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Abstract. In this paper we describe several theorems that give lower bounds on the second
eigenvalue of any quotient of a given size of a fixed graph, G. These theorems generalize Alon-
Boppana type theorems, where G is a regular (infinite) tree.

When G is a hypercube, our theorems give minimum distance upper bounds on linear binary
codes of a given size and information rate. Our bounds at best equal the current best bounds for
codes, and only apply to linear codes. However, it is of interest to note that (1) one very simple
Alon-Boppana argument yields non-trivial code bound, and (2) our Alon-Boppana argument that
equals a current best bound for codes has some hope of improvement.

We also improve the bound in sharpest known Alon-Boppana theorem (i.e., when G is a regular
tree).

1. Introduction. The goal of this paper is to draw a connection between the
“Alon-Boppana” bound, in the theory of expanders or graph eigenvalues, and asymp-
totic upper bounds for the minimum distance of an error-correcting code of a given
rate.

Recall that the Alon-Boppana bound is a lower bound on the second eigenvalue
of finite d-regular graphs. In its basic form it says that the second largest eigenvalue
of a d-regular graph is greater than 2

√
d − 1− o(1) as the number of vertices goes to

infinity. In this paper we show that the Alon-Boppana bound can be generalized to
finite quotients of a large class of graphs, H ; in the original Alon-Boppana setting,
H is the d-regular infinite tree, which covers any (connected) d-regular graph. See
[Fri03] for such results when H is infinite and fixed.

The connection with upper bounds on the minimum distance of a binary linear
code is that the minimum distance of a binary linear code C can be expressed as a
certain decreasing function of the second largest eigenvalue of a certain regular graph
associated to C (this graph is generally called the coset graph of C⊥; see Section 5).
In other words any lower bound on the second eigenvalue of this graph translates into
an upper bound on the minimum distance of the code. If we use the aforementioned
Alon-Boppana directly then we only obtain a very weak upper bound on the minimum
distance of the code.

However, when we know more about the geometry of the graph, for instance
lower bounds on the number of cycles of a given length, then the Alon-Boppana lower
bound can be strengthened considerably. We derive several lower bounds by different
techniques. The first one is derived through lower bounds on the number of cycles
of a given length, the second through comparison with Dirichlet eigenvalues. There
is however a common underlying idea, namely the notion of a covering graph (see
Section 3). In both cases, the relevant quantities (either the number of cycles or the
Dirichlet eigenvalues) are bounded by the corresponding quantities of a cover graph.
The crux of this approach is that the cover graph may have a simple structure (for
instance, for the coset graph we may choose a Boolean hypercube), which enables us
to estimate these quantities directly.
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The second technique, when applied to the graph associated to the coset graph
of a binary linear code, yields the first MRRW bound [MRRW77] in coding theory,
which is the best known upper bound on the minimum distance for low rate codes.
This bound was originally obtained with the “linear programming” approach. While
our approach has elements in common with the classical “linear programming” ap-
proach, we believe our approach is easier to use and suggests more geometrically
visualizable questions on the Boolean hypercube. This is because a simple “Alon-
Boppana” argument easily gives an interesting coding bound (see Section 5), and
we don’t know of an analogous argument based on the linear programming approach.
Also, in an attempt to improve the “first MRRW bound” (of [MRRW77], as explained
in Section 2) there arises a geometric question about what is the correct analogue for
the hypercube of the classical Faber-Krahn inequality for domains in R

n (see, e.g.,
[Fab23, Kra25, Cha84, Fri93]); if this analogue is “asymptotically different” (see Sec-
tion 10), which is presently conceivable, then the first MRRW bound will be improved.
We must admit, however, that at present we cannot improve but only duplicate the
first MRRW bound with our methods; furthermore it is quite conceivable that any
theorem obtained with our methods could be translated into a proof based only on
the linear programming approach (it would be interesting to know if this were really
true). But we reiterate that even if our approach is, in a sense, subsumed by the linear
programming approach, the setting and geometric pictures suggested by our method
seems to be easier to work with. Moreover, we also show how to obtain the linear
programming bounds dealing only with the Hamming space through our approach,
by changing slightly one of our Alon-Boppana bounds (see Section 10).

The consequences for the classical Alon-Boppana theorem (i.e., for the second
eigenvalue of a d-regular graph) in this paper is that we improve the best Alon-
Boppana bound (of Friedman and Kahale, see [Fri93]) in the second order term by
essentially a factor of four (see Section 9). This is done by generalizing the known
Alon-Boppana bound techniques to give coding bounds, and realizing that the first
MRRW bound improves this bound, in a sense, by a factor of two. It is not hard to
see where this factor of two can be recovered— by “projecting out the constants” (see
Sections 9 and 10). However, Kahale’s method (see [Kah93]) also “projects out the
constants,” and our improvement to classical Alon-Boppana can also be obtained by
a minor modification of Kahale’s proof.

2. A basic fact for obtaining Alon-Boppana bounds. Let us first introduce
some general notation concerning eigenvalues of (adjacency matrices of) graphs. Let
G be a graph with |VG| = n and adjacency matrix AG. Recall that AG is a n × n
symmetric matrix, with entries auv indexed by the vertices of the graph, and auv = 1
iff u and v are adjacent in G, and auv = 0 otherwise. Since AG is symmetric, it can
be diagonalised in an orthonormal basis. Then we write

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G)

for the eigenvalues of G’s adjacency matrix (written with their multiplicity). We
denote by e1, e2, . . . , en the corresponding (orthonormal) basis of eigenvectors. We
write ρi = ρi(G) for the i-th largest value that occurs among the |λi|; for example,
the Perron-Frobenius theorem implies that ρ1 = λ1 and thus

ρ2 = ρ2(G) = max(λ2,−λn).

Estimating λ2 is of interest in studying expansion; however, some techniques only
estimate ρ2 (and higher ρi).
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Rayleigh principle gives us the following characterization of λ2(G) (it is a straight-
forward consequence of the fact that e1, e2, . . . , en is an orthornormal basis)

λ2(G) = max
f⊥e1

(AGf, f)

(f, f)
(2.1)

If G is a regular graph, then e1 can be chosen to be 1√
n
~1, where ~1 is the all ones

vector, and therefore by applying the previous equation we obtain
Fact 2.1. If G is a regular graph, and f ∈ R

n is orthogonal to ~1 then

λ2(G) ≥ (AGf, f)

(f, f)
(2.2)

This inequality is the key to obtain lower bounds on λ2(G) : by choosing f
appropriately we can relate λ2(G) to other quantities of the graph. Notice that we
can also apply the Rayleigh principle to Al

G (or even sometimes to a well chosen

polynomial applied to AG), this yields for f ⊥ ~1 and any positive odd integer l:

λ2(G)l ≥ (Al
Gf, f)

(f, f)
(2.3)

and in general for any positive integer l :

ρ2(G)l ≥ (Al
Gf, f)

(f, f)
(2.4)

In what follows we are going to apply these simple facts to several different choices

of f . For all these choices we are going to control the term
(Al

Gf,f)
(f,f) that appears on

the right-hand-side through the notion of a cover graph.

3. Graphs and Covers. In this section we review the definition of graph covers.
Until Section 11 we assume all graphs are simple, i.e. have no multiple edges or self-
loops; this simplifies the discussion and notation. In Section 11 we give the definitions
needed for general graphs; all theorems immediately carry over to general graphs.

By a simple graph we mean a graph with no multiple edges or self-loops; so we
may think of a simple graph, G, as a pair (VG, EG) where EG is a subset of the set
of unordered pairs of VG. Until Section 11 we understand a graph to mean a simple
graph.

A morphism π : H → G of graphs is a map from VH to VG such that the natural
map from EH onto pairs in VG has its image in EG. π thus gives rise to a map from
EH to EG which we also denote by π, assuming no confusion will arise.

A morphism π : H → G is called a covering map if for every edge e = {u, v} of G
and every u′ ∈ VH with π(u′) = u there is a unique v′ ∈ π−1(v) such that {u′, v′} is
an edge in EH . We also say that in this case H is a cover of G.

Example 3.1. Let G be any finite graph. Then G has a universal cover,
π : T → G, in that for any covering map ν : K → G there is a covering map1 µ : T → K
such that π = ν ◦ µ. T is a tree. If G is d-regular, i.e. each row and column of AG

sums to d, then T is a d-regular tree (and any two d-regular trees are isomorphic).

1This covering map, µ, is uniquely defined if one works with “base-pointed graphs,” i.e. graphs
with a distiguished vertex.
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Example 3.2. Let G be a connected Cayley graph on (F2)
k of degree n, with

generators c1, . . . , cn. This is a graph where we connect any x ∈ (F2)
k to x + ci for

i ∈ {1, 2, . . . , n}. Let B
n be the Boolean n-hypercube, i.e. the Cayley graph on (F2)

n

with generators e1, . . . , en where ei is the i-th standard basis vector, i.e., ei is 0 on
each coordinate except the i-th, where it is 1. Consider the map πlin : (F2)

n → (F2)
k

which takes ei (as above) to ci and is extended by linearity. Then πlin induces a
covering map π : B

n → G.

4. Coding Theory. A code of length n is a subset C ⊂ (F2)
n, where F2 = {0, 1}

is the field with two elements. C is linear if it is a subspace of the vector space (F2)
n.

We endow (F2)
n with the Hamming distance, i.e. for x, y ∈ (F2)

n, d(x, y) is the
number of coordinates on which x and y differ. The minimum distance of a code, C,
is

dmin(C) = min{d(x, y) | x, y ∈ C, x 6= y},

and its normalized minimum distance is

δ(C) = dmin(C)/n.

The information rate of a code is

R(C) =
log2 |C|

n
.

If C is a linear code then this is just (dim C)/n.

Let δmax be the function

δmax(R) = lim
n→∞

max{δ(C) | R(C) ≥ R, C ⊂ (F2)
n}

and

Rmax(δ) = lim
n→∞

max{R(C) | δ(C) ≥ δ, C ⊂ (F2)
n}.

We are interested in estimating these functions.

To estimate δmax is essentially the same as to estimate Rmax, but a bit of care is
required to make this precise.

Proposition 4.1. Let δmax(α) ≤ f(α) for a continuous, strictly decreasing
function, f , defined on an open interval. Then (f−1 is defined on the image of f and)
Rmax(δ) ≤ f−1(δ).

Proof. This is an easy (but mildly annoying) technicality; see appendix B.

2

We now state some classical bounds.

Theorem 4.2. Rmax(δ) ≥ 1 − h(δ), where

h(θ) = −θ log2 θ − (1 − θ) log2(1 − θ).

Proof. See the asymptotic Gilbert-Varshamov bound in [vL99].

2
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The best upper bound on Rmax is given by the following theorem:
Theorem 4.3.

Rmax(δ) ≤ min
u∈[0,1−2δ]

b(u, δ), (4.1)

where

b(u, δ) = 1 + g(u2) − g(u2 + 2δu + 2δ)

with

g(x) = h

(
1

2
−

√
1 − x

2

)
.

For δ ≥ 0.273 this bound is the same as

Rmax(δ) ≤ b(1 − 2δ, δ) = h
(
1/2−

√
δ(1 − δ)

)
. (4.2)

Proof. See [MRRW77] (or [MS77] for the latter half of the theorem).
2

The inequality (4.1) is known as the “second MRRW” bound; (4.2) is known as the
“first MRRW” bound.

Corollary 4.4. For small α we have

1

2
−

(
1 + o(1)

)√ α

2 log2 e
≤ δmax(α) ≤ 1

2
−

(
1 + o(1)

)√ α

log2(1/α)
.

5. Codes and Eigenvalues. In this section we recall how a graph can be associ-
ated to a linear code in such a way that the eigenvalues of the graph are in relationship
with the codeword weights.

Let C ⊂ (F2)
n be a linear code with basis r1, . . . , rk. We form the generator

matrix, M , over F2, whose rows are the ri’s; so M is an k × n matrix. Its columns,
c1, . . . , cn, can each be viewed as an element of (F2)

k .
Let G be the Cayley graph on (F2)

k with generators c1, . . . , cn
2. Apparently G

may depend on the choice of the basis r1, r2, . . . , rk . It turns out that G only depends
on C. This can be seen by bringing in the dual code C⊥ of C, that is

C⊥ = {x ∈ (F2)
n | x · c = 0 ∀c ∈ C}.

Consider the graph with vertices the cosets x + C⊥, and two cosets being linked by
an edge iff they are at Hamming distance 1. We claim that the Cayley graph defined
before and this new graph are isomorphic, the isomorphism being given by the map
π : x + C⊥ → Mx. Indeed, let two cosets x + C⊥ and y + C⊥ be linked by an edge.
This means that there exists c ∈ C⊥ and i ∈ {1, . . . , n} such that x = y + c + ei

(where ei is the i-th standard basis vector of F2
n, i.e., ei is 0 on each coordinate

except the i-th, where it is 1), this implies that Mx = My + ci. On the other hand
if Mx = My + ci then necessarily x and y + ei differ only by an element of C⊥.

2We shall assume (until Section 11) that no ci’s vanish and the ci’s are all distinct; if not, then
G will have self-loops and/or multiple edges, and we technically need Section 11 before we can apply
our theory.
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We say that this graph is the coset graph of C⊥ or of the code3, C. The following
is a well-known folk theorem (see [DS91] and the reference there):

Theorem 5.1. Let λ1 ≥ λ2 ≥ · · · be the eigenvalues of the adjacency matrix
of the coset graph of C⊥ arranged in non-increasing order. Then λ1 = n and λ2 =
n− 2dmin(C). Moreover, the weights (i.e. distances to the zero code word) appearing
in C are just the (n − λi)/2 as i ranges from 1 to 2k.

6. A Simple Generalized Alon-Boppana Theorem. In this section we give
a very simple but rather weak generalized Alon-Boppana theorem and discuss its
implications. Let G be a d-regular graph. We use the approach outlined in Section 2
to obtain a lower bound on λ2(G) and ρ2(G) and we choose f = χu − χv where χ
denotes the characteristic function in (2.4). Notice that

(Al
Gχu, χu) = Nl(u), (Al

Gχv, χv) = Nl(v),

where Nl(v) denotes the number of walks of length l from v to itself. Moreover if u
and v are at distance greater than l ≥ 0, then

(Al
Gχu, χv) = (Al

Gχv, χu) = 0.

Hence

(Al
Gf, f) = Nl(u) + Nl(v)

Let Nl = Nl(G) denote the minimum of Nl(v) ranging over all vertices v of the graph.
Of course, (f, f) = 2, and so

(Al
Gf, f)

(f, f)
≥ Nl(G).

By using (2.4) we now obtain

ρ(AG) ≥
(
Nl

)1/l
;

The right-hand-side term can be estimated through a cover H of G for which the
calculation of Nl(H) might be much simpler. Indeed the following is clear.

Fact 6.1. If π : H → G is a cover, then any H cycle about a vertex, v, gives rise
to a unique G cycle about π(v). Hence for any positive integer l we have

Nl(G) ≥ Nl(H).

In other words we have proved the following.
Theorem 6.2. Let G be a d-regular graph that contains two vertices of distance

> l and H be a cover of G. Then

ρ(AG) ≥
(
Nl(H)

)1/l
;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.

3This is the graph of cosets of the hypercube modulo C⊥, or of C⊥ cosets, but it is the graph
of cosets one uses when working with C. Since we do not work with a code, C, and its dual, C⊥,
simultaneously (in this paper), no confusion will occur in referring to the graph as the coset graph
of “the code.”

6



The last statement follows by using (2.3) instead of (2.4).
The above theorem is quite simple. Unfortunately, for some purposes, such as

coding theory, we are interested in λ2(AG) and the cover graph H (which can be
chosen to be a boolean hypercube) will be bipartite (i.e. Nl(H) = 0 for l odd). So we
prove the following variant of the above theorem.

Theorem 6.3. Let π : H → G be a covering map. Let e1, e2 be two edges of
distance > l (i.e. the distance from any of e1’s endpoints to any of e2’s is greater
than l). Then

ρ(AG) ≥
(
Nl(H) + Nl−1(H)

)1/l
;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.
Proof. Let ei = {ui, vi} and set

f = χu1
+ χv1

− χu2
− χv2

.

We have that (Alχu1
, χv1

) is at least Nl−1(H), since any walk of length l−1 beginning
and ending in u1 yields a walk from u1 to v1 with one additional step. Similar
reasoning to that in the previous theorem then yields:

(Alf, f) ≥ 4
(
Nl(H) + Nl−1(H)

)
,

and, of course, (f, f) = 4. Similar reasoning as before now yields this theorem.
2

We state two corollaries of this simple theorem:
Corollary 6.4. Fix d. Then for any d-regular graph, G, on n vertices, we have

ρ(G) ≥ 2
√

d − 1 − o(1) as n → ∞.
This follows by taking H to be the universal cover of G (namely the infinite d-

regular tree) and by noticing that any d-regular graph on n vertices has at least two
vertices which are at distance blogd−1 nc. The revelant computation can be found in
[LPS88] for instance.

We get stronger bounds with regular graphs which admit a cover which has more
closed walks than the d-regular infinite tree, and this is exactly what happens for the
coset graph of a code of length n which admits the boolean hypercube as a cover (see
Example 3.2)

Corollary 6.5. Let C be a binary linear code of length n of rate ≤ R. The
normalized minimum distance of C, δ, satisfies δ ≤ f(R), where f is a function that
satisfies:

f(R) =
1

2
− C

(
1 + o(1)

)
√

R

log2 R

when R tends to 0, with C = 1/
√

4e.
The bound of [MRRW77] yields the same corollary but with C = 1. The calcula-

tion which lead to this theorem are in Appendix A.

7. Projecting out constants. In this section we introduce a technique that
will strengthen essentially all of our Alon-Boppana theorems, including the ones in
the previous section and the more refined theorems to come.

In the previous section we created functions, f , for which (Alf, f) could be
bounded; the idea was to concentrate f at a few vertices. Since it is important
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that f be orthogonal to ~1, the all ones vector, we took f to have as many positive
values as negative values, taking the values of different sign to be far apart (a dis-
tance > l). However, we may alternatively take f to be all positive, provided that we
then remove f ’s component in the direction of ~1. This is the same as taking f to be
concentrated and positive, subtracting the same (small) negative value at every other
vertex.

The idea of choosing an arbitrary f and “projecting out the constant component”
will be used repeatedly in this paper. Here is this technique applied to Theorem 6.2.

Theorem 7.1. Let π : H → G be a covering map. Let G be a d-regular graph,
and let l be a value such that

Nl(H) ≥ dl/|VG|.
Then

ρ(AG) ≥
(

Nl(H) − dl

|VG|

)1/l

;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.
Proof. Fix any v ∈ VG and set f = χv. Then f̃ = f −~1/|VG| is orthogonal to ~1.

We have

(Alf̃ , f̃) = (Alf, f) − (Al~1/|VG|,~1/|VG|) ≥ Nl(H) − dl/|VG|,
and

(f̃ , f̃) = (f, f) − (~1/|VG|,~1/|VG|) ≤ 1.

The reasoning used at the end of Theorem 6.2 now applies here, and we conclude the
theorem.

2

We may also obtain the following variant of Theorem 6.3.
Theorem 7.2. Let π : H → G be a covering map with G a d-regular graph, and

let l be a value such that

Nl(H) + Nl−1(H) ≥ 2dl/|VG|.
Then

ρ(AG) ≥
(

Nl(H) + Nl−1(H) − 2dl

|VG|

)1/l

;

furthermore, if l is odd then the above equation holds with ρ replaced by λ2.
Proof. Fix any edge, e = {u, v}, and let f = χu + χv and f̃ = f − 2~1/|VG|. As

before, f̃ is orthogonal to ~1, and we have

(Alf̃ , f̃) = (Alf, f) − 4(Al~1/|VG|,~1/|VG|) ≥ 2Nl(H) + 2Nl−1(H) − 4dl/|VG|
and

(f̃ , f̃) ≤ 2.

We argue as before.
2

Using this theorem we improve Corollary 6.5 by a factor of 2, as follows; see
Appendix A for the proof.

Corollary 7.3. In Corollary 6.5, we may take C = 1/
√

2e.
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8. Eigenfunction Pushing Techniques. Let us now apply (2.2) to functions

of the form f̃ = f − c~1 (where c is chosen such that f̃ is orthogonal to ~1) where f is a
function supported on a subset U of vertices of the graph (this means that f is equal
to 0 outside of U). We easily obtain the following.

Proposition 8.1. Let f be supported on a set, U . Let G be d-regular. Then

λ2(G) ≥ (AGf, f)

(f, f)
− d|U |

|VG| .

Proof. Let f̃ = f − c~1 where c = (f,~1)/|VG|; then f̃ is orthogonal to ~1, and so

λ2(G) ≥ (AGf̃ , f̃)

(f̃ , f̃)
. (8.1)

Since

(f,~1)2 = (f, χU )2 ≤ (f, f)(χU , χU ) = (f, f)|U |,

we have

(AGf̃ , f̃) = (AGf, f) − dc2|VG| ≤ (AGf, f) − d(f, f)|U |/|VG|.

Combining this with the fact that (f̃ , f̃) ≤ (f, f) (since f̃ is a projection of f onto
the subspace orthogonal to ~1) and with the inequality (8.1), finishes the proposition.

2

To optimize this inequality we have to find for a given subset of vertices U the

function f which maximizes the ratio (AGf,f)
(f,f) . This maximum is known as a Dirichlet

eigenvalue. We define for a graph G and a subset of vertices W ⊂ VG,

λ1,Dir(W ) = max
f∈C0(W )

(Af, f)

(f, f)
,

where we write C0(W ) for those functions supported in W . It is easy to check that the
maximum is attained for a non-negative function (this is a simple consequence of the
Perron-Froebenius theorem, see also [Fri93]). The f achieving the above maximum is
called the first Dirichlet eigenfunction of A; this f is known to satisfy Af = λf for
λ = λ1,Dir(W ) (see [Fri93]).

Then it makes sense to find the subset W of a given size which maximizes this
eigenvalue, this leads us to define for a > 0, FKG(a), the Faber-Krahn maximum of
size a as

FKG(a) = max
|W |≤a

λ1,Dir(W );

the W achieving this maximum is the Faber-Krahn maximizer of size a.
The nice thing about this quantity is that it has a lower bound in terms of the

Faber-Krahn maximum for the same size of a cover graph, that is
Theorem 8.2. Let H be a cover of G. Then

FKH(a) ≤ FKG(a).
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To prove this fact we need a lemma and a definition. For a covering map π : H →
G and f : VH → R, we define the push forward, π∗f , a function on VG, whenever H
is finite, via

(π∗f)(v) =
∑

π(w)=v

f(w).

Lemma 8.3. Let f ∈ C(VH ) and let π : H → G be a covering map. Assume H
is finite. If f ≥ 0 everywhere, then also π∗f ≥ 0. If AHf ≥ λf everywhere, for some
real λ, then also AGπ∗f ≥ λπ∗f . If f is supported in W , then π∗f is supported in
π(W ).

Proof. The first part (the non-negativity statement) is clear. The second part
follows from the fact that π is a local isomorphism. The third part is also clear.

2

We are ready now to prove Theorem 8.2.
Proof. of Theorem 8.2 Let FKH(a) = λ = λ1,Dir(W ) be the minimizing eigen-

value with |W | = a, and let f be the corresponding eigenfunction. Then π∗f satisfies
AG(π∗f) ≥ λπ∗f and π∗f is non-negative and supported on π(W ), so

λ1,Dir

(
π(W )

)
≥ (AGπ∗f, π∗f)

(π∗f, π∗f)
≥ (λπ∗f, π∗f)

(π∗f, π∗f)
≥ λ.

Furthermore π(W ) is a set of size at most a. Hence

FKG(a) ≥ λ = FKH(a).

2

Putting Proposition 8.1 and Theorem 8.2 together we obtain
Theorem 8.4. Let G be a d-regular graph, and H be a cover of G. Then

λ2(AG) ≥ FKH(a) − da

|VG|
.

For an application to coding theory we observe:
Proposition 8.5. Let H be the n-dimensional hypercube. Then for α ∈ (0, 1)

fixed we have FKH(2αn) ≥ 2
√

γ(1 − γ)n + o(n), where α = H2(γ).
Proof. We take a ball of size roughly 2αn. For the details see appendix C.

2

Notice that we could also give a simple bound of FKH(2αn) ≥ αn by taking the
characteristic function of a subcube of dimension αn.

A corollary is the first MRRW bound.
Corollary 8.6. For any δ ∈ (0, 1) we have

Rmax(δ) ≤ h
(
1/2−

√
δ(1 − δ)

)
.

Proof. Fix an α ∈ (0, 1) and a code C of information rate ≥ α and a corre-
sponding covering map π : H → G We apply Theorem 8.4 with a = 2αn/ logn. We
conclude

λ2(AG) ≥ 2
√

γ(1 − γ) + on(1)

10



where α = h(γ). Hence

δ ≤ 1/2−
√

γ(1 − γ),

and so

γ ≤ 1/2−
√

δ(1 − δ)

and the corollary follows.

2

Remark 8.7. Notice that a (sub)cube of dimension αn has largest adjacency
eigenvalue αn. This implies that FKH(2αn) ≥ αn. This gives the weak corollary
that αmax(δ) ≤ (1− δ)/2, which agrees asymptotically with the Plotkin and Griesmer
bounds of coding theory (see [vL99]).

Remark 8.8. The approach which was used in this section borrows some ideas
from [Nil91, Fri93]. Assume that G has a cover graph H . If fH is a non-negative
“approximate eigenfunction” on H , we can try to form “versions” of it, fG, on a
quotient, G, with similar properties. In this section we have formed our version on G
by “summing over fibres” (this was the push forward function defined above); this is
a similar technique to that used by Nilli (see [Nil91]), later refined by Friedman and
Kahale (see [Fri93])4. Our improvement on this technique was obtained by “projecting
out the constants,” meaning that we project out the ~1 component from fG rather than
setting up fG (or fH) with a matching non-positive component to make it orthogonal
to ~1 (as done by Nilli, Friedman, and Kahale). We explain how this improves the
classical Alon-Boppana bound in the next section.

9. Classical Alon-Boppana. In this section we comment on how to improve
the classical Alon-Boppana theorem by a constant factor in the second order term.
The bounds as derived in [Nil91],[Fri93], and [Kah93] all come up with a function, f ,
orthogonal to the constant function, whereupon we estimate R(f) and use λ2 ≥ R(f).
In all cases, and in this paper, the following construction is involved: for a vertex, u,
and distance r, we consider a function g = gu,r that (1) vanishes on vertices of distance
greater than r to u, and (2) is constructed either as a radial function (a function of
the distance) with respect to u, or is the push foward of a radial function of a lift
of u on the universal cover, the infinite, d-regular tree (see elso the comments at the
end of Section 8); therefore g is non-negative. (In a sense, the “optimal” g to take is
the Dirichlet eigenfunction on the tree, as in [Fri93].) There are two approaches to
constructing f from these g’s.

The first approach is to take two vertices, u, v, of large distance apart, to take r
with gu,r, gv,r of disjoint support, and to form f as a difference of appropriate positive
multiples of gu,r and gv,r. Here r is roughly (1/2) logd−1 n. This approach is taken in
[Nil91] and [Fri93].

The second approach is to take one vertex, u, and to form f by taking gu,r′ and
project out the constants. In this case r′ can be taken to be as large as logd−1

(
n/ω(n)

)
,

where ω(n) is any function with ω(n)/ log2 n → 0 as n → ∞. So r′ is roughly twice as

4Actually, the previous technique (of Nilli, Friedman, and Kahale) takes radial functions on G
given by the radial function on H that gives the first Dirichlet eigenfunction of a ball in H of a given
radius. The technique used here “pushed down” the eigenfunction on H to G by summing over the
fibres, i.e. for each vertex, v ∈ VG we sum the eigenfunction over π−1(v). This may be better suited
in certain situations, e.g. when the graphs are not regular.
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large as r, which gives an improvement by a factor of four in the second order term.
For example, in [Fri93] we have a bound of

λ2 ≥ 2
√

d − 1
(
1 − c log−2

d−1 n + O(log log n log−3 n)
)
, (9.1)

where c = 2π2. The projecting technique improves this to c = π2/2. This projecting
technique was used by Kahale in [Kah93]; he did not estimate c explicitly, although
his choice of parameters in the proof gives c = 2π2 (as in [Fri93]); however it is easy to
modify Kahale’s choice of parameters (i.e., choose l to be the floor of logd−1(n/ log3 n)
in his proof of Corollary 1 in Section 3) to obtain c = π2/2.

We now state the improved classical Alon-Boppana bound in a theorem.
Theorem 9.1. Let d be fixed. For any d-regular graph on n vertices we have

equation (9.1) holds with c = π2/2.
Proof. We give two proofs, omitting some minor calculations. The first is to

modify Kahale’s proof as described above. The second proof is to apply Theorem 8.4
with H the d-regular tree and a being the floor of n/ log3 n. We remark that FKH(a)
is at least that of the first Dirichlet eigenvalue of a ball in H of size at most a.
Proposition 3.2 of [Fri93] computes this eigenvalue exactly. This changes the value of
k in Proposition 3.7 of [Fri93] (which is the radius of the ball to which Proposition 3.2
of [Fri93] is applied) from (1/2) logd−1 n to essentially double that, i.e., the floor of

logd−1(n/ log3 n). Thus the second order term of 2
√

d − 1π2/(2k2) essentially gets
multiplied by 1/4 (up to higher order terms). The only additional term here is the
da/|VG| term in Theorem 8.4; this term is O(log−3 n) by our choice of a.

2

10. A Stronger Alon-Boppana Bound.

10.1. A Simple Improvement. In this subsection we give an example of a
more general generalized Alon-Boppana bound. Namely, the following theorem and
corollary strengthen Proposition 8.1.

Theorem 10.1. Let G be a d-regular graph and let p be any real-valued function
defined on the eigenvalues of AG. Then

(f, f) max
i≥2

p(λi) ≥
(
p(AG)f, f

)
− p(d)(f,~1)2/|VG|,

The theorem follows immediately from the spectral decomposition on AG as applied
to f .

Corollary 10.2. If in addition to the hypothesis in the above theorem we have
f is supported in U , then

(f, f) max
i≥2

p(λi) ≥
(
p(AG)f, f

)
− p(d)(f, f)|U |/|VG|.

The special case p(x) = x was the bound used in the previous section. When G
has a cover which is distance regular, then there is a very natural choice of polynomials
in the corollary which enables to have some control on the term

(
p(AG)f, f

)
when

f = χv for any vertex v of G. Indeed, let H be a distance regular cover of G. Let
D denote the diameter of H . Then there are D + 1 polynomials P0, P1, P2, . . . , PD

(see [BCN89]) such that Pi(AH ) is the adjacency matrix of the graph with the same
vertices as H and two vertices are joined by an edge iff they are at distance i in H .
In such a setting for any Q =

∑D
i=0 βiPi where the βi’s are nonnegative we have

12



that
(
Q(AG)χv , χv

)
≥

(
Q(AH)χv , χv

)
. Notice now that

(
Q(AH)χv, χv

)
= β0 and

therefore
(
Q(AG)χv, χv

)
≥ β0. (10.1)

The coset graphs associated to a binary linear code of length n that we consider
in this article have a common cover which is distance regular namely the boolean
cube B

n. An application of the aforementioned remark leads to the Delsarte linear
programming bound in coding theory as explained in the following subsection.

10.2. Connections with the Delsarte Approach. Let us first quickly re-
view the linear programming approach for obtaining upper bounds on the minimum
distance of a code (see [MS77, vL99] for more details). For a code C ∈ (F2)

n, we
consider the distance distribution of the code, i.e. the Bi’s for i = 0, . . . , n, where Bi

denotes the average number of codewords of distance i to a fixed codeword, that is

Bi
def
= 1

|C| |{(x, y); x ∈ C, y ∈ C, d(x, y) = i}|. The linear programming bound is based

on the inequality

n∑

i=0

BiKk(i) ≥ 0

for k ∈ {0, 1, . . . , n}, where Kk is a Krawtchouk polynomial of degree k :

Kk(x)
def
=

k∑

j=0

(−1)j

(
x

j

)(
n − x

k − j

)
,

with
(
x
j

)def
= x(x−1)...(x−j+1)

j! . This yields linear inequalities which should be satisfied by

the Bi’s. By maximizing the sum of the Bi’s (which is equal to the size of the code)
which satisfy these inequalities we obtain a linear programming problem for which
an upper bound can be found by duality. This duality result can be written as (see
[vL99] Theorem 5.3.5)

Theorem 10.3. Let β(x) = 1 +
∑n

k=1 βkKk(x) be any polynomial with βk ≥ 0
(1 ≤ k ≤ n) such that β(j) ≤ 0 for j = d, d + 1, . . . , n then any code of minimum
distance ≥ d and length n has cardinality at most β(0).

Finding interesting choices for β turns out to be a nontrivial task, however the first
MRRW bound can be obtained by a direct application of this theorem by choosing β
appropriately (see [vL99]).

We now claim that this theorem is a simple consequence of Corollary 10.2, pro-

vided we restrict to linear codes. Indeed, if we let Pk
def
=Kk((n − x)/2), then Pk(ABn)

is nothing but the adjacency matrix of the graph with vertices belonging to F2
n and

two vertices being adjacent iff they are at Hamming distance k. This follows immedi-
ately from classical results about the Hamming association scheme (see for instance
Chapter 21 in [MS77]). Therefore by using the remark which follows Corollary 10.2
for any polynomial Q(x) = 1 +

∑n
k=1 βkPk(x) = 1 +

∑n
k=1 βkKk((n − x)/2) with

βk ≥ 0 we have that for any vertex of the coset graph G of a binary linear code of
length n :

(
Q(AG)χv , χv

)
≥ 1. (10.2)

Notice now that by Theorem 5.1 Pk(λi) = Kk(j) for some integer j ∈ [dmin(C), n]
for any eigenvalue of the adjacency matrix of G different from n. Therefore Q(λi) =
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1 +
∑n

k=1 βkKk(j). This implies that

(χv , χv) max{Q(λi)|2 ≤ i ≤ |VG|} ≤ 0 (10.3)

if Q has been chosen such that 1+
∑n

k=1 βkKk(j) ≤ 0 for any integer j ∈ [dmin(C), n]
(since this implies that Q(λi) ≤ 0 for i ∈ {2, . . . , |VG|}). We eventually obtain by using
Corollary 10.2 with f = χv and by putting inequalities (10.3) and (10.2) together that

0 ≥ 1 − 1 +
∑n

k=1 βkPk(0)

|C|

since Q(n) = 1 +
∑n

k=1 βkPk(0) by Theorem 5.1 and |VG| = |C|. This proves Theo-
rem 10.3.

11. General Graph Theory. In this section we review some basic terminology
and notions needed to generalize covering theory to graphs with multiple edges and/or
self-loops.

11.1. Directed Graphs. By a directed graph we mean a pair of sets, G =
(VG, EG), with an identification of EG as a multi-set of VG × VG. In other words, G
comes with an incidence map iG : EG → VG × VG. We write i, E, V for iG, EG, VG

if no confusion can result. If i(e) = (u, v) we say that e is of type (u, v) or that e
orginates in u and terminates in v or that e’s tail is u and e’s head is v; in any case
we will write e ∼ (u, v); if no multiple edges occur, i.e. if i is injective, then we may
unambiguously write e = (u, v).

A walk is an alternating sequence of vertices and edges such that when . . . , v, e, . . .
occurs in the sequence, e’s tail is v, and similarly with the order of v, e reversed (with
“head” replacing “tail”). The adjacency matrix, AG, of a graph, G, is the square
matrix indexed on VG whose u, v-th entry counts how many edges have type u, v. For
a positive integer, k, the u, v-th entry of (AG)k counts how many directed walks there
are from u to v of length k. All this makes sense if VG or EG is infinite, although the
entries of AG or (AG)k may not be finite.

A morphism π : H → G of directed graphs is a collection of maps πV : VH → VG

and πE : EH → EG that commutes with the incidence relations (i.e., iG ◦ πE =
(πV ×πV ) ◦ iH). We often drop the subscripts from πV , πE if no confusion can result.

For a morphism of directed graphs, π : H → G, it is possible to give a number
of equivalent definitions for π to be a covering map; all definitions amout to π being
a local isomorphism in some sense. One definition is that for every vertex, v ∈ VG,
w ∈ π−1(v), and every edge e ∈ EG with tail v, there is exactly one f ∈ π−1(e) whose
tail is w, and similarly with “head” replacing “tail.” Another possibility is to define
the geometric realization of a graph (as in [Fri93]); then a covering map is a covering
map in the topological sense.

11.2. Graphs. By an undirected graph or simply a graph we mean a directed
graph, G, with an involution5 ι on EG that reverses heads and tails; in other words,
G’s edges are paired, e ∼ (u, v) with an edge ι(e) ∼ (v, u), where e may be paired
with itself6 if u = v.

5For ι to be an involution means that ι ◦ ι is the identity.
6This gives rise to “half-loops,” which are edges paired with themselves, and “whole-loops” in

the languauge of [Fri93]. For example, a whole-loop contributes 2 to an entry on the diagonal of the
adjacency matrix, whereas a half-loop contributes 1.
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A morphism of graphs is one of the underlying directed graphs that commutes
with the ι’s. A covering maps, adjacency matrices, and walks in graphs are just the
same of the underlying directed graphs.

It is now simple to see that all the theorems of this paper could as well have been
stated for graphs that may have self-loops or multiple edges.

12. Concluding Remarks. One of the most exciting questions to us is to find
the Faber-Krahn maximizer and maximum of the hypercube. One can find examples7

of very small or large balls that are not the Faber-Krahn minimizers.
Question 12.1. Given γ ∈ (0, 1/2) is

lim
n→∞

FKBn

(
2H2(γ)

)
/n = 2

√
γ(1 − γ),

i.e. are balls asymptotically maximizers for the hypercube? If the answer is no,
then according to the method of Corollary 8.6, we have an improvement to the first
MRRW bound.

Appendix A. Calculations for Coding Theory.

In this section we derive some simple combinatorial bounds needed in our discus-
sion of coding theory bounds.

Throughout this section we write f(n) ≈ g(n) if
(
log f(n)

)
/
(
log g(n)

)
→ 1 as

n → ∞ (for example, n ≈ 2n but n 6≈ n2).
Lemma A.1. If ρ ∈ (0, 1/2] is fixed, and if any integer n > 0 we set r = r(n) =

bρnc, then

|Br| ≈
(

n

r

)
≈ 2nh(ρ),

where |Br| is the size of the ball of radius r in the n-hypercube, and where

h(θ) = −θ log2 θ − (1 − θ) log2(1 − θ).

Proof. This is a very standard application of Stirling’s formula; see, for example,
[vL99].

2

Lemma A.2. Let α ∈ (0, 1) be fixed. For any integer n > 0 set k to be the even
integer equal either to bαnc or to bαnc + 1. Then

Nk(Bn) ≈ 2h(β0)n−nnk(1 − 2β0)
k,

where β0 is the unique solution in (0, 1/2) to the following equation

(1 − 2β0) log(β−1
0 − 1) = 2α. (A.1)

7For example, in the 3-hypercube, the 2-dimensional subcube has eigenvalue 2, which is greater
than that of a ball of the same size, namely

√
3. Similarly for the 3-dimensional ball in the 7-

hypercube. Also the n/2−
√

n radius ball has eigenvalue n−4 (since n/2−
√

n is the first zero of the
second Krawtchouk polynomial), and the (n−4) dimensional subcube is smaller; so by monotonicity
(see [Fri93]) the ball here can also be beaten.
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Proof. Since ABn has eigenvalues n − 2i with multiplicity
(
n
i

)
, we have

Nk(Bn) =
1

2n

n∑

i=0

(
n

i

)
|n − 2i|k.

It follows that setting Bi =
(
n
i

)
(n − 2i)k, we see that

Nk(Bn)

n + 1
≤ max

i=0,...,n/2

Bi

2n
≤ Nk(Bn).

To find the i maximizing Bi, we write

Bi+1

Bi
=

(
n − i

i + 1

)(
n − 2(i + 1)

n − 2i

)k

=

(
n − i

i + 1

)
ek loge

(
1−2/(n−2i)

)
.

Set β = βn = i0/n where i0 is the (an) i ≤ n/2 maximizing Bi. Since Bi0+1 < Bi0

we have
(

1 − β

β
+ O(n−1)

)
e

−2α
1−2β +O(n−1) < 1.

Hence

1 − β

β
< e

2α
1−2β + O(n−1).

Similarly Bi0−1 < Bi0 , and the reverse inequality holds. Taking logarithms we con-
clude that

log(β−1 − 1)(1 − 2β) = 2α,

where β is the lim sup and lim inf of βn. But differentiation shows that

f(β) = log(β−1 − 1)(1 − 2β)

has f ′(β) = −2 log(β−1 − 1) − (1 − 2β)/(β − β2) which is < 0 for β ∈ (0, 1/2). It
follows that there is a unique β0 ∈ (0, 1/2) that satisfies equation (A.1), and this β0

is the limit of βn.
2

Corollary A.3. For α, n, k as above we have

Nk(Bn) ≈ nk

(
α + ω(α)

e

)k/2

,

where ω(α) is a function of α with ω(α) = O(α3/2) as α → 0.
Proof. For β = 1/2− ε with ε small we have

log(β−1 − 1)(1 − 2β) = log

(
1/2 + ε

1/2− ε

)
2ε = 2ε log

(
1 + 4ε + O(ε2)

)
= 8ε2 + O(ε3).

Hence for α small we have

2α = 8ε2 + O(ε3) or
√

α/4 = ε + O(ε2) = ε + O(α).
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Differentiation shows that

h′(x) = log2(x
−1 − 1), h′′(x) =

− log2 e

x − x2
.

So h′(1/2) = 0 and h′′(1/2) = −4 log2 e, and

h(1/2− ε) = 1 − 2(log2 e)ε2 + O(ε3).

It follows that

2−n2nh(β)(n − 2β)k ≈ 2−n(2 log
2

e)ε2+O(nε3)nk(1 − 2ε)k

≈ e−2n(α/4+O(α3/2))nαn
(
2
√

α/4 + O(α)
)αn

≈ e−αn/2eO(α3/2n
(
n
√

α
)αn(

1 +
(√

α
))αn

≈ nk(α/e)k/2
(
1 + O

(√
α
))k/2

,

and the proposition is finished.
2

Proof of Corollary 6.5: Let G be the coset graph of C⊥. Consider the largest odd
integer, k, for which

k+2∑

i=0

(
n

i

)
≥ 2αn. (A.2)

It follows that there are two points in G of distance ≥ k + 3, and hence two edges of
distance ≥ k + 1. By Theorem 6.3, we have

λ2(AG) ≥
(
Nk−1(B

n)
)1/k

.

But by equation (A.2) and Lemma A.1 we have

2nh(k/n)+O(1) ≈ 2αn,

and thus

k/n = h−1(α) + on(1)

(where on(1) denotes a function that tends to zero as n → ∞). Since h−1(α) =
α/ log2(1/α) + O(α) for α small, Corollary A.3 then implies that

λ2/n ≥
√

α

e log2(1/α)
+ ω(α) + on(1),

where ω(α) = O
(√

α
)
. Now we use the fact that the minimum distance is (n−λ2)/2.

2

Proof of Corollary 7.3: Let k be as in the previous proof, except that k is the
largest odd integer such that

Nk+1(B
n) ≥ nk/|VG|.

17



Then taking k-th roots and dividing by n yields that k = nγ + o(n) where

√
γ/e + ω(γ) = 2−α/γ

where ω(γ) = O(γ) for γ small. Hence

γ =
2α

log2(1/α)
+ O(α),

for α small. Now we follow as in the proceeding proof, except that here γ = k/n is,
to first order, twice what it was in the previous proof; this factor of two changes the
C from 1/

√
4e to 1/

√
2e here.

2

Appendix B. A Calculus Proposition.

In this section we prove Proposition 4.1.
Let f be defined at α0, and set δ0 = f(α0). It suffices to show that αmax(δ0) ≤ α0.
For any ε > 0 near 0, fix an η > 0. If

αmax

(
f(α0 + ε) + η

)
> α0 + ε, (B.1)

then there are codes Ci of length ni → ∞ as i → ∞ such that δCi ≥ f(α0 + ε) + η
and

lim
i→∞

αCi > α0 + ε.

By passing to a subsequence we can assume that αCi > α0 +ε for all i. But then δmax

exceeds f (by at least η) at the value α0 + ε, which is impossible. So inequality (B.1)
is impossible, meaning that

αmax

(
f(α0 + ε) + η

)
≤ α0 + ε.

Now let η = η(ε) = δ0 − f(α0 + ε) and let ε → 0. We conclude αmax(δ0) ≤ α0, and
we are done.

Appendix C. The First Eigenvalue of a Ball and Related Calculations.

In this appendix we prove Proposition 8.5.
Since the size of the ball of radius nγ in B

n is ≈ 2nh(γ), we need only show that
the ball of radius nγ has first eigenvalue at least

2n
√

γ(1 − γ) + o(n).

Let 0 denote the origin in (F2)
n, which is a vertex of B

n; the weight, |v|, of a vertex,
v, of B

n is its distance from 0, or the number of nonzero coordinates it has. Consider
those functions, f , on B

n that depend only on the weight of the vertex. For such an
f , let fnrm, the normalization of f , be the function on [0..n] such that

fnrm(i) = f(v)

/ √(
n

i

)
for any v with |v| = i.

Then it is easy (and completely standard) to see that

(AGf)nrm(i) =
√

i(n − i + 1) fnrm(i − 1) +
√

(i + 1)(n − i) fnrm(i + 1),
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for all i (the coefficient of the right-hand-side vanishes for fnrm at the values −1 and
n + 1). So under normalization the operator AG becomes a symmetric tridiagonal

operator Ã whose i− 1, i entry is
√

i(n − i + 1). It follows that if i ∈ [γn−ω(n), γn],
where ω(n) is any function that is o(n), then the i − 1, i entry is

n
√

γ(1 − γ) + o(n).

Hence, by monotonicity (see, e.g., [Fri93]), the first Dirichlet eigenvalue of the ball of
radius nγ is at least that of the path of length ω(n) + 1 times

n
√

γ(1 − γ) + o(n).

But this path’s eigenvalue is well-known to be 2 cos(π/ω(n)), giving us a lower bound
on the ball’s eigenvalue of

2n
√

γ(1 − γ) + o(n),

provided that ω(n) grows faster than
√

n (e.g., we may take ω(n) = n3/4).
2
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