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Abstract—Several proposed chaos based ciphers ex-
ploit the ergodic property of chaotic orbits. As chaotic
systems are unstable and have sensitive dependence on ini-
tial conditions, the main difficulty for the receiver is to re-
produce the chaotic signal that has been generated by the
sender in order to correctly decrypt the message. This is
performed by a self synchronizing device. In discrete cryp-
tography, the closest scheme is the so called self synchro-
nizing stream cipher (SSSC). After recalling general se-
curity models for assessing cryptographic algorithms, we
present SSSC scheme and two examples of cryptanalysis.
In order to resist to theses attacks, the ciphering function
must satisfy high non-linearity properties which are pre-
sented.

1. Introduction

The goal of cryptography is to insure confidentiality and
authenticity of information. This is performed by a public
ciphering function that involves a secret key in a certain
mode of operation. The union of the ciphering function and
the mode of operation constitutes the cryptographic system.

The three actors of a cryptographic system are the
sender, the receiver and the adversary. In a symmetric
ciphering system, the plain text is encrypted into a cryp-
togram using a secret key shared by the sender and the
receiver. The goal of the adversary is to get information
about the plain text. This can be done by recovering the
secret key, but there may exist other ways, in particular to
retrieve partial information.

A cryptographic system is called unconditionally secure
if the adversary has no better strategy than choosing the
plain text at random. In the practical world, the security
level is assessed taking into account the protection which
is supposed to be insured, the data and computation power
at the disposal of the adversary. Knowledge of only the
cryptogram is not sufficient to decrypt.

In the so called chosen plain text attack, the adversary
is supposed to know the cryptograms that correspond to
messages of his choice.

A cryptographic system is called semantically secure if
the adversary cannot distinguish the cryptogram from a
pure random sequence with reasonable amount of time and
computation power.

Finally, it is admitted by the cryptographic community
that a ciphering function is secure if the adversary has no

better strategy than trying all the possible secret keys in a
chosen plain text attack.

Cryptographic algorithms design is still based on con-
fusion and diffusion principles stated by Shannon in 1949
(see [14]).

Diffusion means that a bit change in the key is propa-
gated in the whole ciphertext. It is generally performed by
linear transformations.

Confusion means that the relationship between the key,
the plaintext and the ciphertext is complex and involved. It
is performed by nonlinear transformations, implemented as
Boolean functions.

These principles are very close to randomness and the
sensitivity to initial conditions that characterize chaos. This
makes natural the idea of using of complex dynamic sys-
tems for cryptographic applications.

2. Self-Synchronizing Stream Cipher

In a chaos based cryptographic system, the information
is hidden by addition of a chaotic signal. This presents
strong similarities with conventional stream ciphers. The
same chaotic signal has to be reproduced by the receiver de-
spite high sensitivity to initial condition. This is performed
by re-synchronizing the chaotic generator by the received
signal itself. This is very similar to what is done in self-
synchronizing stream cipher presented in this section.

In a conventional binary stream cipher, each plain text
symbol mt is combined with a key stream symbol kt by a
group operation to define the cipher text symbol ct:

∀t ∈ N ct = mt ⊕ kt (1)

For deciphering, the inverse operation is performed with
the same key stream symbol. Most of the times, symbols
are binary. The group operation is the exclusive or, and the
inverse operation is the same.

The various stream ciphers are classified depending on
how the key stream is generated.

This principle is very old. It was proposed by Vigenère
(1586) for the Latin alphabet with a cyclic key stream. As
it was first cryptanalyzed by Babbage in 1854, this is for
the moment the longest resistant cryptographic system.

In the Vernam stream cipher (1919), the key stream is a
pure random sequence. This is the only known system for
which the unconditional security is proved. The sender and
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Figure 1: Self Synchronizing Stream Cipher model

the receiver have to share an amount of data as large as the
message to encrypt.

The synchronous stream cipher simulates the Vernam
system with a pseudo-random key stream generated by
both the sender and the receiver, from a shorter seed that
constitutes the secret key K. The key stream symbol kt

only depends on the time t and on the secret key K. In or-
der to insure basic security feature, the key stream must be
statistically indistinguishable from a true random sequence
and must be unpredictable.

In a Self-Synchronous Stream Cipher (SSSC), the key
stream only depends on the key and on a bounded number
of the last cipher text symbols. It may be represented by
a keyed Boolean function f : Fn

2 × Fk
2 → F2, called the

ciphering function, of n bits of the cipher text (ct)i∈N and of
the key K as shown on figure 1.

∀t ∈ N kt = f (ct−1, . . . , ct−n,K) (2)

If the n last cipher text symbols are properly received,
then the key stream symbol is correctly generated. This
allows the receiver to lose data and to automatically resyn-
chronize the key stream after correctly receiving n symbols.

The scheme presented in figure 1 is a model. The cipher-
ing function f is needed to be complex and is generally
implemented as a composition of several rounds of simpler
functions that each involves a sub-key build from the secret
key K.

This SSSC is the closest conventional scheme from those
proposed with a chaotic key stream generation (see for
example [7]). The conventional SSSC cryptanalysis may
constitute a starting point to evaluate the security of chaos
based schemes.

3. Attacks Against SSSC

The core of an SSSC is the keyed ciphering function f . It
can be proved that the SSSC is secure as long as this keyed
function behaves like a random Boolean function while the
key is a random variable. This implies that the key is deeply
involved in the definition of f .

A known plain text corresponds to the knowledge of
couples (x, f (x,K)), where x is a n-dimensional vector ex-
tracted from a length n window in the cipher text. Indeed,

let xt = (ct−1, . . . , ct−n), the value yt = f (xt,K) is deduced
from relations (1) and (2) by yt = mt ⊕ ct.

The value of n must be large enough that any practicable
known plain text leads to the knowledge of a negligible part
of the truth table of f .

The attacks presented below exploit general weakness
of the ciphering function. For attacks that make use of the
particular architecture of the ciphering function, see for ex-
ample [2], [3] and [4].

3.1. Ciphering function reconstruction

This attack does not recover the key K, but gives infor-
mation on the plain text. The adversary knows a certain
number of couple (x, f (x,K)). If the ciphering function
ϕ : x 7→ f (x,K) has a low algebraic degree, then it can
be entirely recovered which allows complete decryption.

This attack is modelled as a decoding problem on a vir-
tual erasure channel.

Let us recall that any n-variable Boolean function is
uniquely represented as a n-variable polynomial where, as
x2

i = xi for Boolean values, the degree of each variable is at
most 1. The algebraic degree of the Boolean function is the
degree of this multivariate polynomial. The Reed-Muller
code RM(n, r) is the linear code of length 2n and dimen-
sion 1 +

(
n
2

)
+ · · · +

(
n
r

)
constituted of n-variable Boolean

functions of algebraic degree less than or equal to r.
The virtual channel consists in sending the truth table

of the ciphering function, namely an element of RM(n, r).
But the adversary only receives values that correspond to
the known plain text. The others values are erasures in this
virtual transmission.

If the adversary can decode, i.e. if he can retrieve on
demand the missing values of the function ϕ, then he can
decrypt any text ciphered with the key K.

If the ciphering function ϕ is of algebraic degree higher
than r, then the previous attack is still possible but it will
only build an approximation of ϕ that will lead to an esti-
mation of the plain text.

A bound on the remaining errors while decrypting by
such a way is given by the so called covering radius of
Reed-Muller code, which is by definition the larger dis-
tance of any Boolean function from the code (see [1]).

3.2. General linear attack

The linear attack is a known plaintext attack that has
been first published by Matsui in 1991 for cryptanalyzing
the DES ([9]). A variant of this attack may be applied to
SSSC without any assumption on the design of the cipher-
ing function. This attack recovers the secret key.

A linear approximation of the ciphering function f is a
triple (α, β, ε) ∈ {0, 1}n × {0, 1}k × {0, 1} such that, for any
n-dimensional binary random vector X, the probability

P
[
α · X + β · K + ε f (X,K) = 0

]
is significantly different from 1/2.
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The adversary must know L > 1 linear approximations
(αi, βi, εi)i∈{1,...,L}.

The key K is unknown, but several couple (x, f (x,K))
are known.

For each values of the known couples (x, f (x,K)), the
adversary count the number of times αi · x + εi f (x,K) = 0.
If this occurs more that one in two times, then he decides
that βi · K = 0, otherwise he decides that βi · K = 1. This
gives a linear relation βi · K = ηi, satisfied by the key K.

The number of known plain text needed depends on the
quality of the linear approximation in order to take the right
decision.

This process has to be repeated for several other linear
approximations. Once a sufficient number of such relations
is established, a matrix inversion retrieves the key K.

4. Non-Linearity Criteria for Boolean Functions

The previous section shows that the ciphering function
must have good non linearity properties in order to resist
the presented attacks (see [10]). An elegant mathematical
tool to analyse the cryptographic properties of a Boolean
function f is its Walsh transform, which is by definition
the Fourier transform of its sign function χ f = (−1) f . Let
Fn

2 = {0, 1}
n. The Hamming weight of a vector in Fn

2 is the
number of its non-zero coordinates. Let f be a n-variable
Boolean function on Fn

2, the Walsh transform of f , denoted
by χ̂ f , is by definition

χ̂ f (ω) =
∑
x∈Fn

2

(−1) f (x)+ω·x,

whereω·x = ω1x1+· · ·+ωnxn.A Fast Fourier Transform al-
gorithm computes χ̂ f with complexity O(n2n), making this
tool effective.

4.1. Distance to the set of affine functions

A first measurement of non linearity of a n-variable
Boolean function f is the number of values in the truth
table which must be changed to reach the closest affine
function. This number is called its non-linearity of f .
It can be expressed by means of the Walsh transform as
2n−1 − 1

2 maxω∈Fn
2

∣∣∣χ̂ f (ω)
∣∣∣.

The non-linearity of Boolean functions used in a stream
cipher must be high since the existence of affine approxi-
mations allows to attack the cryptosystem as shown in sec-
tion 3.2. For even n, the maximum possible non linearity
achievable by a n-variable Boolean function is 2n−1 − 2

n
2−1.

Boolean functions that reach this bound are called bent
functions. However bent functions only exists in even di-
mension and are not balanced, namely the output of a bent
function does not behave as a uniform random variable if
the inputs do. A Boolean function f is balanced if and
only if χ̂ f (0) = 0. The maximum possible non linearity
of a balanced boolean function is known only for n ≤ 8.
For the larger values of n, the non linearity lies between

2n−1 − 2
n−1

2 (which can be always achieved by functions
of algebraic degree 2) and

⌊⌊
2n−1 − 2

n
2−1
⌋⌋

(where bbxcc de-
notes the greatest even number less than or equal to x). The
problem of constructing highly non linear Boolean func-
tions is one of the most challenging problems in symmetric
cryptography ([5, 12]).

4.2. Correlation immunity

A n-variable Boolean function f is correlation immune
of order t if all the sub-functions obtained from f by keep-
ing any t input variables constant, have the same distribu-
tion. This concept was introduced by Siegenthaler ([15]) in
order to resist some cryptanalytic attacks on stream cipher.
A Boolean function f is said to be t-resilient if it is bal-
anced and correlation immune of order t. The resiliency is
characterized by means of the Walsh transform: a Boolean
function f is t-resilient if and only if its Walsh transform
vanishes for every vector of Hamming weight less than or
equal to t. The order of resiliency of a Boolean function
used in a stream cipher should be high. However, non-
linearity and order of resiliency can not be optimized simul-
taneously. Indeed, the non-linearity of t-resilient Boolean
functions for t > n

2 − 2 is upper bounded by 2n−1 − 2t+1 and
there exists constructions of Boolean functions achieving
this upper bound (e.g. see [11]). However the situation is
not so clear for t ≤ n

2 − 2. Recently, 1-resilient Boolean
function with very high non-linearity 2n−1 − 2

n
2 + 2

n
2−2 − 2

has been constructed (see [8]).

4.3. Propagation criterion

A n-variable Boolean function f is said to satisfy the
propagation criterion with respect to a vector α if the
Boolean function x 7→ f (x) ⊕ f (x + α) is balanced. More
generally, a Boolean function satisfies the propagation cri-
terion at order k if it satisfies the propagation criterion with
respect to any vector of Hamming weight ranging from
1 to k. The order k of the propagation characteristic of
a Boolean function is related to its strength to resist the
differential cryptanalysis and so should be high. Walsh
transform helps to study the propagation characteristics of
a Boolean function thanks to this characterization : a n-
variable Boolean function f satisfies the propagation cri-
terion of order k if and only if, for every non-zero vector a
of Hamming weight less than or equal to k,∑

ω∈Fn
2

(−1)a·ω
(
χ̂ f (ω)

)2
= 0.

The connection among the various non-linearity criteria
is a topic in the area of designing and analysing crypto-
graphic functions. In particular, the quantitative relation-
ship between propagation characteristics and non-linearity,
two critical indicators of the cryptographic strength of a
Boolean function, have been investigated in [13]. For ex-
ample, it was pointed out that if a Boolean function f in
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n variables satisfies the propagation criterion with respect
to all but a subset R then the non-linearity of f is greater
than or equal to 2n−1 − 2

n
2−1 |R|

1
2 (where |R| denotes the

cardinality of R). Further improvements have been done
and it has been shown that it is possible to construct highly
non-linear Boolean functions with very good propagation
characteristics.

4.4. Linear structures

A vector α is said to be a linear structure of a Boolean
function if the Boolean function x 7→ f (x) ⊕ f (x + α) is
constant. The set of linear structures for a given func-
tion constitutes a vector-space L. Moreover, assuming that
f (0) = 0, one has the identity f (x + α) = f (x) ⊕ f (α) for
every x ∈ Fn

2 and α ∈ L. Therefore, on the subspace L,
the Boolean function f behaves as a linear function. If L is
non-trivial, then the function f is degenerate, namely it can
be replaced by a simpler function of strictly less variable
up to an affine isomorphism.

The number of values in the truth table of f which must
be changed to reach the closest function that do have a
non zero linear structure constitutes another important non-
linearity measure (see [10]).

4.5. High order non-linearity

The non linearity of order r generalises the standard non
linearity. It equals the number of values in the truth ta-
ble which must be changed to reach the closest Boolean
function of degree less than or equal to r. This parame-
ter measures the ability to resist to low-degree approxima-
tion attacks as those exposed in [6]. These attacks pose a
threat even when Matsui’s advanced linear cryptanalytic at-
tacks are rendered impractical. High order non linearity of
a given Boolean function is difficult to compute. There ex-
ists neither an equivalent of the expression of the standard
non linearity by mean of the Walsh transform nor a simple
algorithm to compute it.

Boolean function with such high order non linearity are
difficult to construct. Much less is known about the maxi-
mum possible achievable non linearity of order r. The main
result is an upper bound (see [1]).
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