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We describe a quantum error correction scheme aimed at protecting a flow of quantum information
over long distance communication. It is largely inspired by the theory of classical convolutional codes
which are used in similar circumstances in classical communication. The particular example shown
here uses the stabilizer formalism, which provides an explicit encoding circuit. An associated error
estimation algorithm is given explicitly and shown to maximize the likelihood over any memoryless
quantum channel, while its complexity grows only linearly with the number of encoded qubits.

In recent years, the discovery and development of
quantum computation and communication has shed new
light on quantum physics. The potential applications
of these new fields encompass a wide variety of sub-
jects, ranging from unconditionally secure secret key gen-
eration protocols [1] to efficient integer factoring algo-
rithms [2] or enhancement of communication complex-
ity [3]. However, the practical realization of such proto-
cols and algorithms remains a very involved task mainly
because of the inherent instability of quantum superpo-
sitions [4] as well as intrinsic imprecisions of the physical
devices that process quantum information. These errors
wipe out the quantum superpositions together with en-
tanglement, which are usually seen as key resources of the
power of quantum algorithms and protocols [5]. Hence,
protecting the quantum nature of information became
one of the most important challenges to prove the fea-
sibility of quantum computers. The discovery of quan-
tum error correction schemes [6, 7] opened the future of
large scale quantum information processing: a certain,
but unfortunately very small, degree of imprecision can
be tolerated at each step of a quantum transformation
and still allow a speed-up over classical information pro-
cessing [8, 9]. However, building a fault-tolerant quan-
tum computer remains largely out of reach of the present
day practical realizations, principally because of the large
number of physical qubits required to account for the er-
ror correction.

On the other hand, quantum cryptography and more
generally the field of quantum communication seems
more promising in a near future. Some quantum key dis-
tribution protocols have been implemented and the asso-
ciated devices seem to be close to commercialization [10].
Within this context, we construct a new family of codes
— quantum convolutional codes — aimed at protecting
a stream of quantum information in a long distance com-
munication. They are the correct generalization to the
quantum domain of their classical analogues, and hence
inherit their most important properties. First, they have
a maximum likelihood error estimation algorithm for all
memoryless channels with a complexity growing linearly
with the number of encoded qubits. Note that the es-
timation of the most likely error is the recovery strat-
egy which minimizes the probability of guessing a wrong

codeword. In contrast, under the same circumstances, a
generic block code with the same rate has a maximum
likelihood error estimation algorithm with a complex-
ity growing exponentially with the number of encoded
qubits. Hence, generic block codes rapidly require to em-
ploy suboptimal error estimation procedures which, as a
consequence, do not exploit the whole error correcting
capabilities of the code. Moreover, our algorithm can
easily handle variations in the properties of the commu-
nication channel (i.e. a change in the single qubit error
probabilities). The second advantage of quantum con-
volutional codes is their ability to perform the encoding
of the qubits online (i.e. as they arrive in the encoder).
Thus, it is not necessary to wait for all the qubits to
be ready to start sending the encoded state through the
communication channel: it reduces the overall processing
time of the qubits which is an additional source of deco-
herence. Note that an attempt at defining quantum con-
volutional codes has been made some time ago [11, 12],
but missed some crucial points in the error estimation al-
gorithm as well as in the study of the decoding algorithm
and error propagation properties.

In this letter, we deal with a specific example drawn
from our general theory. We construct a quantum con-
volutional code achieving a rate equal to 1/5: we explain
how to encode and decode of a stream of qubits efficiently,
and we expose the maximum likelihood error estimation
algorithm. This will give all the necessary intuition to un-
derstand how to generalize the present results to a wider
framework [14].

Description of the code — The particular code we
wish to present is best described by using the stabilizer
formalism [13]. This provides a simple way to under-
stand the encoding and decoding operations. Moreover,
the error syndromes can be easily identified, which con-
siderably simplifies the description of the error estimation
algorithm. We use the following standard notations for
the Pauli operators acting on a single qubit:

X =
(

0 1
1 0

)
, Y =

(
0 i
−i 0

)
, Z =

(
1 0
0 −1

)
. (1)

The identity matrix will be denoted by I. Since con-
volutional codes are designed to deal with a stream of
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information qubits, the number of generators of the sta-
bilizer group will possibly be infinite. However in prac-
tice, transmission starts and ends at a given time, which
means that we only consider generators made of a finite
number of Pauli operators.

The code subspace is described by the generators of its
stabilizer group, S. These generators are given by:

M0 = X Z I I I I I I . . . ,
M1 = Z X X Z I I I I . . . ,
M2 = I Z X X Z I I I . . . ,
M3 = I I Z X X Z I I . . . ,
M4 = I I I Z X X Z I . . . ,
M4i+j = I⊗5i ⊗Mj , 0 < i, 1 ≤ j ≤ 4 ,
M∞ = . . . I I I I Z X .

(2)

It is easy to check that all the generators commute and
are independent.

An important point to address when considering sta-
bilizer codes is the ability to manipulate encoded infor-
mation. Namely, we want to find the encoded Pauli op-
erators Xi, Zi corresponding to logical qubit i. These
operators must satisfy the following relations:

Xi, Zi ∈ N(S)− S, (3)
[Xi, Xj ] = 0, (4)
[Zi, Zj ] = 0, (5)
[Xi, Zj ] = 0, i 6= j, (6)

where N(S) denotes the normalizer of S. Equation (3)
states that the encoded Pauli operators leave the code
subspace globally invariant, but have a non-trivial action
on its elements, while the Equations (4-6) ensure that
manipulating qubit i does not affect other qubits. There
exists a great choice of different sets of such operators
but, because we often need to manipulate encoded in-
formation directly, we further impose that each encoded
Pauli operator has only a finite number of terms different
from the identity. Moreover, for our particular example,
it is possible to require that the whole set of those oper-
ators has a structure invariant by a shift of five qubits.
This set is given by:

X1 = I Z I X I Z I I . . . ,
Z1 = I Z Z Z Z Z I I . . . ,
Xn = I⊗5n ⊗X1, n > 1,
Zn = I⊗5n ⊗ Z1, n > 1.

(7)

At this point, one can wonder what in this code differs
from a generic block code. The answer to this ques-
tion comes from the particular structure of the stabilizer
generators: beside M0 and M∞, the generators of the
stabilizer group can be casted into sets of constant size
(e.g. four), each set acting on a fixed number (e.g. seven)
of consecutive qubits. In addition, each set has a fixed
overlap (e.g. of two qubits) with the set immediately be-
fore and immediately after. This very peculiar struc-
ture defines quantum convolutional codes and we can

prove [14] that this implies the possibility of online en-
coding and the existence of an efficient error estimation
algorithm.

Encoding and decoding circuits — As explained in
section 4 of D. Gottesman’s Ph.D. thesis [13], there are
various ways to realize the encoding into the code sub-
space given the Xi and Zi operators. For quantum con-
volutional codes, the properties of the generators of the
stabilizer group give the

Here, we will first identify a set of orthonormal eigen-
states of the Zi operators in the total Hilbert space.
Then, we will project these states onto the code sub-
space and show that it gives the computational basis of
the logical qubits. From there, we will derive an encoding
circuit which implements the appropriate transformation
in a unitary way.

More specifically, for cj ∈ {0, 1} we have:

Zi|0, 0, 0, 0, 0, c1, 0, 0, 0, 0, c2, 0, 0, 0, 0, c3, . . .〉 =
(−1)ci |0, 0, 0, 0, 0, c1, 0, 0, 0, 0, c2, 0, 0, 0, 0, c3, . . .〉.

(8)

Because Zi commutes with the projection operator onto
the code subspace, P =

∏
i(I + Mi)/

√
2, we obtain that

the set

{P |0, 0, 0, 0, 0, c1, 0, 0, 0, 0, c2, 0, 0, 0, 0, c3, . . .〉}ci∈{0,1}
(9)

is indeed the computational basis for the logical qubits
of the code.

Thus, to encode a stream of qubits qi, we first add to
it ancillary qubits in the |0〉 state such that the ‘to-be-
protected’ qubit i is now at the position 5i + 1. Then,
we need to implement P for these specific input states as
a unitary transformation onto the whole Hilbert space.
This can be done in full generality as explained in [13],
and gives the encoding circuit of Fig. 1. Note that al-
ternative encoding methods can be found and can be rel-
evant when considering some specific applications, but
these questions are beyond the scope of this letter.

Due to their very specific nature, convolutional codes
propagate information contained in a given qubit to its
successors (see again Fig. 1). During the decoding pro-
cess (i.e. the inverse of encoding) this can actually be-
come a problem: an error affecting a finite number of
qubits before decoding can propagate through the de-
coding circuit and finally affect an infinite number of
qubits. Such error is called catastrophic. In practice,
only non-catastrophic encoders are useful (i.e. without
catastrophic errors). We can show [14] that this condi-
tion is equivalent to a requirement on the encoding cir-
cuit: its gates form a finite number of layers and com-
mute with each other inside a layer. The idea behind
this theorem is simple. In general, an error affecting
some qubits will propagate to all the other qubits in-
volved in a gate with the erroneous ones. When those
qubits are further used in other gates the error contin-
ues to propagate until no more gates are applied. The
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commutation relation together with the finiteness of the
number of layers ensures that, for any finite size error,
only a finite number of gates will enter in the propaga-
tion process. Thus all errors are non-catastrophic. Fig. 2
illustrates this ‘pearl-necklace’ structure for our example,
and thus proves that our rate 1/5 quantum convolutional
code is non-catastrophic. Moreover, it can be shown that
this condition implies the existence of a forward decod-
ing scheme: there is no need to wait for the last qubit to
start decoding. For non-catastrophic codes, both encod-
ing and decoding can be done online [14].

Maximum likelihood error estimation — An error
correcting code aims at protecting information sent over
a noisy communication channel by letting the receiver
infer which error possibly affected the information. This
is the role of the error estimation algorithm. On aver-
age, the correct information is most often retrieved when
the estimated error coincides with the most likely error.
Hence, it is both of theoretical and practical relevance to
have an efficient maximum likelihood error estimation al-
gorithm for our quantum convolutional codes. In this sec-
tion, we exhibit such algorithm. It is indeed the quantum
analogue of the well-known Viterbi algorithm for classi-
cal convolutional codes. The Viterbi algorithm realizes a
maximum likelihood error estimation on all memoryless
channels with a complexity linear in the number of en-
coded qubits. In contrast, for a generic family of block
codes with fixed rate, the complexity of such algorithm
grows exponentially. This explains why classical convo-
lutional codes are so widely used for reducing the noise
on communication channels.

Our algorithm for quantum convolutional codes pro-
cesses the information obtained through the syndrome in
order to infer the most likely error. The circuit for ob-
taining the syndromes follows the usual phase estimation
scheme: an ancillary qubit is prepared in the |0〉 state;
undergoes a Hadamard transform; controls the applica-
tion of one of the generator Mi of the stabilizer group;
again undergoes a Hadamard transform; and is finally
measured in the {|0〉, |1〉} basis. Then, the algorithm
constructs and updates a list of maximum likelihood er-
ror candidates by looking at a small number of syndromes
at a time, and by taking local decisions. It is preceded
and followed by appropriate initialization and termina-
tion steps.

The initialization step lists all error candidates, {E0
j }j ,

for the first two qubits (which are assumed to be at po-
sition 1 and 2) which are compatible with the syndrome
M0. There are exactly 8 = 42/2 of them (there are 42

different operators with support on the first two qubits,
but the constraint associated with M0 divides this set
into two equal parts). This list constitutes the input of
the main loop of the algorithm. We could compute re-
cursively all error candidates compatible with the first
i syndromes, however the number of these candidates is
exponential in i. Fortunately, we can avoid this exponen-

tial blow-up by keeping only the most likely candidates
among this list in the following way. Index all 16 possible
couples of 2 errors by 1 to 16, and denote by Ei

j the most
likely error candidate for the the first 5i + 2 qubits (or
one of them in the case of ties) which agrees at positions
5i + 1 and 5i + 2 with the couple of errors of index j and
which is compatible with syndromes M0 to M4i. Then
the crucial point is the fact that {Ei+1

j }1≤j≤16 can be
computed recursively from {Ei

j}1≤j≤16. Indeed, consider
for i ≥ 0 and a candidate Ei+1

j , its restriction E′ to the
first 5i+2 positions and assume that the couple of errors
of this restriction at positions 5i+ 1 and 5i+ 2 has index
k. Then it straightforward to see that E′ is either Ei

k

or that Ei+1
j can be modified so as to agree with Ei

k on
positions 1 to 5i + 2 and with the old candidate Ei+1

j

at positions 5i + 3 to 5i + 7, to yield a new candidate
which is still compatible with syndromes M0 to M4(i+1)

and which is as likely as the old candidate Ei+1
j . Obvi-

ously the new candidate is at least as likely as the old
one, and the only point to check is that the new candi-
date is compatible with syndromes M0 to M4i+4. This
is a simple consequence of the fact that Ei

k satisfies by
definition syndromes M0 to M4i, and that the only posi-
tions of errors which are involved in the computation of
syndromes M4i+1 to M4i+4 are at position 5i+2 to 5i+7
(note that the new candidate agrees with the old candi-
date at these positions). In other words, any Ei+1

j can
be computed from the set of 16 candidates {Ei

k}1≤k≤16

by looking for each candidate Ei
k the most likely way

to extend it at positions 5i + 3 to 5i + 7 so as to sat-
isfy also syndromes M4i+1 to M4i+4, and then choosing
among these 16 extended candidates the most likely one.
We compute in this way the list {E1

j }j of 16 candidates
from {E0

j }j , then {E2
j }j is computed from {E1

j }j and so
on and so forth until reaching M∞. This last syndrome
again selects half of the candidates. The termination of
the algorithm consists in choosing the most likely error
among the remaining candidates.

It is easy to prove that the complexity of the algo-
rithm is linear with respect to the number of encoded
qubits: the same task of constant complexity is repeated
for each block of four syndromes, whose number equals
the number of logical qubits. In other words, the specific
structure of the generators of convolutional codes allows
to take local decisions while constructing the maximum
likelihood error. These decisions manage to keep a fi-
nite list of candidates at each step, and thus leads to
linear complexity. Note that, the error maximizing the
likelihood is known when the last syndrome is measured.
Hence, it is in principle necessary to wait till the end of
the transmission to actually correct the estimated error.
However, as for the classical Viterbi algorithm, numer-
ical simulations show that the different candidates at a
given step coincide with the most likely error except on
their last few positions. Thus, in practice it is possible to
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estimate the error online. In addition, we want to stress,
that without increasing its complexity, this algorithm can
take into account all memoryless quantum channels even
if the single qubit error probabilities are not constant in
time. For example, one could imagine that the qubits
are photons sent through an optical fiber, and that the
probabilities are evaluated by sending probe photons con-
taining no useful information. Finally, as the codes de-
scribed here are the exact translation to the quantum
setting of the classical convolutional codes, one can also
derive suboptimal error estimation algorithms (for their
classical analogues see [15, 16]). Most importantly, quan-
tum convolutional codes can be decoded iteratively and
allow quantum turbo decoding [14].

Conclusion — In this article, we presented an exam-
ple of quantum convolutional code based on the stabilizer
formalism. We showed specific ways for encoding and de-
coding this code as well as a low complexity maximum
likelihood error estimation algorithm. This specific ex-
ample can be encompassed in a broader theory of quan-
tum convolutional codes. We believe that such codes
could be used to reduce errors for long distance quantum
communications provided that we are able to perform a
small and fixed number quantum gates with good fidelity.
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the Perimeter Institute and the Institute for Quantum
Computing in Waterloo, Canada. Useful discussions with
J. Kempe, R. Laflamme and D. Poulin are gratefully ac-
knowledged.
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FIG. 1: Beginning of the circuit realizing the encoding once
the ancillary qubits have been added to the stream containing
the initial quantum information (qubits q1, q2, . . .). H is the
Hadamard transform, and the dot represents the control qubit
for a given gate. The circuit is run from left to right. When
all the transformations have been performed for a given qubit,
it can be sent through the communication channel.
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FIG. 2: Left: The encoding circuit of Fig. 1 where consecutive
blocks of operations have been placed in different orders and
the appropriate commutators introduced. There are 6 layers
of gates in this circuit and in each layer all the gates com-
mute with each other. It is was we call the ‘pearl-necklace’
structure. Right: Corresponding decoding circuit obtained by
running the modified encoding circuit backward. In this form
it is obvious that the decoding circuit has a structure allowing
a forward decoding.


