance possible: the supports
of its low-weight codewords are distributed among the code
positions in such a way that the union of intersecting supports
form disjoint clusters. We will discuss this property in details
later on in the paper. We also emphasize that our choice of the
component code allows to have a large non-zero fraction of
degree-1 variable nodes in the code structure, while keeping
the minimum distance grow linearly in the blocklength.

To design a low-rate TLDPC ensemble both with linear
minimum distance and an iterative decoding threshold close
to the channel capacity, we put a constraint on the maximum
allowed fraction of degree-2 variable nodes and optimize over
the degree distribution of variable nodes by using EXIT charts.
Moreover, in order to satisfy the necessary condition for linear
minimum distance we have found, we propose a structured
way to generate the permutation for edges connected to
degree-2 variable nodes. There is no other constraint on the
generation of the permutation for other edges in the bipartite
graph, it is assumed to be drawn uniformly at random.

The paper is organized as follows. In the next section
the graph of codewords of partial weight 2 and a necessary
condition for linear minimum distance are provided. Then
we discuss in Section III why it is important to put degree
one variable nodes in the graphical structure. A general
introduction to TLDPC codes and a presentation of the new
low-rate ensemble are given in Section IV. Numerical results
are shown in Section V. Section VI contains some discussion
on the topic.

II. NECESSARY CONDITION FOR LINEAR MINIMUM
DISTANCE

The goal of this section is to formulate a necessary con-
dition for linear minimum distance that could be applied to
any sparse-graph code ensemble. We construct a graph of
codewords of partial weight 2 and consider cycles in it. It
happens that one can define a logarithmic upper bound on the
minimum distance in terms of these cycles. The upper bound
can be equivalently expressed in terms of the average degree
of the graph of codewords of partial weight 2. This result leads
us to the aforementioned necessary condition.

A. Common Representation for Sparse-Graph Codes

For the sake of generality, we use the following general rep-
resentation for all sparse-graph codes that was first described
in [26]:

Definition 1 (Common construction and base code): The
construction produces a binary code of length n with the help
of two ingredients:

(i) a binary code B of length m, with m ≥ n. This code is
called the base code;

(ii) a bipartite graph between two sets V and W of vertices of
size n and m respectively, where the degree of any vertex
in W is exactly one and the degree of the vertices in V is
specified by a degree distribution Λ = (λ1, λ2, . . . , λs)
where λi denotes the fraction of edges of the bipartite
graph which are incident to vertices of V of degree i.

The bipartite graph together with the base code specifies
a code of length n as the set of binary assignments of V
such that the induced assignments2 of vertices of W belong
to C. If we denote the rate of the base code by Rb, then it
is straightforward to check that the rate of the code obtained
by this construction is at least equal to the designed rate R
which is given here by the expression

R
def= 1− (1−Rb)λ̄

where λ̄ is the average left degree, which is given by

λ̄
def=
m

n
=

1∑
i
λi
i

.

It is common to present the degree distribution Λ in its
polynomial form:

Λ(x) =
s∑
i=1

λix
i−1.

Most sparse-graph code constructions such as LDPC codes
or parallel turbo-codes can be viewed as a particular instance
of this construction.

Example [LDPC codes] Classical LDPC codes are an ex-
ample of unstructured code ensembles. The LDPC base code
is the juxtaposition of parity codes. Λ(x) is the left degree
distribution of the LDPC code ensemble. �

When the bipartite graph between sets V and W has some
special structure, we say that it is a structured code ensemble.

Example [Parallel turbo codes] Parallel turbo codes are one
of the first structured ensembles which have been suggested in
the literature. The base code of a parallel turbo ensemble is the
juxtaposition of several convolutional codes, the positions of
which are divided into two subsets, the first one is formed by
the information bits and the second one by the redundancy bits.
The sets V and W in the bipartite graph are also divided into
two subsets, the subset of information nodes and the subset
of redundancy nodes. A node in V and a node in W can be
connected only if they belong to the same subset type and
redundancy nodes have all degree one. �

The standard decoding procedure [23] for sparse-graph
codes is the following. At each decoding iteration, base code
decoding is performed in order to get extrinsic messages for
bits of the base code, then intrinsic messages at the variable
node side are calculated. At the end of decoding, after some
number of iterations, a posteriori messages of code bits are
computed. The decoding complexity therefore depends on

2a vertex in W receives the same assignment as the vertex in V it is
connected to.



the complexity of the base code decoding, on the degree
distribution of variable nodes (the higher the node degree the
more complex decoding gets) and on the number of decoding
iterations which are needed to be performed (i.e. the decoding
convergence speed).

B. Graph of Codewords of Partial Weight 2

A position in the base code C is said to have degree i if
it is connected to a node of degree i in V . Notice that in
the graphical representation we allow variable nodes to be of
degree ≥ 1 and, therefore, we allow positions of degree 1 in
C. The location of these positions has a crucial impact on
the minimum distance of the overall code, which may even
become constant if there is a codeword in C whose support
contains only positions of degree 1. In what follows, this case
is supposed to be avoided.

To study the minimum distance behavior, we define the
notion of codewords of the base code of partial weight 2,
which will lead us to the notion of clusters.

Definition 2 (Codewords of C of partial weight 2):
Codewords of C of partial weight 2 are the codewords that
involve exactly two non-zero positions of degree > 1. Thus,
all other non-zero positions of them have degree 1.

Definition 3 (Clusters): A cluster is an ensemble of posi-
tions of degree > 1 in C, so that for any two positions i and
j from this ensemble there exists a codeword of partial degree
2 in C containing i and j.
The simplest example of clusters can be given in the case of
LDPC codes.

Example [Standard LDPC codes, λ1 = 0] Remember that
the base code is a juxtaposition of small parity codes. Any
two positions of the same parity code form the support for
one codeword of partial weight 2. Thus, clusters correspond
to ensembles of positions belonging to the same parity codes.
�
With this notion of cluster, we can define now the graph of
codewords of partial weight 2:

Definition 4 (Graph of codewords of partial weight 2):
The graph of codewords of partial weight 2 is a graph
G =

(
Ṽ , E

)
with vertex set Ṽ and edge set E. V is equal

to the set of clusters and there is an edge eij between two
clusters ṽi and ṽj iff there exist two positions xk and xl of
the base code, belonging to the clusters ṽi and ṽj respectively,
which join the same degree-2 variable node.

Example [Standard LDPC codes] Continuing the previous
example, the graph of codewords of partial weight 2 for a
LDPC code contains clusters that correspond to parity checks
in the code structure. Two clusters are connected if their
corresponding parity checks are connected through a degree-2
variable node in the bipartite graph of the code. �
C. Cycles in the Graph of Codewords of Weight 2 and Its
Average Degree

It is well known [9] that the first source of low weight
codewords when an LDPC code is chosen at random are cycles
in the Tanner graphs containing only variable nodes of degree

2. Note that these are in one-to-one correspondence with cycles
in the graph of codewords of partial weight 2. It turns out
that cycles in this graph are in general for sparse-graph codes
the first cause of problems for the minimum distance. Our
necessary condition for having a linear minimum distance
roughly says that there should be no cycles of sublinear length
in this graph. In order to state this condition, we need two more
definitions, those of node weights and of cycle weights of G:

Definition 5 (Node weight): For a node v in Ṽ and two
edges i and j connected to it, we define a node weight wvi,j as
follows. By the very definition of a cluster and of the graph of
codewords of partial weight 2, these two edges correspond to
two positions of degree 2 and they form together with a certain
number a of positions of degree 1 the support of a codeword
of partial weight 2. We let wvi,j be equal to this number a.

Definition 6 (Cycle weight): The weight l of a cycle C =
(VC , EC) in G is equal to

l = |EC |+
∑
v∈VC

wv,

where wv is the node weight associated with vertex v in VC
and the two edges in EC connected to v.

There is a fundamental correspondence between cycles in
the graph of codewords of partial weight 2 and low-weight
codewords of C:

Proposition 1: A cycle of weight l in the graph of code-
words of partial weight 2 induces a codeword of weight l in
the sparse-graph code.

Proof. If C = (VC , EC) is a cycle in G, we associate to it
a configuration x = (x1, x2, . . . , xm) of positions of the base
code in which

- positions of the base code of degree 2 are set to 1 if in
the Tanner graph they are connected to the variable nodes
of degree 2 that are associated with edges in EC ;

- a set B of positions of degree 1 is set to 1 if they form a
codeword of the base code of partial weight 2 with two
corresponding positions of degree 2;

- all other positions in x are set to 0.
Denote by wv the size of the set B for a node v ∈ VC . The

point is that the configuration x is obviously a codeword of
the base code. It has weight 2|EC | +

∑
v∈VC w

v . 2|EC | non-
zero bits of x are connected to degree-2 variable nodes and
the rest of them is connected to degree-1 variable nodes. Thus,
there are |EC |+

∑
v∈VC w

v variable nodes participating in the
configuration x, and they correspond to a codeword of weight
|EC |+

∑
v∈VC w

v .
Notice that the weight of the smallest cycle in the graph of

codewords of partial weight 2 is an upper bound on the code
minimum distance. Therefore:

Corollary 1: If all the node weights wvi,j of a given graph of
codewords of partial weight 2 are smaller than some constant
a > 0, a ∈ N, then the minimum distance of its corresponding
sparse-graph code is upper bounded by (a+ 1)|EC |.

Corollary 2: If a given graph of codewords of partial
weight 2 contains a cycle of logarithmic weight, the minimum



distance of the sparse-graph code ensemble is logarithmic in
the blocklength.

Corollary 2 can be equivalently expressed in terms of the
average degree of the graph of codewords of partial weight 2.

Theorem 1 (Upper bound on dmin): Consider a sparse-
graph code ensemble for which the graphs of codewords of
partial weight 2 have node weights upper bounded by a small
positive integer a. If all the average degrees of these graphs is
greater than 2 + ε for some ε > 0, then the minimum distance
of the ensemble grows logarithmically in the blocklength.

Proof. Consider a sparse graph code in this ensemble. Let G
be the associated graph of codewords of partial weight 2 and
dmin be the minimum distance of the code. Let g be the girth
of G and ∆ be its average degree. By Corollary 1 we know
that dmin ≤ (a+ 1)g. To upperbound this last quantity we use
the Moore bound for irregular graphs [1] which asserts that the
number of vertices n of G satisfies the following inequality

n ≥ 2
(∆− 1)t − 1

∆− 2

where t = b g2c. This implies

t ≤ log∆−1

(
∆− 2

2
n+ 1

)
We now conclude by:

dmin ≤ (a+ 1)g
≤ (a+ 1)(2t+ 1)

≤ (a+ 1)
(

2 log∆−1

(
∆− 2

2
n+ 1

)
+ 1
)
.

D. Necessary Condition

Now, the following necessary condition follows immedi-
ately:

While constructing a sparse-graph code ensemble with
a linear growth of the average minimum distance, cy-
cles of sublinear weights in the corresponding graph
of codewords of partial weight 2 must be avoided. Or,
equivalently, the average degree ∆ of the graph of
codewords of partial weight 2 must be smaller than or
equal to 2.

This necessary takes the following form for LDPC code
ensembles.

Example [LDPC codes] Consider a (possibly) irregular
LDPC code ensemble. Let λ2 be the fraction of its degree-
2 variable nodes and let ρ be the average degree of its check
nodes (it is equal to the fraction m

r , where r is the number of
check nodes of the Tanner graph and m its number of edges).
The number of clusters is equal to this number of check nodes
r = m

ρ (see the previous example about standard LDPC code
ensembles). The average degree of this graph should be upper-
bounded by 2, and therefore the graph of codewords of partial
weight 2 should not have more than r edges. This means that
there should be at most r variable nodes of degree 2 in the

graph. This number is equal to λm
2 . This eventually implies

that

λ2m

2
≤ r =

m

ρ
.

In other words, if we want the minimum distance to grow
linearly in the blocklength, the condition λ2ρ ≤ 2 should be
verified. �

Notice that ∆ = 2 is the critical case. It corresponds
to the situation when G contains one or several cycles of
linear length. It has been shown in [27] that for LDPC codes
and ∆ = 2, the minimum distance is polynomial in the
blocklength. For more general families of sparse graph-codes
(by adding for instance state nodes in the standard construction
of LDPC codes) this is not true anymore as shown by the
example of Section V in [19] where the minimum distance is
linear.

Notice that until now were dealing with sparse graph
codes ensembles with bounded node weights. For some code
ensembles the node weights are unbounded, as it is the case
for turbo codes. With a little work, our results can be still
extended to unbounded weights and, therefore, Corollary 2 and
Theorem 1 will hold. For completeness of the demonstration,
we elaborate the bound for parallel turbo codes, which leads
to a much shorter proof of the result obtained by Breiling [8]

Theorem 2 ([8]): The minimum distance of parallel turbo
codes with two parallel components grows at most logarith-
mically in blocklength.

Proof. Let us construct the graph of codewords of partial
weight 2 for parallel turbo codes. For simplicity, assume that
both component encoders are recursive systematic convolu-
tional encoders of type (n, 1) and that they are equal. Then,
there exists t such that for any information position i in the
convolutional code there is a codeword of partial weight 2 with
information support {i, i+ t} and with redundancy weight w.
Other codewords of partial weight 2 are deduced by addition.
They have information support {i, i + kt}, their redundancy
weight is at most kw and they all belong to the same cluster
in G. Therefore, G consists of (at most) 2t clusters 3, which
are connected through N edges, where N is the number of
information bits in the turbo code.

Notice that the node weights of the clusters are unbounded.
To circumvent this difficulty, we form smaller clusters by
partitioning each cluster into subclusters of size 3 of the form
{i, i+t, i+2t}. We obtain a new graph of codewords of partial
weight 2, denoted by G′, with 2N/3 + O(1) clusters and of
degree 3. Moreover, the node weights of G′ are bounded by
2w. Therefore, G′ has a cycle of size at most 2 log2(2N/3 +
O(1)) and of weight at most 2(1 + 2w) log2(2N/3 + O(1)).
This yields a codeword of weight 2(1+2w) log2(2N/3+O(1))
in the turbo code by Proposition 1.

3The factor 2 comes from the fact that there are two convolutional codes
each one coming with its own set of clusters.



III. ON THE USEFULNESS OF DESIGNING SPARSE GRAPH
CODES WITH DEGREE ONE NODES

It might be worthwhile to quote [23] here: “Given the
importance of degree-two edges, it is natural to conjecture
that degree-one edges could bring further benefits”. This can
be illustrated by the following phenomenon : it has been
repeatedly observed that in general turbo-codes require far less
iterations to be decoded than LDPC codes. While this is not
always true, for instance LDPC codes where all parity-checks
involve at least two bits of degree 2, can be decoded in a turbo-
like fashion (or more precisely in a convolutional fashion).
This seems to strongly decrease in this case the required
number of iterations for completing iterative decoding. It
has also been observed many times that turbo-codes tend to
outperform LDPC codes at shorter block-length. A possible
explanation for the better behavior of turbo-codes compared
to LDPC codes could be given by the fact that the former
are decoded with a graphical structure with bits of degree 1
(which are given by the redundancy bits) which are absent
in the case of LDPC codes. This is also corroborated by the
fact that a small modification of LDPC codes which allows
for bits of degree 1 can produce LDPC codes with a much
steeper waterfall region than conventional LDPC codes [21,
Rate 1

2 example in Table VIII].
Obtaining sparse graph codes with a steep waterfall region

and requiring a moderate amount of iterations is quite prob-
lematic in the case of low-rate codes. Conventional LDPC
codes are well known for being poor in the low rate regime.
Again, the first example of a modified LDPC code ensemble
with good iterative decoding performance at low rates is given
by a structure with bits of degree 1 [21, Rate 1

10 example of
Table X].

One of the purpose of this section is to give a heuristic
explanation of all these phenomena (less iterations for turbo-
codes or LDPC codes decoded in a turbo-like fashion, better
performance at short block-length for turbo-codes). The idea
we wish to convey here is that this is a consequence of the
presence of bits of degree 1 (or the presence of “hidden” bits
of degree 1 in the case of LDPC codes decoded in a turbo-like
manner).

The heuristic explanation we will provide will be with the
help of EXIT charts on the binary erasure channel. The same
kind of explanation could also be given for other channels (by
some hand-waving by asserting that the fundamental relation,
namely Theorem 1, which holds for the binary erasure channel,
holds approximately for other channels). It is well known that
in this case the EXIT chart predicts accurately the infinite
length behaviour of the code, and that they represent in some
sense the “average” trajectories for finite length : they are
given by horizontal and vertical steps between both curves.
Iterative decoding is typically succesful (meaning that it is
successful with probability tending to 1 as the length goes to
infinity) if and only if the EXIT chart of the variable nodes
is above the EXIT chart of the variable nodes. The area ∆A
between both curves has a very nice interpretation : it is linked

with the distance to capacity. It has basically been observed in
[6] (generalising a result first proved by Shokrollahi on LDPC
codes [24]) that in order to have a capacity achieving sequence
of codes (in the sense of [24]) the area between the two EXIT
charts of a code in the sequence should go to zero.

To be more specific, there are two EXIT charts that we will
consider here:

1) the EXIT chart of the variable nodes which is the
curve which expresses how the average entropy of code
positions given by their incoming extrinsic probabilities
behaves in term of the average entropy of the code
positions once their intrinsic probabilities have been
computed at the variable node level (here the average
is taken only over variable nodes of degree 2). When
there are no variable nodes of degree 1 and for an erasure
channel of probability p, this curve is given by the set of
points (pλ(x), x) where x ranges over [0, 1]. When there
are variable nodes of degree 1 this curve is given by the
set of points (p

P
i>i λix

i−1P
i>i λi

, x). In other words this is the

set of points
{

(p(λ(x)−λ1)
1−λi , x), x ∈ [0, 1]

}
. If we bring

the degree distribution of the edges of left degree greater
than 1,

λ̃i
def=

λi
1− λ1

(1)

for i > 1 (and λ̃1 = 0) and the associated polynomial

˜Λ(x) =
∑
i>1

λ̃ix
i−1 =

∑
i>1

λi
1− λ1

xi−1, (2)

then the EXIT chart for the variable nodes is given by
the curve

{
(p ˜Λ(x), x), x ∈ [0, 1]

}
.

2) The EXIT chart of the base code which is the curve
which expresses how the average entropy of code posi-
tions given by their outgoing extrinsic probabilities com-
puted after decoding the base code behaves in term of the
average entropy of the code positions before decoding.
When the base code consists in a juxtaposition of single
parity-check codes of length r (which corresponds to the
right-regular LDPC case) this curve is given by the set
of points

{
(x, 1− (1− x)r−1), x ∈ [0, 1]

}
.

Iterative decoding converges for an infinite length code if and
only the base code EXIT curve lies below the EXIT chart of
the variable nodes. The statement we are going to give below
is not really stated in [6] but is in essence only a corollary of
the results given in this article.

Theorem 1: [Area theorem] Let ∆A be the area between
the two aforementioned EXIT charts.

∆A =
C(p)−R
λ̄(1− λ1)

where C(p) is the capacity of the binary erasure channel with
probability p, that is C(p) = 1− p.

This result raises several comments.
• For a same gap to capacity and fixed λ̄, the area between

the EXIT charts of the variable nodes and the one of



the base code is larger in the presence of degree one
nodes than without by a factor of 1

1−λ1
. This can be quite

significant for a large proportion of degree one nodes.
• It is not necessarily true that the number of iterations

is smaller when the area between both EXIT charts is
larger (this also depends on the shapes of both curves).
However, this is a strong indication that both curves are
further apart with degree one nodes, and thus that this
tends to decrease the number of iterations for iterative
decoding. Note that turbo-codes, and especially low rate
turbo-codes have a large number of degree one nodes,
and that this might well be the explanation for the
small amount of iterations needed to decode them in
comparison to LDPC codes decoded by the standard
Gallager algorithm (the latter have no degree one nodes
at all).

• This widening between both curves has also a positive
influence on the slope in the waterfall region as was put
forward in [14], [15], [16] (see also [2] for a rigorous
(and somewhat corrected) derivation of the exponential
behavior of the probability of error after decoding sug-
gested in the aforementioned references in the case of
the binary erasure channel. For a possible generalization
of the formulas obtained in [2] to more general channels
see [13], [12]). This might also be the explanation why
turbo-codes are believed to be better for moderate lengths
than LDPC codes. In this case, it is essential to have a
steep waterfall region.

This theorem is obtained through several considerations on
the EXIT chart of the variable nodes and the base code. First
of all, recall [6] that the area under the EXIT chart for the
variable nodes is given by

Proposition 1:

A = 1− p
1
λ̄
− λ1

1− λ1
Proof. Recall that the EXIT chart for variable nodes on

the binary erasure channel is given by the set of points
( 1

1−λ1
p(λ(x) − λ1), x) where x ranges over [0, 1]. The area

below this curve is given by

A = 1−
∫ 1

0

p(λ(x)− λ1)
1− λ1

dx

= 1−
p
∑
i>1

λi
i

1− λ1

= 1− p
∑
i
λi
i − λ1

1− λ1

= 1− p
1
λ̄
− λ1

1− λ1

2

The area below the EXIT chart of the base code is given by
the following proposition which is a simple corollary of [6,
Theorem 1]

Proposition 2: Assume that the bits of degree 1 of the base
code B can be completed to form an information set for B.

Then the area A under the EXIT chart of the base code over
the binary erasure channel is given by

A =
Rb − (1− p)λ1

1− λ1

where Rb denotes the rate of the base code.
Proof. From Theorem 1 in [6] we know that

A =
H(V |Y )

(1− λi)m
Here V consists of a codeword of the base code which is
chosen uniformly at random and Y is the transmitted codeword
where all positions of degree > 1 have been erased and all
positions of degree 1 have been erased with probability p. Let
Z be the number of non-erased positions of V . Note that

H(V |Z = t) = Rbm− t

(this is a consequence on the assumption made on the positions
of degree 1). From this we deduce that

H(V |Y ) = Rbm− (1− p)λ1m

and the proposition follows immediately.

2

We are ready now for the proof of Theorem 1
Proof of Theorem 1.
By proposition 2 and 1 we have (as long as the EXIT chart

of the base code lies below the EXIT chart of the variable
nodes)

∆A = 1− p
1
λ̄
− λ1

1− λ1
− Rb − (1− p)λ1

1− λ1

=
λ̄(1− λ1)− p(1− λ1λ̄)−Rbλ̄+ (1− p)λ1λ̄

λ̄(1− λ1)

=
(1−Rb)λ̄− p
λ̄(1− λ1)

=
C(p)−R
λ̄(1− λ1)

2

A straightforward corollary of Theorem 1 is
Corollary 3:

d∆A
dp

=
1

λ̄(1− λ1)
To illustrate these facts let us consider a particular sparse

graph code family obtained by the TLDPC construction which
will be detailed in Section IV. The code obtained by this
construction is of rate 1

10 . It is obtained by choosing a base
code of rate 1

2 which has a tail-biting trellis with only binary
states and a bipartite graph with degree distribution

Λ(x) =
1
3

+0.296x+0.117x2+0.006x3+0.114x4+0.134x11.

In other words, there is a fraction λ1 = 1
3 of degree 1

edges here. This code family is almost capacity achieving for
the erasure channel, where it can correct up to an erasure



probability of p0 = 0.896 as shown by the EXIT charts of
the base code and the variable nodes for this probability given
by the red and blue solid lines in Figure 1. Note that these
two curves almost coincide as is the case for almost capacity
achieving ensembles.

Fig. 1. EXIT chart of a TLDPC code of a rate 1
10

code with λ1 = 1
3

We also observe in this figure the EXIT charts obtained for
an erasure probability which is below the threshold, that is
p = p0−∆p with ∆p = 0.07. The two EXIT charts given by
black and green dashed lines are of course much further apart.
Performing the same optimization for LDPC codes yields a
completely different result. We have chosen an LDPC code
with right degree distribution

ρ(x) =
1
10
x+

1
2
x2 +

2
5
x3,

meaning that a fraction 1
10 of the edges of the bipartite graph

go to a check node of degree 2, half of the edges go to a
check node of degree 3 and the remaining edges go to a check
node of degree 4. The reason of this choice is to obtain a
base code whose EXIT chart has about the same shape as
the EXIT curve of the base code of the TLDPC construction
as shown in Figure 2. This allows a fair comparison of both
ensembles. Performing a degree optimization over the variable
nodes yields (with the same constraint as in the TLDPC
code, namely having a maximal left degree of 12) yields the
following degree distribution

Λ(x) = 0.486x+0.165x2+0.037x3+0.15x4+0.132x10+0.03x11.

The rate of this ensemble is almost 1
10 and the erasure

probability it is able to sustain is sightly less than for the
TLDPC code : the noise threshold p0 satisfies p0 ≈ 0.8933.
We have plotted in Figure 3 the EXIT curves of the base code
and the EXIT curves of the variable nodes at the threshold p0

and also for p = p0 −∆p with ∆p = 0.07.

Fig. 2. EXIT charts of both base codes

Fig. 3. EXIT chart of an LDPC code of rate 1
10

code.

It turns out that in the LDPC case the EXIT curves of the
base code and of variable nodes are much closer at p = p0−∆p

than they are in the TLDPC case. This can be explained by
the fact that in the LDPC case the EXIT curve of the base
code does not change when channel conditions improve : it is
always given by the graph of the function x 7→ 1− ρ(1− x).
This is not the case anymore when there are bits of degree
1. In this case, when the channel conditions improve, the new
EXIT curve of the base code moves away from the EXIT curve
of the base code obtained at the threshold p0. The area gained



here is quantified by Proposition 2 and the area ∆A1 between
the EXIT charts of the base code at p0 and p0 −∆p is given
by

∆A1 =
λ1

1− λ1
∆p.

This area is illustrated for the aforementioned TLDPC code
of rate 1

10 in Figure 4 by the area colored in blue. This really

Fig. 4. a figure showing ∆A1 for the TLDPC code of rate 1
10

.

accounts for the difference between the TLDPC case and the
LDPC case. This clearly results in a number of iterations
needed for convergence which is much smaller when there
are bits of degree 1. The fact that the EXIT curves are also
further apart is quite likely to improve the slope of the waterfall
region. These two facts are essential for obtaining good low-
rate codes.

We may also remark that though the formula given in
Proposition 1 seems to depend on λ1 too, this quantity has
no influence at all on how fast the variable node EXIT charts
move away when the channel conditions improve. Indeed, it
is easy to check that the area ∆A2 between the EXIT charts
of the variable nodes at p0 and at p0 −∆p is given by

∆A2 =
1
λ̄
− λ1

1− λ1
∆p

=
∆p
˜̄λ
.

where ˜̄λdef= 1P
i>1

λ̃i
i

and the λ̃i’s form the degree distribution

of the variable nodes of degree > 1 (as defined by Equation
(1)). It is basically a consequence of the fact that the EXIT
chart of the variable node really depends on ˜Λ(x) (as defined
by Equation (2)) and not on Λ(x). However, this dependency
on ˜̄λ seems to suggest that in order to reduce the number
of decoding iterations and improve the slope of the waterfall
region one should aim at obtaining sparse graph codes for

which ˜̄λ is at small as possible (ideally ˜̄λ = 2). This is
precisely what happens for standard parallel turbo-codes for
which ˜̄λ is indeed equal to 2. This also provides a heuristic
explanation for the common belief that sparse graph codes
with a small ˜̄λ should be sought for are good if one needs
sparse graph codes with a good iterative decoding behavior
for small and moderate lengths (where the slope of the
waterfall region is of paramount importance for obtaining good
performance). Notice that the case ˜̄λ = 2, corresponds to

˜Λ(x) = x and therefore the EXIT chart of the variable node
curve is given on the erasure channel by the straight line of
equation x = py. If we want that the corresponding code
ensemble is almost capacity achieving this implies that the
EXIT chart of the base code should be close to such a straight
line. Such a behavior is obtained for the EXIT charts of the
base codes chosen for the TLDPC code families which will be
defined in the following section. For instance, for the TLDPC
codes given by families (A) and (B) taken from [4] the EXIT
charts of the corresponding base codes look like:

0.2 0.4 0.6 0.8 1
0.2
0.4
0.6
0.8

1

Fig. 5. Exit charts for families (A) and (B).

IV. TLDPC ENSEMBLE OF RATE 1/10 SATISFYING THE
NECESSARY CONDITION ON THE LINEAR MINIMUM

DISTANCE

TLDPC codes form a structured code family which were
first proposed in [3] to meet the requirements of a low
iterative decoding complexity, a linear minimum distance and
an iterative threshold close to the channel capacity. They can
be viewed as a slight modification of an LDPC code which
allows degree 1 nodes in the structure by adding state nodes
to the structure. They differ from the multi-edge approach
suggested in [21] in two ways: (i) the base code which is
decoded is not a juxtaposition of single parity-check codes
but it is a tail-biting convolutional codes with only binary
state nodes, (ii) its structure permits a one-dimensional degree
optimization rather than having to perform a multi-dimensional
optimization as is the case for multi-edge LDPC codes. They



were designed by using several construction methods put
together, some of them apply to the base code, some of them
deal with the bipartite graph.

A. TLDPC Codes

In this subsection we give the general definition of TLDPC
codes and describe the construction methods that were used.

1) TLDPC base code: For the moment, suppose that there
are no bits of degree 1 in the code structure. Then the TLDPC
base code is defined as follows:

Definition 7 (TLDPC base code): The base code of the
TLDPC code is a tail-biting convolutional code, the Tanner
graph of which is presented in Figure 6. Black vertices are

b0

b1

b2

b3 br−3

br−2

br−1

Fig. 6. Tanner graph of a TLDPC base code.

associated with positions of the base code, white vertices
with non-transmitted states, and the ⊕’s represent parity-check
equations. The first and the last state nodes are identified. The
number of black vertices associated to the i-th parity-check
node is denoted by bi.

In the presence of degree-1 bits, the TLDPC base code is
defined in a similar matter, yet the positions of degree 1 in the
base code have to be specified. It should be noted that in their
tail-biting version, systematic RA (Repeat and Accumulate)
codes, systematic IRA codes (irregular repeat and accumulate)
codes and most of the LDPC codes which are standardized are
in fact a subclass of TLDPC codes. We mean here those LDPC
codes which have the same amount of degree 2 variable nodes
as there are parity-checks and where these parity-check nodes
are connected together by a single chain of degree 2 variable
nodes. They are decoded as a turbo-code and not as an LDPC
code. All these codes are particular TLDPC codes for which
all bi’s are equal to 1 for even values of i (which corresponds
to transmitted variable nodes belonging to the parity-checks
that involve a single state node), see Figure IV-A.1 and where
the corresponding variable nodes are all chosen to be of degree
1. The positions of degree 1 are redundancy bits of the code.

As explained at the end of the previous section, the point of
such a construction is that the EXIT curve of the base code is
close to be a straight line. This is quite helpful to design codes
with require only a moderate number of iterations to converge
and also to obtain a rather steep waterfall region. Moreover,
the base code is in essence not more complex to decode than
single parity-check codes, contrarily to what happens with
standard turbo-codes. It may also allow much more degree 2

... ...... ...

state node

transmitted variable node of degree 1

... ...

transmitted variable node of degree > 1

the two end state nodes are identified

Fig. 7. Base code for systematic (I)RA codes and the aforementioned LDPC
codes

variable nodes in the structure than conventional LDPC codes
and still form a code family with linear minimum distance.
Again, this can be quite beneficial for the speed of iterative
decoding convergence and for the waterfall region.

In order to design code ensembles with linear minimum
distance, an additional constraint is to be put on the choice of
a base code to satisfy the necessary condition given in Section
II-D: the clusters, formed by codewords of partial weight 2
in the designed base code, must have bounded weights. This
condition ensures that the base code has a linear number of
clusters. This avoids for instance systematic IRA codes where
it can be checked that there is as single cluster. In this way, a
non-zero fraction of degree-2 variable nodes may be allowed
for a linear minimum distance growth.

2) Structure of the bipartite graph: A structure on the
permutation of the edges connected to degree-2 variable bits
in the bipartite graph needs to be put put in order to satisfy
the necessary condition on linear minimum distance. The
permutation for edges connected to variable nodes of degrees
> 2 is supposed to be generated uniformly at random.

We began the design of the code ensemble by choosing the
base code. Next, we perform the optimization of the variable
node degree distribution by fitting the EXIT curves of variable
nodes and of the base code, for a target code rate. As in the
previous section, let the degree distribution, renormalized over
the degrees higher than 1, be denoted by Λ̃(x),

Λ̃(x) =
∑
i>1

λ̃ix
i−1 =

∑
i>1

λi∑
j>1 λj

xi−1.

Let dcluster be the average degree of clusters. Then, during
the degree distribution optimization, the renormalized fraction
λ̃2 of edges connected to degree-2 variable nodes is required
to be smaller than 2/dcluster, so that the average degree of G
(which denotes the graph of codewords of partial weight 2) is
smaller than 2. Suppose we have λ̃2 < 2/dcluster. Now we
choose some structure on G (and, therefore, of the permutation
of degree-2 variable nodes), so that G does not contain cycles.
It seems that the simplest way would be to make G to be a
union of disjoint paths. However, in this case the prediction of
the iterative threshold given by the EXIT curve fitting is not
accurate anymore and the reason is the following: the EXIT
method implicitly assumes that the positions in C are chosen



to be of degree 2 independently of each other with probability
λ̃2 . Therefore, the expected fraction of vertices of degree i
in G should be

(
s
i

)
λ̃i2(1− λ̃2)s−i if all clusters are of size s.

The prediction of the EXIT method is much more accurate
if the degree 2 variables are chosen such that the fraction of
clusters nodes of degree i is indeed this expected number. It
remains to choose their positions in order to avoid cycles of
sublinear length in the graph of codewords of partial weight
2. We provide a specific example of how this can be achieved
in the next subsection.

B. Design of a Low-Rate Ensemble

The design criteria, proposed above, were previously used
in the design of TLDPC codes of rates 1/3 and 1/2 [3], [4]
and gave very good results. Iterative decoding thresholds of the
ensembles are situated within 0.2− 0.5 dB from the Gaussian
channel capacity. Moreover, it has been proved that one of the
code ensembles has minimum distance growing linearly in the
blocklength.

In this paper, we design a TLDPC ensemble of rate 1/10,
following the same construction methods. A particular ad-
vantage to use the TLDPC structure for the design of low-
rate codes lies in the fact that it gives a faster decoding
convergence. The reason is that one can allow a large non-
zero fraction λ1 and still satisfy the necessary condition on
the linear minimum distance.

In what follows, a low-rate TLDPC base code and a per-
mutation structure for degree-2 variable nodes are suggested.

1) TLDPC base code of rate 1/2: With the aim of design-
ing codes of rates around 1/10, we propose a TLDPC base
code of rate 1/2, defined by the Tanner graph shown in Figure
8.

transmitted variable node of degree 1

transmitted variable node of degree > 1

state node

the two end state nodes are identified

repeated pattern

Fig. 8. Tanner graph of a TLDPC base code of rate 1/2.

For the presented Tanner graph, bi = 1 for any i. Moreover,
each third section of the base code is chosen to be of degree
1, i.e. this position is connected to a degree-1 variable node in
the bipartite graph. Positions of degree 1 are marked in blue
in the figure. All other positions have degrees > 1. Such a
base code gives rise to a code ensemble with

λ1 =
1
3
.

Let us consider how clusters look like in this case. It is easy
to verify that the clusters correspond to the pattern in the
Tanner graph of the base code represented in Fig. 9, as any
two positions of degree > 1 in it give rise to a codeword of
partial weight 2. The number of positions of degrees > 1 (i.e.
the cluster degree) is 4. The corresponding graph of codewords
of partial weight 2 contains as many clusters as there are such
subgraphs in the Tanner graphs of the base code. To satisfy
the necessary condition on the linear minimum distance given
by Theorem 1, we should choose λ̃2 such that:

λ̃2 ≤
1
2
.

Fig. 9. Pattern in the Tanner graph of the TLDPC base code of rate 1/2
giving rise to a cluster.

2) Degree optimization over the Gaussian channel and
permutation structure for rate 1/10: Let us fix the design
code rate equal to 1/10. We choose λ̃2 to be slightly less than
1
2 , namely λ̃2 = 0.4 in order to simplify the structure of the
graph of codewords of partial weight 2.

First we compute the cluster degree distribution A =
(a0, a1, a2, a3, a4) where ai represents the fraction of clusters
of degree i in the graph of codewords of partial weight 2. If the
degree of clusters in G are chosen at random given λ̃2 = 0.4,
the expected values of the the ai’s would be the following
figures:

a0 =
81
625

; a1 =
216
625

; a2 =
216
625

; a3 =
96
625

; a4 =
16
625

.

As explained before, we choose the ai’s to be equal to these
fractions in order to make the predictions given by the EXIT
chart analysis more accurate.

We need to find a structure of G with this degree distribu-
tion, so that G does not contain cycles. We choose it to contain
the following components which we call “stars”, “twigs” and
“chains” and which are shown in Fig. 10.

Divide the Tanner graph of the base code into subgraphs
similar to the one represented in Fig.9 and associate a cluster
to each of them. We assume that the number of clusters M
is divisible by 625. The generation of the bipartite graph is
then performed by associating clusters in order to form the
aforementioned components. It is straightforward to check that
this is indeed possible. We summarize in Table I the fraction
of clusters consumed by each component. According to this
table, there are only three points to check.



“star”

“twigs”

“chain”

degree-0 clusters

Fig. 10. Configurations in the structure of the graph of codewords of partial
weight 2. Clusters of different degrees have a different color.

TABLE I
TABLE SHOWING HOW THE CLUSTERS ARE ARRANGED TO FORM THE

COMPONENTS. AN ENTRY FOR A GIVEN COMPONENT c AND A GIVEN

DEGREE i OF THE CLUSTER CORRESPONDS TO THE FRACTION OF

CLUSTERS CONSUMED IN COMPONENT c WHICH ARE OF DEGREE i.

0 1 2 3 4
“star” 0 8a4 0 4a4 a4

“twig” 0 2(a3 − 4a4) 0 a3 − 4a4 0
“chain” 0 a1 − 2a3 a2 0 0

“isolated cluster” a0 0 0 0 0

1) All clusters are consumed in the components (the sum
of the entries of the column corresponding to degree i
gives ai).

2) Each entry should be nonnegative, this follows directly
from the values taken by the ai’s.

3) It is possible to form chains in this way. There is only
one point to verify, namely that the number of clusters
of degree 1 used to form chains is even. This is indeed
the case since (a1 − 2a3)M is clearly even.

After the degree optimization for the Gaussian channel
performed with the EXIT chart method of [25], the following
degree distribution was obtained:

Λ̃(x) = 0.4x+ 0.264209x2 + 0.090866x4 + 0.236716x8

+0.008209x9. (3)

V. NUMERICAL RESULTS

As an example, we present performances of TLDPC codes
of rate 1/10 and of lengths 6250, 18750 and 50000 over
the Gaussian channel. In each of these cases, the degree

distribution (3) was adapted to the given blocklength. The cor-
responding word and bit error rates, obtained by simulations,
are given in Fig.11. The maximum iteration number was fixed
to 200.
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Fig. 11. Performance of TLDPC codes of rate 1/10 and of lengths (from
right to left) 6250, 18750, 50000 and 62500 with λ1 = 1/3 and the degree
distribution (3). Solid lines represent word error rates and dashed lines - binary
error rates.

It can bee seen in the figure that the estimated decoding
threshold is about −0.8 dB, which corresponds to the threshold
obtained with the EXIT method. Notice that the threshold
is only 0.5 dB away from channel capacity which is about
−1.286 dB here. This is quite close for these signal to noise
ratios, since the capacity at −0.8 dB is only about 0.111. In
addition, numerical results did not catch the error-floor, which
is expected to happen thanks to the good minimum distance
of designed codes.

Concerning the decoding convergence, for the largest sim-
ulated blocklength (62500) and at signal-to-noise ratio -0.5
dB the decoder only needs 86 iterations in average in order to
converge. Such a relatively fast convergence for these low-rates
is due to the large fraction of degree-1 variable nodes in the
code structure. Moreover, as the base code can be represented
by a 2-state trellis, where each trellis section carries only one
bit, the complexity of one decoding iteration is very low. This
results in a low total decoding complexity of proposed TLDPC
codes.

VI. DISCUSSION

In this paper we have followed two objectives. The first one
was to define a necessary condition to design sparse-graph
codes with linear minimum distance in the blocklength. Such
a condition has been found and can be expressed either in
terms of cycles or in terms of the average degree of the graph
of codewords of partial weight 2.

The second objective was to design a new low-rate, struc-
tured code ensemble with such features as a linear minimum
distance, a small gap to the channel capacity, a low decoding
complexity and also a possibility to apply well-developed



techniques (EXIT charts, density evolution) to optimize the
degree distribution of the variable nodes. The aforementioned
design has been performed in the framework of TLDPC codes
and a TLDPC code ensemble of rate 1/10 performing well
over the Gaussian channel has been proposed.

The linear minimum distance property for the presented
TLDPC ensemble may be proved by using standard techniques
based on weight distributions, for instance by computing
the growth rate of the average weight distribution in the
asymptotic case and to show that its first derivative at the
origin is strictly negative. We do not present such a proof in
the paper, but we conjecture such a behavior.
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