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Abstract— A generic method for constructing quantum LDPC
codes is presented. We first explain how to overcome the difficulty
of finding a set of low weight generators for the stabilizer group
of the code. Our approach is based on a graph representation of
the generators of the stabilizer group and on a simple local rule
to ensure commutativity. We provide several specific examples of
quantum LDPC codes obtained by our method, together with
numerical simulations over the depolarizing channel and the
erasure channel.

I. INTRODUCTION

The idea of using quantum systems for processing informa-
tion has first been suggested by Feynman and it has developed
since into an exciting research area with implications ranging
from cryptography to complexity theory. As a concrete exam-
ple, quantum computer would be able to solve efficiently some
hard problems such as integer factorization [11].

However, for taking advantage of the quantum nature of
physical systems to process information, it is necessary to
protect them from unwanted evolutions. Indeed, if quantum
registers are not protected from noise, the very fragile super-
positions required for efficiently manipulating quantum infor-
mation tend to disappear exponentially fast with the number
of qubits involved. This effect — called decoherence — can
nonetheless be reduced by using quantum error correcting
codes. The first scheme of this kind has been proposed in
1995 by P. Shor [12]. Since then, quantum error correction
has evolved much. Most notable, is the introduction of the
stabilizer formalism [6], [3] for defining quantum codes . With
this tools at hand, it has been shown that quantum information
processing can be done fault-tolerantly (see for instance [1]),
i.e. would be feasible even in the presence of qubit errors and
gate faults — provided these events are rare enough.

In spite of these important results, properties of quantum
channels and of quantum codes are less understood than
for their classical counterparts. For instance, the capacity
for sending quantum information is unknown even for the
depolarizing channel. It is thus of interest to tackle the problem
from a pragmatic point of view: devise versatile constructions
of quantum codes inspired by the best classical codes, and

analyze their performances.
When sending classical information over memoryless clas-

sical channels, it has been demonstrated that a very efficient
way for approaching the channel capacity is obtained by
using LDPC codes with Gallager’s iterative decoding algo-
rithm. Generalizing these notions to quantum codes seems a
promising way, and has indeed been proposed recently [9].
The approach promoted by these authors is to define quantum
LDPC codes using a subclass of stabilizer codes, namely
the CSS codes, which can be constructed from a couple of
classical binary codes, each of them containing the dual of
the other. MacKay et al. have shown that it is possible to find
sparse classical binary codes which meet this property and use
them for defining quantum LDPC codes. Several other papers
have followed the same approach by constructing sparse CSS
codes, namely [8], [7].

Our work is aimed at improving the aforementioned codes
by finding other constructions of LDPC quantum codes using
the more general family of stabilizer codes. While a brief in-
troduction to stabilizer codes is provided below, we would like
to pinpoint here the main difficulty for finding LDPC stabilizer
codes. As explained in [3], every stabilizer code can be viewed
as a code over F4, the field with four elements. However, the
converse is not true: to correspond to valid stabilizer codes,
these codes must be self-orthogonal for some hermitian trace
inner product. Fulfillment of this peculiar constraint makes the
usual constructions of LDPC codes useless in the quantum
setting.

Our work provides a partial solution to this problem by
defining such codes through a group theoretical construction
(see Section III). The resulting codes can be viewed as
quantum analogues of regular Gallager codes: each qubit is
involved in the same number of “parity-check equations”,
and each parity-check equation involves the same number of
qubits. We have decoded these codes with an iterative decod-
ing algorithm applied to a certain Tanner graph associated to
our construction and present the results of these numerical
simulations in Section V.
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II. STABILIZER CODES

An [n, k] quantum code is a subspace of dimension 2k of
the Hilbert space Hn ∼= (C2)⊗n of n qubits. Such a space
allows to encode k qubits and the rate of this code is defined
to be k

n . While defining such code subspace can be done in
many different ways, a particularly useful method is known as
the stabilizer formalism, which we now briefly review [6].

Preliminaries: Stabilizer codes rely heavily on properties
of Gn, the n-qubit Pauli group. This group is defined in terms
of the Pauli matrices for a single qubit: I =

(
1 0
0 1

)
,X =(

0 1
1 0

)
,Y =

(
0 −i
i 0

)
,Z =

(
1 0
0 −1

)
. The group Gn is the

multiplicative group generated by the n-fold tensor products
of single qubit Pauli matrices. The crucial fact about Gn, is
that any pair of elements either commutes or anti-commutes.

For our purpose here, phases are irrelevant and it will
be more convenient to work with the effective Pauli group
Gn

def
=Gn/{±I⊗n;±iI⊗n} (see [3]). There are 4 elements in

G1 which are [I], [X ], [Y ], and [Z ]. Here, [P ] denotes the
equivalence class of P ∈ Gn, that is {±P ,±iP}.

Definition of the code subspace: The code subspace C of
an [n, k] stabilizer code is the largest subspace stabilized by
the action of S, an Abelian subgroup of Gn. If −I⊗n /∈ S and
if S is generated by n− k independent operators Sj , then the
associated code is of rate k

n . The code subspace is equivalently
defined by n− k eigenvalue equations: |ψ〉 ∈ C if and only if
∀j ∈ {1, . . . , n−k}, Sj |ψ〉 = |ψ〉. It is sufficient to represent
the set of generators of the stabilizer group {Sj}j by the set
of equivalence classes {Sj} where Sj = [Sj ] which generate
a subgroup S of Gn. Using a slight abuse in terminology, we
also call S the stabilizer group of the code and {Sj}j the
stabilizer set of the code.

Error model: Since any error recovery procedure is a
linear operation, it is sufficient to describe it for an error
basis. This basis can be chosen to be the set of elements
E1 ⊗ E2 ⊗ · · · ⊗ En, where the E i’s belong to {I,X ,Y ,Z}.
An error E is viewed as an element of Gn which acts on a
vector |ψ〉 of the code subspace. The depolarizing channel
with crossover probability p is an error model where the Ei’s
are chosen independently of each other, E i being equal to I
with probability 1− p and X ,Y ,Z with probability p/3. The
quantum erasure channel with erasure probability p is an error
model where each qubit is erased with probability p and the
receiver knows which qubit has been erased or not. When
the i-th qubit is erased, E i is equal to I,X ,Y ,Z , each with
probability 1/4 and when it is not, E i is equal to I.

Capacity: Similarly to the classical setting, there is a
notion of capacity. For a given quantum channel it is the supre-
mum of the rate of a quantum code with fidelity arbitrarily
close to 1 after decoding as the length goes to infinity. There
is basically just one non-classical channel where the capacity
is known exactly, namely the quantum erasure channel which
has capacity 1 − 2p [2]. Even for the depolarizing channel
there are only lower and upper bounds which do not match. It

is known 1 that its capacity is greater than 1 + p log2 p+ (1−
p) log2(1 − p) − p log2 3. On the other hand, the no-cloning
theorem implies that for p ≥ 1

4 , the capacity is equal to 0.
Syndrome measurement: It is readily checked that for a

stabilizer code, there are physical measurements revealing the
binary vector s(E) = (s1(E), . . . , sn−k(E)), where si(E) is
equal to 0 iff Sj and E commute and to 1 otherwise. s(E)
is called the syndrome of E . This allows to cast errors in
three categories: (i) the detectable errors which have non-zero
syndrome; (ii) the harmless undetectable errors which have
zero syndrome, but belong to S; (iii) the harmful undetectable
errors which have zero syndrome, those that belong to N(S)−
S, where N(S) is the normalizer of S .

Minimum distance: It is defined as the smallest Hamming
weight of a harmful undetectable error.

Stabilizer codes as codes over F4: For the purpose of
establishing a correspondance between quantum and classical
codes, it is useful to view stabilizer codes as codes over F4 [3].
This duality is due to the additive structure of F4 which echoes
the additive structure of the effective Pauli group G1. The
mapping between them is given by [I]↔ 0, [X ]↔ ω, [Z ]↔
ω̄ and [Y ]↔ 1, where ω̄def

=ω2 is the conjugate of ω. Elements
of Gn will in turn be associated to vectors of Fn4 in an obvious
way. It can then be checked that two Pauli operators P and
Q commute iff the two elements P and Q of F4 associated
to [P ] and [Q] satisfy tr(PQ̄) = 0, and anti-commute iff
tr(PQ̄) = 1. Here, tr(U)

def
= U + Ū = U + U2 is the trace

operator in F4. This motivates the definition of the following
inner product over Fn4 :

U ?V
def
= tr

n∑

i=1

UiV̄i.

The generators of a stabilizer code, when expressed as row-
vectors of Fn4 , form a matrix S which will be called a parity-
check matrix of the stabilizer code. In the following, a row Sj
of S is associated to the j-th element Sj of the stabilizer set.
By construction, the rows of S are orthogonal with respect to
the inner product ”?”. The converse is also true: any (n−k)×n
matrix over F4 with orthogonal rows defines a stabilizer code
over n qubits.

We now review the complete correspondence between sta-
bilizer codes and self-orthogonal codes over F4:
- An error E is associated to a vector E of Fn4 ;
- The stabilizer group S is associated to the vector space over
F2 generated by S1,S2, . . . ,Sn−k—i.e. spanF2

{Sj};
- The syndrome associated to an error E is the binary vector
(E ? Si)

n−k
i=1 ;

- Harmless undetectable errors are associated to elements of
Fn4 with zero syndrome and belonging to spanF2

{Sj};
- Harmful undetectable errors are associated to elements of Fn4
with zero syndrome which do not belong to spanF2

{Sj};
- A successful decoding of the error E is reached when the
decoding algorithm outputs an error vector E′ such that E+E′

is a harmless undetectable error, that is E+E′ ∈ spanF2
{Sj}.

1Actually a slightly better bound holds from [13], [14], but the improvement
is quite small.
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Quantum LDPC codes: With this definition of parity-
check matrix for stabilizer codes, it is natural to define
quantum LDPC codes as stabilizer codes which have a sparse
parity check matrix. In this article we are going to construct
regular LDPC codes.

Definition 1: A quantum regular LDPC code of type (a, b)
is a stabilizer code which has a parity-check matrix S with a
non-zero entries per column and b non-zero entries per row.
When the number of ω’s, ω̄’s and 1’s is fixed per column, and
equal respectively to aω, aω̄, a1 we say that it is of detailed
type ([aω, aω̄, a1], b).

III. A GENERIC CONSTRUCTION OF (a, b) QUANTUM LDPC
CODES

In the following we restrict our attention to quantum LDPC
codes having only two kind of non-zero entries, ω and ω̄.

Generic construction of the Tanner graph of (a, b) quan-
tum LDPC codes: We use the following Tanner graph asso-
ciated to a parity check matrix S. It is a bipartite graph with
vertex set A ∪ B, where A is the set of variables nodes (i.e.
the qubits of the code, or the columns of S) and B is the set
of check nodes (i.e. the generators of the stabilizer group, or
the rows of S). There is an edge between α ∈ A and β ∈ B
iff the corresponding entry in S, that is Sαβ is non zero. We
label this edge with the entry Sαβ .

We start our construction by choosing a group G with
cardinality equal to a multiple of the length of the code we
are interested in. Then we choose two subgroups H and K of
G, with |K| ≥ |H |. The cosets xH are associated to variable
nodes whereas the cosets yK are associated to check nodes.
In other words, the length n and the number of rows n− k in
the parity check matrix are given by n = |G|

|H| and n−k = |G|
|K| .

We then pick up a set of generators Γ of G which can
be partitioned into two sets Γ = Γω ∪ Γω̄ satisfying the 3
following properties:

(Γω)−1 = Γω, (Γω̄)−1 = Γω̄; (1)
∀(gω , gω̄, h) ∈ Γω×Γω̄×H, ∃(h′, k′, k′′) ∈ H×K2 s.t.,

hgωk
′gω̄ = gω̄k

′′gωh
′; (2)

hgk=h′g′k′, g, g′∈Γ, h, h′∈H, k, k′∈K, =⇒ g=g′. (3)

We put an edge between xH and yK iff there exists a g ∈ Γ
such that xHg∩yK 6= ∅, or equivalently iff there exist h ∈ H ,
k ∈ K and g ∈ Γ such that y = xhgk. We label this edge with
ω if the corresponding g belongs to Γω and with ω̄ otherwise.
It can be checked that the degree of any vertex xH is equal to
a

def
=
∑

g∈Γ
|H|

|Hg∩K| and the degree of any vertex yK is equal
to b

def
=
∑
g∈Γ

|K|
|Hg∩K| , where Hg

def
= g−1Hg. This is a simple

consequence of
Lemma 1: Hg is a subgroup of G and either xHg∩yK = ∅

or xHg ∩ yK = z(Hg ∩K) for some z ∈ G.
Soundness of the construction: This defines the Tanner

graph of our stabilizer code and therefore also its parity-check
matrix. The point of this construction is that property (2),
which expresses some weak commutation of gω and gω̄
modulo elements of H and K, implies the orthogonality of the

• •

•

• qubit

check-node

gω

gω̄

xH yK

zK

⊗

⊗

xH

x′H

yK

zK

⊗

⊗
⊗

Fig. 1. Subgraph showing that each qubit xH of the second type (involved
in the Si corresponding to yK with an ω and in the Sj corresponding to zK
with an ω̄) is necessarily part of a 4-cycle with another qubit of the second
type.

rows of the associated parity-check matrix (so that it represents
a valid parity-check matrix of a stabilizer code). Property (3)
is used to show that there are no multiples edges in the graph.

Proposition 1: The parity-check matrix S associated to the
Tanner graph given by this construction has orthogonal rows.

Proof: Given two rows Si and Sj of S, the set of qubits
can be partitioned in two classes : qubits k for which Ski ?S

k
j =

0 and those for which Ski ?S
k
j = 1. Si and Sj are orthogonal iff

the number of qubits of the second type is even. Equivalently,
and this is how our construction is tailored, we must show that
qubits of the second type can be paired together.

Consider a qubit belonging to the second class; say it
corresponds to xH and that rows Si and Sj correspond to
yK and zK. Then necessarily one of these two rows has an
ω at the entry corresponding to xH and the other one has an
ω̄. W.l.o.g. we may assume that the subgraph of the Tanner
graph induced by xH , yK and zK is as in Fig. 1

In other words there exist gω ∈ Γω, gω̄ ∈ Γω̄ such that
xHgω ∩ yK 6= ∅ and xHgω̄ ∩ zK 6= ∅. That is, there exist
h1, h2 in H and k1, k2 in K such that

y = xh1gωk1

z = xh2gω̄k2.

From Property 2, there exists (h′, k′, k′′) ∈ H×K2 such that,
h1gωk

′gω̄ = h2gω̄k
′′gωh′. Let x′def

=xh1gωk
′gω̄, then we have

the following equalities:

x′g−1
ω̄ k′

−1
k1 = xh1gωk

′gω̄g
−1
ω̄ k′

−1
k1 = y,

and
x′h′

−1
g−1
ω k′′

−1
k2 = xh1gωk

′gω̄h
′−1

g−1
ω k′′

−1
k2

= xh2gω̄k
′′gωh

′h′
−1
g−1
ω k′′

−1
k2

= z.

This implies that there is an edge labeled by ω̄ between x′H
and yK, and an edge labeled ω between x′H and zK, i.e.
xH and x′H are involved in a 4-cycle (see Fig. 1. Using
property (3), it is easy to show that qubits of the second type
are paired in a unique fashion through the 4-cycles described
above.

IV. ON THE NECESSITY OF HAVING 4-CYCLES IN THE
TANNER GRAPH

It can be noticed that there are 4-cycles in the construction
we suggest. Indeed, we wish to point out that this is not a
characteristic of our construction, but rather that any stabilizer
code which detects all single qubit errors necessarily has a
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Tanner graph with 4-cycles. This comes from the fact that: (i)
in order to detect such errors, each column of the parity-check
matrix must contain at least two different non-zero entries; and
that (ii) two rows which differ in some position by having two
different non-zero entries, must differ in the same way in at
least one other position in order to commute.

It will be convenient to bring in the following definition.
Definition 1: The 4-cycle graph associated to a Tanner

graph is the graph with vertex set the qubits and with edges
connecting two qubits each time they are involved in a 4-cycle
in the Tanner graph.

For several examples, the (a, b) quantum LDPC codes we
construct are of detailed type ([a/2, a/2, 0], b). Point (ii) above
implies that the vertices of the associated 4-cycle graph have at
least degree a2/4. A simple calculation shows that the exam-
ples we provide have 4-cycles graph which are a2/4-regular.
Therefore, they meet this lower bound for every vertex. On
the contrary, quantum codes of detailed type ([a/2, a/2, 0], b)
obtained from the CSS-construction based on dual-containing
codes, as is the case in [9], have 4-cycle graphs of minimum
degree at least a2/4+a(a/2−1), which is significantly larger.

This 4-cycle graph contains other useful information about
the possible performance of the codes. For instance, one
should avoid generators which involve qubits which induce a
subgraph of the 4-cycle graph which has more than one con-
nected component. Such a configuration yields a potentially
harmful undetected error of small Hamming weight.

Lemma 1: Consider a row Si of the parity-check matrix
S of the code and the set of positions j such that Sji 6= 0.
A connected component of the subgraph of the 4-cycle graph
induced by those j’s yields an undetected error E of Hamming
weight the size of the subgraph. This element is obtained by
giving at each qubit position j involved in the subgraph its
value taken by Si, that is Sji and 0 elsewhere.

Proof: We just have to prove that E is orthogonal to
each row of S. First of all, it is orthogonal to Si. Second, it
obviously commutes with all rows Sj which have no overlap
with E. Third, consider an Sj which overlaps with E at
position k. All the positions of overlap between Si and Sj
are adjacent to k in the subgraph of the 4-cycle graph, thus
they are also in E. Since Si and Sj are orthogonal, E and Sj
are also orthogonal.

V. RESULTS

We present simulation results of several quantum LDPC
codes under iterative decoding (namely the SUM-PRODUCT
algorithm applied to their Tanner Graph in their syndrome
decoding form) on the depolarizing channel and the quantum
erasure channel. We use here two different groups as ingredi-
ents in our construction.
I is here a generic notation for the identity of a group.

The group it refers to will depend on the context. The first
one is a semi-direct product Z/30Z o Z/2Z, which has for
presentation {ρ, τ | ρ30 = τ2 = I, τρτ = ρ19}. The last
group S4 is the symmetric group on 4 elements. We use these

groups in the following constructions :

Code A of type (6,12):
-length : 34560, rate 1/2,
-G = S4 × Z/30Z o Z/2Z× S4.
-H = {I} and K = {I, u} with u = ((2, 3), τ, (2, 3))
- Γω = {g1, g

−1
1 , g2},with g2

2 = I, g1 =
(
(1, 2, 3), ρ5, I

)
, and

g2 =
(
(1, 4), ρ3τ, I

)

- Γω̄ = {g3, g
−1
3 , g4} ,with g2

4 = I, g3 =
(
I, ρ10, (1, 2, 3)

)
and

g4 =
(
ρ6τ, I, (1, 4)

)
.

Code B of type (8,16):
-length : 34560, rate 1/2,
-G = S4 × Z/30Z o Z/2Z× S4.
-H = {I} and K = {I, u} with u = ((2, 3), τ, (2, 3))
- Γω = {g1, g2, g

−1
1 },with g2

2 = I, g1 =
(
(1, 2, 3, 4), ρ5, I

)
,

g2 =
(
(1, 4), ρ3τ, I

)
,

- Γω̄ = {g3, g4, g5, g
−1
3 , g−1

4 },with g3=
(
I, ρ10, (1, 2, 3, 4)

)
,

g4 =
(
I, ρ3τ, (1, 3, 4)

)
and g5 =

(
I, ρ6τ, (1, 4)

)
. Note that

g2
5 = I. In the last example, the Tanner graph displays some

irregularity, it is of detailed type ([3, 5, 0], 16).
Code C : The two previous codes have been found to be

of distance 12. There is a simple way to increase the minimum
distance by using concatenation which works in the same way
as classical concatenated codes. We refer to [10], [4] for more
details about this topic. We found it useful to concatenate the
previous code B with a quantum generalization of the parity-
code of length 4 given by the parity-check matrix

(
ω ω ω ω
ω̄ ω̄ ω̄ ω̄

)

The inner code is the code of length 4 and the outer code is
B. The length of the concatenated code is the product of the
lengths, namely 138240 and the rate the product of the rates,
that is 1

4 .
Such a code can be decoded in the same way as classical

serial turbo-codes. Its quantum version has been presented in
[10].

The following figures display the performances of iterative
decoding of these codes over the erasure channel(resp. the
depolarizing channel). We plot here the block error after iter-
ative decoding against the erasure probability (resp. crossover
probability) of the channel.

Fig. 2. Performances of A and B over the erasure channel
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Fig. 3. Performances of A and B over the depolarizing channel
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Fig. 4. Performances of C against the performances of other codes of rate
1
4

taken from [8], [9]

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.03  0.04  0.05  0.06  0.07  0.08

blo
ck

 er
ror

 pr
ob

ab
ility

crossover probability

"MacKay_32"
"MacKay_24"

"Lou_Garcias_14_14"
"codeC"

Several remarks can be made here
1) The erasure probability threshold is slightly below 0.2

for the(8, 16)-code and slightly above 0.2 for the (6, 12)-
code. This should be compared with the erasure proba-
bility that the best codes of rate 1

2 can sustain which is
0.25.

2) Code A and B given here show an error-floor which
starts at block error probability of order 10−4. This is
due to the fact that they all turned out to have a minimum
distance which is 12.

3) Code A and B have a rather good block error probability
for a crossover probability in the range (0.05− 0.055).
This has to be compared with the crossover probability
threshold for random stabilizer codes of rate 1

2 which is
of about 0.0743. Code C gives better performances than
the codes of the same rate given in [8], [9].

VI. CONCLUSION

The quantum (6, 12) and (8, 16)-codes of rate 1
2 constructed

here look very much like quantum analogs of classical (3, 6)
Gallager codes in terms of the noise values they sustain
for moderate block error probabilities (say in the range
(10−3, 10−1)) both on the quantum erasure channel and on
the quantum depolarizing channel. They already display quite
respectable performances in this range. Unfortunately, the
error floor starts much earlier in our case than for the classical

(3, 6)-code and is due to the rather small minimum distance of
our codes. This does not seem to be an unavoidable problem
of our general construction. It seems to be due to the particular
choice of groups and group generators. It might be quite
interesting to study whether a clever choice of families of
groups and group generators would yield a linear minimum
distance. The quantum LDPC codes constructed in this article
also have associated Tanner graphs with several cycles of size
4 (but this was also the case in [8], [9]). However, it should be
emphasized that this is not due to the particular construction
chosen here, but that it is a characteristic of all stabilizer codes.
This affects iterative decoding performances when the usual
SUM-PRODUCT or MIN-SUM algorithm is used. It would be
interesting to study how variants of this algorithm (see [15]
for instance) would overcome this problem.

Finally, we would like to point out that quantum LDPC
codes might be good candidates for constructing fault-tolerant
architectures. First, we hope that the minimum distance of
these codes increases linearly with the block size, as it is the
case for most classical LDPC codes. This would warrant that
any finite weight error can be corrected for sufficiently large
block sizes. Second, the rate of such codes does not decrease
to zero, thus possibly improving the overhead requirements
over schemes employing concatenation or toric codes [5].
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