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Abstract— Fuzzy sketches, introduced as a link between
biometry and cryptography, are a way of handling biometric
data matching as an error correction issue. We focus here
on iris biometrics and look for the best error-correcting code
in that respect. We show that two-dimensional iterative min-
sum decoding leads to results near the theoretical limits. In
particular, we experiment our techniques on the Iris Challenge
Evaluation (ICE) database and validate our findings.
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I. INTRODUCTION

With the growing use of biometric recognition systems
comes the need to secure and protect the biometric data. Juels
and Wattenberg’s fuzzy commitment scheme [12] has been
introduced to handle differences occurring between two cap-
tures of biometric data, using Error Correcting Codes. Many
papers give applications of this technique for cryptographic
purposes [1], [2], [3], [4], [5], [9], [10], [12], [23] but only
a few investigate what are the best codes for this decoding
problem and how to find them. The issue is addressed here,
in the case of iris recognition system as described in [8].
More details on iris recognition are also available in [26].

Fuzzy Sketches have been experimented over several bio-
metrics. Applications on face recognition [13] and on finger-
prints [22] are proposed using BCH codes and reliable bits
extraction. In a different way, Daugman et al. experimented
it using a concatenated Hadamard – Reed-Solomon binary
code on iris recognition [11].

Results achieved in this paper enable to determine if a
fuzzy-sketch code is near-optimal for a performance–security
trade-off with respect to the biometric templates noise and
quality.

A. Biometric matching and errors correction

1) Matching and Error Rates: Typically, a biometric-
based recognition scheme consists of two phases. The enroll-
ment phase where a biometric template b is measured from
a user U and then registered in a token or a database. The
second phase – the verification – captures a new biometric
sample b′ from U and compares it to the reference data via
a matching function. According to some underlying measure
µ and some recognition threshold τ , b′ will be accepted as a
biometric measure of U if µ(b, b′) ≤ τ , else rejected. Mainly
two kinds of errors are associated to this scheme: False
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Reject (FR), when a matching user, i.e. a legitimate user,
is rejected; False Acceptance (FA), when a non-matching
one, e.g. an impostor, is accepted.

Note that, when the threshold increases, the FR’s rate
(FRR) decreases while the FA’s rate (FAR) grows, and
conversely.

2) Error Correcting Codes and Fuzzy Sketches: Our
methods will resort to information theory and coding. Some
basic definitions are given hereafter, for more background,
notation and classical results, the reader is referred to [6] and
[15] in these two fields respectively.

Let H be the collection of all binary N-tuples, H =
{0, 1}N = F

N
2 , where F2 = {0, 1}.

• The ⊕ operator is the canonical exclusive-or over F2:

a ⊕ b =

{

0 if a = b

1 if a 6= b

• The Hamming distance over H is the metric distance
defined as the number of binary differences between
two elements, i.e.

dH(u, v) =

N
∑

i=1

(ui ⊕ vi).

Equipped with the Hamming distance, H is called the
Hamming space of length N .

• An Error Correcting Code (ECC) over H is a subset
C ⊂ H; elements of C are called codewords.

• An (N, S, d) binary ECC is an error correcting code
C over H with S elements such that for all distinct
codewords c1 and c2, dH(c1, c2) ≥ d. N is called the
length of C, S is the size of C and d, the smallest
Hamming distance between two distinct codewords, is
the minimum distance.

• A binary linear error correcting code C is a vector
subspace of F

N
2 . By linearity, the minimum distance

dmin of C is now the minimum weight among non-zero
codewords, where the weight of a vector x is its distance
to the vector 0. When k is the dimension of the subspace
C, i.e. when it contains 2k codewords, C is denoted by
[N, k, dmin]2. Here, the correction capacity t of C is
the radius of the largest Hamming ball for which, for
any x ∈ F

N
2 , there is at most one codeword in the ball

of radius t centered on x. Clearly, t = b(dmin − 1)/2c.

Assuming that the templates live in H, the main idea
of fuzzy sketches, as introduced in [12], is to convert the
matching step into an error-correcting one. Let C be an
(N, S, d) ECC in H.



• During the enrollment phase, one stores z = c⊕b, where
c is a random codeword in C,

• During the verification phase, one tries to correct the
corrupted codeword z⊕b′ = c⊕(b⊕b′). Note that when
the Hamming distance dH(b, b′) is small, recovering c
from c ⊕ (b ⊕ b′) is, in principle, possible.

The correction capacity of C may thus be equal to τ if
we do not want to alter the FRR and the FAR of the
system. Unfortunately, the difference between two measures
of one biometric source can be very important, whereas the
correction capacity of a code is structurally constrained.

The fuzzy commitment scheme [12] is then an error-
tolerant authentication scheme which follows the above
method with the use of a committed value. The main goal
is to protect the storage of biometric data involved in an
authentication biometric system. Let h be a cryptographic
one-way function, and store h(c), in the enrollment phase,
together with z = c ⊕ b. The authentication will be a
success if the verification returns a codeword c′ such that
h(c′) = h(c). Illustration of the scheme is provided in Fig.
1.

Several cryptographic constraints are studied in literature,
e.g. in [1], [10], [12], to achieve a good protection of b
while z is publicly known. These works show that the code
C might be adapted to the entropy of biometrics and it
leads in fact to a trade-off between correction capacity of
C and the security properties of the scheme. In particular,
the size S of C should not be too small, to prevent z from
revealing too much information about the template b: indeed
the probability for an attacker to “guess” b out of z = c⊕ b,
with the computation of z ⊕ c̃ from the choice of a random
codeword c̃, is lower bounded by 1/S.

B. Organization of this work

In a first part, we look for theoretical limits. We first mod-
elize our problem with a binary erasure-and-error channel.
Given a database of biometric data, we then give a method
for finding an upper bound on the underlying error correction
capacity.

Fig. 1. The Fuzzy Commitment Scheme [12]

In a second part, restricting ourselves to iris biometric
data and illustrating our method with iterative min-sum
decoding of product codes, we provide parameters that put
our performances close to the theoretical limit.

II. MODEL

We consider two separate channels with a noise model
based on the differences between any two biometric tem-
plates.

• The first channel, called the matching channel, is
generated by errors b ⊕ b′ where b and b′ come from
the same user U .

• The second channel, the non-matching channel, is
generated by errors where b and b′ come from different
biometric sources.

In a practical biometric system, the number of errors in the
matching channel is on average lower than in the non-
matching channel.

Moreover, the templates are not restricted to a constant
length. Indeed, when a sensor captures biometric data, we
want to keep the maximum quantity of information but it
is rarely possible to capture the same amount of data twice
– for instance an iris may be occulted by eyelids – hence
the templates are of variable length. This variability can be
smoothed by forming a list of erasures, i.e. the list of coordi-
nates where they occur. More precisely, in coding theory, an
erasure in the received message is an unknown symbol at a
known location. We thus have an erasure-and-error decoding
problem on the matching channel. Simultaneously, to keep
the FAR low, we want a decoding success to be unlikely on
the non-matching channel: to this end we impose bounds
on the correction capacity.

In the sequel, we deal with binary templates with at
most N bits and assume, for the theoretical analysis that
follows, that the probabilities of error and erasure on each
bit are independent, i.e. we work in a binary symmetric
channel (BSC) with noise and erasures. Note that resorting
to interleaving makes this hypothesis valid for all practical
purposes.

A. Theoretical limit

Our goal is to estimate the capacity, in the Shannon
sense [20], of the matching channel when we work with
a code of a given dimension. Namely, we want to know
the maximum number of errors and erasures between two
biometric measures that we can manage with fuzzy sketches
for this code.

Starting with a representative range of matching biometric
data, the theorem below gives an easy way to estimate the
lowest achievable FRR. The idea is to check whether the
best possible code with the best generic decoding algorithm,
i.e. a maximum-likelihood (ML) decoding algorithm which
systematically outputs the most likely codeword, would
succeed in correcting the errors.

Theorem 1: Let k ∈ N
∗, C be a binary code of length

N and size 2k, and m a random received message, from a



random codeword of C, of length N with wn errors and we

erasures. Assume that C is an optimal code with respect to
N and k, equipped with an ML decoder.

If wn

N−we
> θ then m is only decodable with a negligible

probability for a large N , where θ is such that the Ham-
ming sphere of radius (N − we)θ in F

N−we

2 , i.e. the set
{x ∈ F

N−we

2 , dH(x,0) = (N − we)θ}, contains 2N−we−k

elements.

Proof. In the case of errors only (i.e. no erasures) with
error-rate p := wn/N , the canonical second theorem
of Shannon asserts that there are families of codes with
(transmission) rate R := k/N coming arbitrarily close to the
channel capacity κ(p), decodable with ML-decoding and a
vanishing (in N ) word error probability Pe.

In this case, κ(p) = 1 − h(p), where h(p) is the (binary)
entropy function (log’s are to the base 2):

h(x) = −x log x − (1 − x) log(1 − x).

Furthermore, Pe displays a threshold phenomenon: for any
rate arbitrarily close to, but above capacity and any family
of codes, Pe tends to 1 when N grows.

Equivalently, given R, there exists an error-rate threshold
of

p = h−1(1 − R),

h−1 being the inverse of the entropy function.
Back to the errors-and-erasures setting now. Our problem

is to decode to the codeword nearest to the received word
on the nonerased positions.

Thus we are now faced with a punctured code with length
N − we, size 2k, transmission rate R′ := k/(N − we) and
required to sustain an error-rate p′ := wn

N−we
.

By the previous discussion, if

p′ > θ := h−1(1 − R′),

NO code and NO decoding procedure exist with a non-
vanishing probability of success.

To conclude the proof, use the classical Stirling approxi-
mation for the size of a Hamming sphere of radius αM in
F

M
2 by 2h(α)M .

2

It allows to estimate the correcting capacity of a biometric
matching channel with noise and erasures under the binary
symmetric channel hypothesis. Practical implications of this
theorem are illustrated in Table I, Sec. III-C.

III. APPLICATION

A. Our setting

To validate our approach, we now present the results of
experiments on a practical iris database where we obtain
correction performances close to the theoretical limit.

The database used for these experiments is the ICE 2005
database [14], [17] which contained 2953 images from 244
different eyes. A 256-byte (2048 bits) iris template, together
with a 256-byte mask, is computed from each iris image

using the algorithm reported in [8]; the mask filters out the
unreliable bits, i.e. stores the erasures indices of the iris
template.

The database is taken without any modification but one
slight correction: the side of the eye 246260 has been
switched from left to right. Hence we keep 2953 images.
Note that in the database, the number of images provided
for each eye is variable: so the number of intra-eye matching
verifications between two iris codes from the same eye is
not constant. The same holds for the inter-eye matching
between two iris codes from different eyes. Among all the
combinations, its gives a set of 29827 intra-eye matching and
about 4 million of inter-eye matching to check.

The classical way to compare two iris codes I1, I2 with
masks M1, M2 is to compute the relative Hamming distance

||(I1 ⊕ I2) ∩ M1 ∩ M2||

||M1 ∩ M2||
(1)

for some rotations of the second template – to deal with the
iris orientation’s variation – and to keep the lowest score. It
gives the following distributions of matching scores (cf. Fig.
2) where we see an overlap between the two curves. We
also see that the number of errors to handle in the matching
channel is large (for instance at least 29% of errors for a FRR
lower than 5%). On this channel, an additional difficulty
originates from the number of erasures which varies from
512 to 1977.

Following (1), the typical matching score computation
does not use any internal correlations between bits of the
iris codes, so in this setting it is coherent to suppose the
matching channel to be a binary symmetric channel with
independent bits errors and erasures. It will thus be possible
to apply Theorem 1 in this context.

Note that the iris template as computed by this algorithm
has a specific structure: [8] reports 249 degrees-of-freedom
within the 2048 bits composing the template. As described in
[7], [8], [25], the algorithm involves computation of several
Gabor filters on separate and local areas of the iris picture,
the amplitude information is discarded and the actual bits are
the phase quantization of this Gabor-domain representation
of the iris image. The ordering of the bits is directly linked
to the localization of the area; therefore, we will adapt this
specific two-dimensional template structure to use a two-
dimensional code.

Fig. 2. Inter-eyes and intra-eye distributions



B. Description of the two-dimensional iterative min-sum
decoding algorithm

For a linear code with a minimum distance dmin, we know
that an altered codeword with wn errors and we erasures can
always be corrected, in theory, provided 2wn + we < dmin.
However, if the code admits an iterative decoding algorithm,
practical results overtake this limitation.

We will work with product codes together with a specific
iterative decoding algorithm described below. A product code
C = C1⊗C2 is constructed from two codes: C1[N1, k1, d1]2
and C2[N2, k2, d2]2. The codewords of C can be viewed as
matrices of size N2 ×N1 whose rows are codewords of C1

and columns are codewords of C2, see Fig. 3.

This yields a [N1 × N2, k1 × k2, d1 × d2] code. When
k1 and k2 are small enough for C1 and C2 to be decoded
exhaustively a very efficient iterative decoding algorithm is
available, namely the min-sum decoding algorithm. Min-sum
decoding of LDPC codes was developed by Wiberg [24] as
a particular instance of message passing algorithms. In a
somewhat different setting it was also proposed by Tanner
[21] for decoding generalized LDPC (Tanner) codes. The
variant we will be using is close to Tanner’s algorithm and
is adapted to product codes. Min-sum is usually considered to
perform slightly worse than the more classical sum-product
message passing algorithm on the Gaussian, or binary-
symmetric channels, but it is specially adapted to our case
where knowledge of the channel is poor, and the emphasis
is simply to use the Hamming distance as the appropriate
basic cost function.

Let (xij) be a vector of {0, 1}N1×N2 . The min-sum
algorithm associates to every coordinate xij a cost function
κij for every iteration of the algorithm. The cost functions
are defined on the set {0, 1}. The initial cost function κ0

ij is
defined by κ0

ij(x) = 0 if the received symbol on coordinate
(ij) is x and κ0

ij(x) = 1 if the received symbol is 1 − x.

A row iteration of the algorithm takes an input cost
function κin

ij and produces an output cost function κout
ij .

The algorithm first computes, for every row i and for every

c =

















c1,1 . . . c1,j . . . c1,n1

...
ci,1 . . . ci,j . . . ci,n1

...
cn2,1 . . . cn2,j . . . cn2,n1

















∀i ∈ [0, n2], (ci,1, ci,2, . . . , ci,n1
) ∈ C1

∀j ∈ [0, n1], (c1,j , c2,j , . . . , cn2,j) ∈ C2

Fig. 3. A codeword of the product code C1 ⊗C2 is a matrix where each
line is a codeword of C1 and each column a codeword of C2

codeword c = (c1 . . . cN1
) of C1, the sum

κi(c) =

N1
∑

j=1

κin
ij (cj)

which should be understood as the cost of putting codeword
c on row i. The algorithm then computes, for every i, j, κout

ij

defined as the following min, over the set of codewords of
C1,

κout
ij (x) = min

c∈C1,cj=x
κi(c).

This last quantity should be thought of as the minimum cost
of putting the symbol x on coordinate (ij) while satisfying
the row constraint.

A column iteration of the algorithm is analogous to a
row iteration, with simply the roles of the row and column
indexes reversed, and code C2 replacing code C1. Precisely
we have

κj(c) =

N2
∑

i=1

κin
ij (ci)

and
κout

ij (x) = min
c∈C2,ci=x

κj(c).

The algorithm alternates row and column iterations as
illustrated by Fig. 4. After a given number of iterations (or
before, if we find a codeword) it stops, and the value of every
symbol xij is put at xij = x if κout

ij (x) < κout
ij (1 − x). If

κout
ij (x) = κout

ij (1−x) then the value of xij stays undecided
(or erased).

The following theorem is fairly straightforward to prove
and illustrates the power of min-sum decoding.

Theorem 2: If the number of errors is less than d1d2/2,
then two iterations of min-sum decoding of the product code
C1 ⊗ C2 recover the correct codeword.

C. Results on ICE database

We have experimented with the algorithm described in
section III-B on this database with a particular choice for the
code. In fact, the product code is constructed to fit with an
array of 2048 bits, by using Reed-Muller codes [16], [19] of
order 1 which are known to have good weight distributions.
A binary Reed-Muller code of order 1 in m variables,
abbreviated as RM(1, m), is an [2m, m+1, 2m−1]2 code. We
chose to combine the RM(1, 6) with the RM(1, 5), leading
to a product code of dimension 42 and codewords of length
64× 32.

As the density of errors and erasures in an iris code can be
very high in some regions, we also added a randomly chosen
interleaver to break this structure and increase the efficiency
of the decoding algorithm. In so doing, we succeeded in
obtaining a FRR of about 5.62% for a very small FAR (lower
than 10−5). This is in fact very close to the FAR obtained
in a classical matching configuration for a similar FRR; see
for instance the benchmark’s results [18] published on this
database. Moreover, it greatly overtakes a Hamming distance
classifier, the latter, cf. Eq. (1), giving here a FAR of about
10−4 for a similar FRR.
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Fig. 4. A row iteration followed by a column one

The overall size of the code could appear small from a
cryptographic point of view, but following the theoretical
analysis of section II-A, it is difficult to expect much more
while achieving a low FRR on this database. Indeed, from
the distribution of errors and erasures on the matching
channel, we obtain by Theorem 1 the practical limits which
are reported in Table I.

Not that Theorem 1 gives us estimations of the theoretical
limits based on an asymptotic analysis under a BSC hy-
pothesis, i.e. independent bits. However in practice, it seems

TABLE I

THEORETICAL LIMITS ON ICE DATABASE

Code’s dimension Best theoretical FRR

42 2.49%

64 3.76%

80 4.87%

128 9.10%

difficult to expect much more efficiency, without a deeper
modelization of the matching channel.

Remark 1: In [11], the fuzzy sketch scheme is applied
with a concatenated error-correcting code combining a
Hadamard code and a Reed-Solomon code. More precisely,
the authors use a Reed-Solomon code of length 32 over F27

(with a correction capacity tRS < 16) and a Hadamard
code of order 6 and length 64 (with a correction capacity
tH = 15): a codeword of 2048 bits is in fact constructed as
a set of 32 blocks of 64 bits where each block is a codeword
of the underlying Hadamard code. As explained in [11], the
Hadamard code is introduced to deal with the background
errors and the Reed-Solomon code to deal with the bursts
(e.g. caused by eyelashes, reflections, . . .).

Note that in this scheme, the model is not exactly the
same as ours, as the masks are not taken into account.
Moreover, the quality of the database used in [11] is better
than for the ICE database. The mean intra-eye Hamming
distance reported in the paper is 3.37% whereas this number
becomes 13.9% in the ICE database, which means that we
must have a bigger correcting capacity. The inter and intra-
eyes distributions reported by the authors is drawn on Fig.
5.

Actually, [11] reports very good results on their experi-
ments with a database of 700 images, but the codes do not
seem appropriate to our case as our experiment on the ICE
database gave a too large rate of FR (e.g. 10% of FR with
0.80% of FA), even for the smallest possible dimension of
the Reed-Solomon code when tRS = 15.

IV. CONCLUSION

We derived explicit upper bounds on the correction capac-
ity of Fuzzy Sketches. Theorem 1 applies to any biometrics,
given a pre-sampled database, in order to measure some
channel characteristics under the BSC hypothesis. We ap-
plied our method on iris-based biometrics, choosing a Reed-
Muller based product code.

We then showed how the two-dimensional iterative min-
sum decoding algorithm achieves correction performance

Fig. 5. Hamming distance distributions from [11]



close to the optimal decoding rate. Our results were validated
on a typical iris database.

This paper shows a numerical constraint on the usual
performance-security trade-off of Fuzzy Sketches. Future
work in this domain includes finding near-limit codes and
decoding algorithm as much as improving reliability of
biometrics templates.
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