
Quantum erasure-correcting codes and percolation
on regular tilings of the hyperbolic plane

Nicolas Delfosse and Gilles Zémor
Institut de Mathématiques de Bordeaux, Université Bordeaux 1,

351, cours de la Libération, F-33405 Talence Cedex, France
Email: {Nicolas.Delfosse, Gilles.Zemor}@math.u-bordeaux1.fr

Abstract—We are interested in percolation for a family of self-
dual tilings of the hyperbolic plane. We achieve an upper bound
on the critical probability for these tilings by taking appropriate
finite quotients and associating them with a family of quantum
CSS codes. We then relate the probability of percolation to the
probability of a decoding error for these codes on the quantum
erasure channel.

I. INTRODUCTION AND OVERVIEW

Let G be an infinite graph with edge set E and let µp be
the probability measure on {0, 1} defined by µp({1}) = p.
Consider the product space Ω = {0, 1}E endowed with the
product probability measure Pp = µ⊗Ep . Random events
should be seen as subgraphs. Informally, we choose every
edge of G with probability p independently of the other edges,
and obtain a random subgraph. The edges of this subgraph
are called open edges. Percolation theory is interested in the
probability that a given edge e is contained in a infinite
open connected component (an open cluster). This probability
depends a priori on the edge e, but not if the graph G is
edge-transitive, for example if G is the infinite square lattice
(Figure 1). The central parameter in percolation theory is the
critical probability pc, defined as:

pc(G) = inf{p ∈ [0, 1], Pp(|E(e)| =∞) > 0},

where E(e) denotes the open cluster containing edge e.
By a famous result of Kesten [9] that stayed a conjecture for

20 years, we have pc = 1/2 for the square lattice. Computing
the critical probability exactly is usually quite difficult, but one
class of graphs for which percolation is fairly well understood
is trees: in particular it is straightforward to compute the
critical probability of a regular tree of degree ∆, in which
case we have pc = 1/(∆− 1).

Figure 1. The square lattice

Percolation is relevant to classical coding theory because
it can be related to the probability of a decoding error on
the erasure channel. Specifically, the critical probability of
the infinite ∆-regular tree is an upper bound on the highest
tolerable channel erasure probability for the class of cycle
codes of ∆-regular graphs. The cycle code of a finite ∆-
regular graph is the linear code in the ambiant space {0, 1}E
generated by the cycles of the graphs, viewed as binary vectors
of {0, 1}E when E is the edge set. The probability of a
decoding error on the erasure channel with erasure parameter p
is the probability that a random set of edges for the probability
measure µ⊗Ep contains a cycle. If the finite graph has no cycles
of small length, then elementary cycles locally look like long
paths. This point of view was taken up in [6], [15] where it
was shown that if the channel erasure parameter p is above
pc = 1/(∆− 1) then the probability of a decoding error must
be bounded away from zero. In [14] it was shown that for
some families of ∆-regular graphs a vanishing decoding error
probability can be achieved as long as p < pc.

In the present paper we are interested in percolation on
an infinite family of graphs that generalize the square lattice.
For any integer m ≥ 4, we denote by G(m) the planar graph
which is regular of degree m and tiles the plane by elementary
faces of length m. For m = 4 the graph G(4) is exactly the
square lattice. The local structure of the graph G(5) is shown
on Figure 2.

Figure 2. The local structure of the graph G(5)

For m > 4 these graphs make up regular tilings of the
hyperbolic plane. Interest in percolation on hyperbolic tilings
was raised in a number of papers e.g. [1], [3] and determining
their critical probability is highly non-trivial. Note that all
graphs G(m) are self-dual like the square lattice G(m).

Our purpose is to relate the critical probability for these



graphs to the decoding error probability under the quantum
erasure channel for a well-defined family of quantum codes.
Since the critical probability for the graphs G(m) is unknown,
this time our objective is a reverse import from coding theory:
we will use the known channel capacity of the quantum
erasure channel to derive an upper bound on the critical
error probability pc of the graphs G(m). Our strategy is to
use a family of finite graphs that locally look like G(m).
These graphs will define a family of quantum error-correcting
codes that are quantum analogues of cycle codes of graphs
(sometimes called surface codes, or topological codes). As in
the classical case, qubits will be indexed by the edges of the
finite graph. We will see that an uncorrectable quantum erasure
pattern is a set of edges that must contain a special type of
cycle (a non-trivial homological cycle) in the finite graph, and
this event is in turn related to percolation on the infinite graph
G(m). Our main result is the following upper bound on the
critical probability.

Theorem 1. For m ≥ 5, the critical probability of G(m) is
bounded from above as:

pc ≤
2
m
.

II. PERCOLATION ON HYPERBOLIC LATTICES

Regular trees can be seen algebraically as a Cayley graph
over a free group. The graphs G(m) can similarly be con-
structed [12] by appealing to a group slightly more involved
than a free group, namely the triangular group T (m) defined
by the presentation

< y, z | ym = zm = (yz)2 = 1 >,

Such a group exists, we will see an explicit realization in the
next section.

The left cosets of the subgroups 〈y〉, 〈yz〉 and 〈z〉 corre-
spond respectively to vertices, edges and faces of the graph, or
more precisely to the 2-dimensional complex consisting of the
graph together with its m-edged faces. A vertex and an edge
(or an edge and a face) are declared to be incident whenever
the corresponding cosets are non-empty. In the next section
we use this construction to obtain finite quotients of G(m) by
taking appropriate quotients of the triangular group.

Note that the graph G(m) is self-dual. The dual graph
G∗(m) of G(m) has the faces of the original graph for its
vertices and two vertices of the dual are declared adjacent if
the corresponding faces in the original graph have a common
edge. Self-duality is apparent on the group T (m) since it
permutes the roles of the generators y and z.

The natural framework of this graph is hyperbolic geometry.
In the Poincaré disc, we can construct a hyperbolic regular m-
gon centered on 0 of angle 2π/m. Denote by y the hyperbolic
rotation of center 0 and angle 2π/m and by z the hyperbolic
rotation of center a fixed vertex of the polygon and angle
2π/m. When we apply the group of hyperbolic isometries
generated by y and z to the polygon, we obtain the hyperbolic
tesselation G(m). Moreover it can be shown that the group

generated by y and z is exactly the triangular group T (m)
defined above, and it is the automorphism group of the tiling.

We have the following easy bounds on pc:

Proposition 2. The critical probability pc of G(m) satisfies

1
m− 1

≤ pc ≤ 1− 1
m− 1

.

Proof: We adapt the proof of [8] page 14 in the case of
the square lattice.

Let O be a fixed vertex. To show the first inequality we can
say that there are not more than m(m− 1)n−1 paths from O
of length n in G(m) and the probability of such an open path
is pn. So if p < 1

m−1 the average length of an open path from
O is not more than

∑∞
n=1m(m− 1)n−1pn <∞. In this case

p is under the critical probability.
For the upper bound remark that if the ball of radius N is

totally open and if the open edges of the complementary set
of this ball never contains a closed circuit in the dual graph,
then there is an infinite open path. The probability to have all
the edges of a ball open is strickly positive for all N . For the
second condition, we need to study the number of circuits of
length n surrounding O in the complementary of the ball of
radius N . We fix a shortest path from O to the circle centered
on O of radius n. Every circuit of length n surrounding O
contains at least one vertex of the n vertices of the path,
and there are at most m − 1 successors of each bond. So
the probability to have a closed circuit in the complementary
set is not more than

∑
n≥n0

n(m − 1)n(1 − p)n where n0

is the minimal length of this kind of circuit. We can take N
and consequently n0 as large as we want. If p > 1 − 1

m−1
and N is large enough then the sum is strickly less than 1.
The two events in the ball and in its complementary set are
independent so we have an infinite open cluster with positive
probability. This gives the upper bound.

III. QUOTIENT GRAPHS

To study percolation on the hyperbolic tiling G(m), we need
a family of increasingly big finite graphs which are locally
the same as G(m). We will use a family introduced by Širáň
in [12].

Let Pk(X) = 2 cos(k arccos(X/2)) be the k-th normalized
Chebychev polynomial and ξ = 2 cos(π/m2). Let y and z be
the matrices of SL3(Z[ξ]) defined by

y =

 Pm(ξ)2 − 1 0 Pm(ξ)
Pm(ξ) 1 0
−Pm(ξ) 0 −1


z =

 −1 −Pm(ξ) 0
Pm(ξ) Pm(ξ)2 − 1 0
Pm(ξ) Pm(ξ)2 1

 .

These two matrices generate the triangular group T (m) [12],
[11]. To obtain a finite graph we can reduce the entries of the
matrices modulo a prime number p. The coefficients are in
the ring Z[ξ] which is isomorphic to the quotient Z[X]/h(X)
where h is the minimal polynomial of the algebraic integer ξ.



Reducing coefficients modulo p, we obtain a group homomor-
phism from SL3(Z[ξ]) to SL3(Fp[X]/(h(X)). The image of
T (m) will be called T̄ (m).

Let Ḡ(m) be the graph defined like G(m) but with the
group T̄ (m), in other words the vertices, edges and faces
of Ḡ(m) are defined as the left cosets of 〈ȳ〉, 〈ȳz̄〉 and 〈z̄〉
respectively. There is a surjection s from G(m) to Ḡ(m) which
sends u〈y〉 to ū〈ȳ〉.

Following Širáň, let us define the injectivity radius of the
graph Ḡ(m) as the largest integer r such that the restriction
of the surjection s to a ball of radius r is one-to-one. It is
shown in [12] that we can choose p so as to have r arbitrarily
large. Loosely speaking, Širáň’s argument is that if two distinct
vertices u〈y〉 and v〈y〉 in G(m) have the same image under
s then u−1v in T (m) must project to the identity element in
T̄ (m). But this means that the matrix u−1v has polynomial
entries that, properly reduced modulo h(X), can only be
expressed with coefficients at least one of which exceeds p:
this implies that u−1v can only be expressed as a product of a
large number of matrices y and z, which in turn means that the
original vertices u〈y〉 and v〈y〉 have to be far apart in G(m).

The above construction enables us to define a family of
finite graphs (Gr(m))r≥1 such that each graph Gr(m) has
injectivity radius at least r, for every integer r.

Let us now define random subgraphs of Gr(m) through
the product measure µ⊗Er

p , where Er denotes the edge set of
Gr(m). In other words the open subgraph of G(m) is created
by declaring every edge open with independent probability p.

For any fixed edge e, let Er(e) be the (possibly empty)
connected component of the random subgraph of Gr(m) that
contains e and call it again the open cluster containing e. Let
fr(p) be the probability that |Er(e)| > r. We have:

Proposition 3. If p < pc(m) then fr(p) goes to 0 when r
goes to infinity.

Proof: Notice that the probability 1−fr(p) that the open
cluster containing e has cardinality not more than r is the same
for the random subgraph defined on the finite graph Gr(m)
and the random subgraph defined on the infinite graph G(m).
This is because this event depends only on the ball of radius
r centered on an endpoint of e, and these balls in Gr(m) and
G(m) are isomorphic.

We can therefore consider fr(p) to mean the probability of
the event Fr that |E(e)| > r in the infinite graph G(m). Now
(Fr)r≥1 is a decreasing sequence of events, and Pp(∩r≥1Fr)
is exactly the probability of percolation, which is 0 since we
have supposed p < pc. By monotone convergence we therefore
have fr(p) = Pp(Fr)→ 0.

IV. HYPERBOLIC QUANTUM CODES AND THE QUANTUM
ERROR CHANNEL

A. CSS codes

The quantum codes we will consider are CSS codes [4],
[13]. A CSS code of length n is determined by two binary
parity-check matrices HX and HZ of two classical codes of
length n, CX and CZ respectively, with the property that

every row of HX is orthogonal to every row of HZ , in
other words the row-spaces C⊥X and C⊥Z of HX and HZ are
orthogonal subspaces of Fn2 . The parameters of the associated
quantum code are [[n, k, d]], where n is the blocklength, k is
its dimension and is given by n−dimC⊥X −dimC⊥Z , and the
minimum distance d is given by the minimum weight of the
non-zero vectors that are either in CX but not in C⊥Z or in CZ
but not in C⊥X .

B. The quantum codes Qr(m) associated to the graphs
Gr(m)

Every finite graph Gr(m) gives rise to a CSS quantum code
Qr(m) whose coordinate set is the edge set E of the graph.
We will have therefore a quantum code of length n = |E|.
The matrices HX and HZ are defined as follows: the rows
of HX are in one-to-one correspondence with the vertices of
the graph. Every vertex x yields a row of HX whose support
is exactly the set of edges incident to x. Every row of HX

therefore has weight m. The rows of the other matrix HZ is in
one-to-one correspondence with the set of faces of the graph.
Every face yields a row whose support is equal to the set of
edges making up the face. Since faces are m-gons, every row
of HZ also has weight m. It should be clear that rows of HX

and HZ meet in either 0 or 2 edges, so any row of HX is
orthogonal to any row of HZ and we have a quantum CSS
code.

Note that the classical binary linear code CX is exactly the
cycle code of the graph Gr(m). Note also that the code CZ
can be seen as the cycle code of the dual graph G∗r(m) of
Gr(m).

If v is the number of vertices Gr(m), then the dimension
of the cycle code CX is n − v + 1 = n − 2n/m + 1. The
graph Gr(m) is easily seen to have the same number of faces
as the number of vertices so that we have dimCX = dimCZ .
Therefore:

Proposition 4. The dimension k of the quantum code Qr(m)
equals:

k =
(

1− 4
m

)
n+ 2.

We remark that for m = 4, the graph Gr(4) is a combinato-
rial torus and the quantum code Qr(4) is a version of Kitaev’s
toric code [10]. For m ≥ 5 the quantum codes Qr(m) have
positive rate bounded away from zero and minimum distance
at least 2r (see the remark after the proof of Proposition 7
below) which is a quantity which behaves as log n. See [16]
for a discussion of similar families of quantum codes (surface
codes).

C. Quantum erasures

The quantum erasure channel can be defined in several
equivalent ways. Loosely speaking, an erasure on coordinate
i corresponds to the “loss” of this coordinate. On the erasure
channel with transition parameter p, coordinates are declared
“erased” independently and with probability p. In the CSS
setting, the only feature we need to keep in mind [7] can



be formulated as follows, identifying codewords with their
supports: An erasure pattern is decodable if and only if it
is a set of coordinate positions that contains no codeword of
CZ not in C⊥X and no codeword of CX not in C⊥Z .

The capacity of the quantum erasure channel of erasure
parameter p is known to equal 1 − 2p, see for example [2].
For our purposes, it can be shown that this translates into the
following:

Proposition 5. There does not exist a family of quantum CSS
codes with rate R > 1−2p such that, for the quantum erasure
channel with parameter p, the erasure vector is decodable with
vanishing probability when the blocklength n goes to infinity.

V. UPPER BOUND ON THE CRITICAL PROBABILITY AND
PROOF OF THEOREM 1

Consider an arbitrary member of the family of quantum
codes Qr(m) associated to the graphs Gr(m). The erasure
vector can be identified with a random set of edges of Gr(m)
and we will denote it by E . According to the definition of
Gr(m) and the characterization of decodable erasure vectors
given just above, the random erasure pattern E is decodable if
and only if it either contains a cycle of Gr(m) which is not a
sum of faces, or E , viewed as a set of edges of the dual graph
G∗r(m) of Gr(m), contains a cycle of G∗r(m) that is not a
sum of faces of G∗r(m). Because the original graph G(m) is
self-dual, all arguments involving Gr(m) will be seen to hold
for its dual graph G∗r(m) and we will focus on the probability
that the random erasure pattern E contains a cycle that is not
a sum of faces in the original graph Gr(m).

We would like to derive the upper bound on pc in Theorem 1
by claiming the following: if p < pc, then for the family of
graphs Gr(m), the probability that the random set of edges
E contains a cycle which is not a sum of faces vanishes. If
this is true, then the rate R of the quantum code Qr(m) must
satisfy R < 1− 2p for every p < pc so that R ≤ 1− 2pc and
Proposition 4 gives the result since R = 1− 4/m.

Unfortunately, we do not know whether for every p < pc,
the erasure pattern E contains no cycle that is not a sum of
faces with high probability. What we will prove however, is
that if E contains a cycle that is not a sum of faces, then
with high probability one of the representatives of this cycle
modulo the space of faces must have very small weight. To
violate the capacity of the erasure channel we will therefore
use, not Qr(m) directly, but an “improved” version Q′r(m) of
Qr(m) that we now introduce.

Proposition 6. Let Qr(m) be a hyperbolic code, n its length
and R its rate. Suppose ρ ∈]0, 1

2 [ and α ∈]0, 1[ are such that

h(ρ) < α <
R

2
,

where h(ρ) = −ρ log2 ρ−(1−ρ) log2(1−ρ) denotes the binary
entropy function. Then we can add αn rows to the parity-check
matrix HX and αn rows to the parity-check matrix HZ of
Qr(m) to obtain a CSS code Q′r(m) of length n, rate R−2α
and distance d ≥ ρn.

Proof: Denote by rX and rZ the dimension of the code
C⊥X and C⊥Z respectively. We have rX = rZ = 2

mn− 1.
We will construct a matrix H′X by adding αn rows to the

matrix HX such that the rows of H′X are orthogonal to the
rows of HZ and the rank of H′X is rX + αn. Let C ′X be the
code of parity-check matrix H′X .

For ρ ∈]0, 1/2[, we define Xρ by

Xρ(H′X) = |{v ∈ C ′X\C⊥Z |w(v) ≤ ρn}|.

We can write Xρ as a sum a random variables to see that

E(Xρ) =
∑

v∈CX\C⊥Z
v∈B(0,ρn)

|{H′X |v ∈ C ′X}|
|{H′X}|

.

Let L1, L2, . . . LrX
be rX rows of HX . The number of suit-

able matrices H′X is the number of families L′1, L
′
2, . . . L

′
αn

of vectors of Fn2 such that L′j ∈ CZ for all j and
(L1, L2, . . . LrX

, L′1, L
′
2 . . . , L

′
αn) are linearly independant.

We can construct a suitable matrix H′X if and only if rX +
αn ≤ dim(CZ) this gives the condition α < (1− 4

m )− 2
n . In

this case the number of matrices is
rX+αn−1∏
i=rX

(2n−rZ − 2i).

To evaluate the cardinality |{H′X |v ∈ C ′X}| with v in
CX\C⊥Z , it suffices to add the condition L′j ∈ {v}⊥ for all j.
We get

rX+αn−1∏
i=rX

(2n−rZ−1 − 2i).

So we have

|{H′X |v ∈ C ′X}|
|{H′X}|

=
2n−rX−rZ−αn − 1

2n−rX−rZ − 1
≤ 2−αn.

This bound doesn’t depend of v so we can give an upper bound
on the expectation of Xρ because we know that the number
of words in the ball of radius ρn is less than 2nh(ρ). We find

E(Xρ) ≤ 2n(h(ρ)−α).

If α > h(ρ) the mean goes to 0. Since Xρ has integer values
there exists H′X such that Xρ(HX) = 0. We obtain a CSS
code of matrix H′X with r′X = rX + αn and HZ unchanged
such that the minimum weight of a word of C ′X\C⊥Z is at least
ρn.

We want to repeat this argument to have the minimum
weight of a word of C ′Z\C ′⊥X higher than ρn. It suffices to
choose α < 1

2 (1 − 4
m ) + 1

n because in this case rZ + αn <
dim(CX).

Let E be an erasure. We can write

E = EC + EP (1)

where EC is the sum of the connected components which do
not cover a cycle which is not a sum of faces. The problematic
part EP of E is the union of the others components.



In the graph Gr(m), define gr(p) to be the probability that
that the open cluster Er(e) covers a cycle which is not a sum
of faces. We have:

Lemma 7. If p < pc(m) then gr(p) goes to 0 when r goes to
infinity.

Proof: Recall that fr(p) denotes the probability that
|Er(e)| > r. We prove that gr(p) ≤ fr(p) and apply
Proposition 3. If |Er(e)| ≤ r then the open cluster Er(e) is
included in a ball of radius r of the graph Gr(m). Since this
ball is isomorphic to the ball of the same radius in the planar
graph G(m), it is planar. In any planar graph every cycle is
a sum of faces so Er(e) covers a cycle which is not a sum of
faces only if |Er(e)| > r, hence gr(p) ≤ fr(p).
Remark: By the same planarity argument as above, every
cycle of length less than 2r in the graph Gr(m) is a sum
of faces. This proves that the distance of the quantum code
Qr(m) is at least 2r.

Proposition 8. If we consider the erasure channel of proba-
bility p < pc then ∀ε > 0,∃r0 ∈ N such that if r ≥ r0 then
the expectation of the weight of EP defined as in (1) satisfies

E(|EP |) ≤ εn.

Proof: For any edge e of Gr(m), let Xr,e be the random
variable which take the value 1 if the connected component
Er(e) of e in Gr(m) covers a cycle which is not a sum of
faces and the value 0 otherwise. Then we have:

|EP | =
∑
e

Xr,e.

To conclude note that E(Xr,e) = gr(p) and apply Lemma 7.

The next Lemma states that if the erasure vector E has a
large “problematic” part EP then it must be correctable by the
“improved” codes given by Proposition 6.

Lemma 9. Let Q′r(m) be one of the quantum codes given
by Proposition 6 and let d be its minimum distance. Suppose
the part EP of the erasure vector E defined in (1) satisfies
|EP | < d. Then E is correctable by Q′(m).

Proof: Denote by CX and CZ the binary linear codes
associated with the quantum code Qr(m) and by C ′X , C

′
Z

their binary sub-codes associated to the quantum code Q′r(m)
introduced in Proposition 6 and defined by augmenting the
parity-check matrices HX and HZ of Qr(m).

If the erasure vector E covers an element x of C ′X\C ′⊥Z
then x must belong to CX\C⊥Z i.e. x is a cycle of Gr(m)
which is not a sum of faces. The restriction of this cycle to
EC defined in (1) is another cycle y and the definition of EC
implies that y is a sum of faces. We obtain that x + y is
included in EP with y ∈ C⊥Z ⊂ C ′⊥Z , i.e. x + y ∈ C ′X\C ′⊥Z
but this is a contradiction whenever the part EP of the erasure
E has weight strictly less than the minimum distance d of the
improved code Q′(m).

We now conclude the proof of our main result, Theorem 1.

Let R = 1 − 4
m and fix p < pc. For any α such that

0 < α < R/2, Proposition 6 gives us a quantum code Q′(m)
with minimum distance d ≥ ρn where ρ = h−1(α/2) and rate
R − 2α. For such a code the probability of a decoding error
satisfies:

Perr ≤ P (|EP | ≥ ρn).

For any ε > 0 we can take r large enough so that
Proposition 8 applies, and together with Markov’s inequality
we have

Perr ≤ P (|EP | ≥
ρ

ε
εn) ≤ ε

ρ
.

For every ε > 0 we take ρ =
√
ε. Then ρ(ε) and ε

ρ(ε)
simultaneously go to zero when ε goes to zero. Defining α
by α = 2h(ρ) and choosing a decreasing sequence of ε’s that
tends to zero, we obtain a family of quantum codes Q′r(m)
with decoding error probability tending to zero and rate R−2α
tending to R.

By Proposition 5 we can conclude that the quantity R−2α
is under the capacity of the quantum erasure channel. So we
have 1− 4

m − 2α ≤ 1− 2p if p < pc. Since α can be taken to
tend to 0, we find 1− 4

m ≤ 1− 2p for all p such that p < pc.
Hence 1− 4

m ≤ 1− 2pc.
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