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Abstract. The filter generator is an important building block in many
stream ciphers. We present here an attack that recovers the initial state
of the hidden LFSR by detecting the positions where the inputs of the
filtering function are equal to zero. This attack requires the precompu-
tation of low weight multiples of the LFSR generating polynomial. By a
careful analysis, we show that the attack complexity is among the best
known and work for almost all cryptographic filtering functions.
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1 Introduction
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Fig. 1. LFSR filter generator.

The filter generator uses a linear feedback shift register (LFSR) of length N
and characteristic polynomial g(X) that generates a binary sequence (st)t≥0 of
period 2N−1. As we can see in Figure 1 this sequence is filtered using a n-variable
balanced Boolean function f (from Fn

2 into F2) to produce the keystream (zt)t≥0.
The inputs of this function are taken as some bits in the LFSR internal state.
We will write xt for the n-bit vector corresponding to the inputs of f at time t.
Notice that we will always write such elements of Fn

2 in bold. Our goal here is to

? This work is partially funded by CELAR/DGA.



find the key (that is the LFSR initial state s0, . . . , sN−1) knowing the keystream
sequence (zt)t≥0 and all the constituents of the filter generator.

The filter generator is one of the simplest stream cipher and it is really
interesting to understand what kind of attacks we may perform on it. There is
of course a huge literature on the subject and quite a few approaches. Some of the
most important ones fall into the category of fast correlation attacks. They were
introduced by Meier and Staffelbach [MS88] as an improvement to correlation
attack introduced by Siegenthaler in [Sie85]. Since then, many different versions
have been proposed (see for instance [CT00], [MFI01],[CF02],[JJ00] and [JJ02]).
The other main class is given by the algebraic [CM03] and fast algebraic attacks
[Cou03] which can be really efficient if the filtering function is of low algebraic
immunity. Recently, Rønjom and Helleseth have proposed a new variant [RH07]
which is closely related to the Berlekamp Massey attack. There is also some ideas
in [MFI05] and [MFI06] that apply to the two previous categories of attacks.
When the inputs positions of f (also known as tapping positions) are not well
chosen, one can apply inversion attack or conditional correlation attack (see
[Gol96],[GCD00] and [LCPP96]). Finally, there is the very general class of time-
memory-data tradeoff attack (see [BS00]) which is often the most efficient if the
generator is well designed.

In this paper, we will present a new attack related to vectorial versions of
fast correlation attacks (see [LZGB03], [EJ04], [GH05]). This attack has an in-
teresting complexity and appears to be difficult to avoid. The idea is to use the
low degree multiples to distinguish the positions corresponding to zero inputs
of the filtering function f . Most of the probabilistic analysis is derived from the
work of Sabine Leveiller during her PhD [Lev04b] (it is in French but some of it
is published in [Lev04a] and [LZGB03]). However, we push it a little further and
show that the positions corresponding to zero inputs of f are actually almost
always detectable.

The paper is organized as follows. We begin by explaining the attack principle
in the first section. Then, in Section 2, we compute the bias at the heart of the
attack, this is our main contribution. This also allows us to derive the actual
attack complexity in Section 3. We give in Section 4 the time complexity of
such an attack on some example filter generators. We finally conclude in the last
section.

2 Attack principle

Our attack uses like many correlation attacks the small weight multiples of the
polynomial g(X) generating the LFSR. Each of these multiples induces a lin-
ear relation between some points where f is applied to produce the keystream.
Namely, for a multiple p(X) = 1 +

∑w
i=1 Xpi of weight w + 1 we have

xt + xt+p1 + · · ·+ xt+pw = 0 ∀t ≥ 0 (1)

In all this paper, we will assume that for a given multiple and a point xt, the
others point xt+p1 up to xt+pw can take with the same probability any value



satisfying (1). This is justified by the good properties of an LFSR sequence and
appears to be a good working hypothesis since we will see that the experimental
results are very close to the predicted ones. With this assumption, we define

Px
def= Pr

(
f(x1) + · · ·+ f(xw) = 0 |

w∑

i=1

xi = x

)
. (2)

We did not include the pi in this expression because they have no real influence
in this model. Actually in our model Px is exactly the probability that for a
given multiple and a time t, zt+p1 + · · · + zt+pw

is equal to zero knowing that
xt = x. The crux of our attack is based on these probabilities. They can be
expressed nicely as we will see in the next section and for an even w they satisfy
two interesting properties:

– P0 is always greater than 1/2 and is greater than or equal to the other Px’s.
– If the function f has a good autocorrelation property then there is always a

gap between P0 and the other Px’s.

At this point, one could guess what we are going to do. Using many multiples of
g, we will be able to have a good approximation of the probability Pxt associated
to a position t. Now, if the gap between P0 and the others Px is large enough
(depending of the number of multiples we used) we will then be able to detect
which time positions are associated with an xt equal to 0.

Each xt equal to 0 actually tells us that the n bits of the sequence (st)t≥0

involved in this xt are equal to 0. By substituting their linear expression in terms
of s0, . . . , sN−1 we then obtain n linear equations involving the key bits. In the
end, merging the equations from all the zero xt’s, we get a linear system of rank
at most N − 1 since both the all zero state and the actual LFSR initial state are
solutions. We thus hope that given dN/ne such zero xt, we should get a rank
N −1 linear system where the only non trivial solution is the LFSR initial state.

The attack algorithm is summarized here with two parameters D and L that
will be discussed later:

1. Compute all the weight 2p + 1 multiples of g(X) up to degree D. This can
be done offline and once for all.

2. Approximate Pxt for the L first bits of the keystream. In order to do that,
for a given position each multiple corresponds to a parity check, and we just
have to count how many are satisfied by the keystream bits. Remark that
among the L bits, only the ones for which zt = f(0) have to be considered.

3. Assume that the dN/ne bits with the higher approximated Pxt correspond
to positions where xt = 0.

4. Solve the linear system induced by the knowledge of xt at these positions
and retrieve the initial state.

A detailed complexity analysis will be carried in the following sections but
we give here a preliminary one. The best complexity for the first step (precom-
putation) is given by the algorithm of [CJM02] and is in Dp time and Dp/2



memory. The complexity for Step 2 is in L times the number of multiples and
requires the knowledge of D+L keystream bits. The last two steps are negligible
in the overall complexity. Remark however that last step may deal with some
erroneous answers at Step 3 by trying more than one linear system induced by
the positions with a high Pxt .

3 Bias computation

We will give here a simple expression for the probability

Px
def= Pr

(
f(x1) + · · ·+ f(xw) = 0 |

w∑

i=1

xi = x

)
(3)

corresponding to an equation of weight w + 1. We will then use it to compute
the gap between P0 and the other Px in the case of an even w. In order to do
that, let us introduce

dw(x) def=
∑

x1,...,xw−1∈Fn
2

(−1)f(x1)+···+f(xw−1)+f(x+x1+···+xw−1) (4)

where x + x1 · · ·+ xw−1 corresponds to xw in (3) since the sum of x1 up to xw

must be equal to x. By definition, d1 is the sign function of f

d1(x) = (−1)f(x) (5)

and the dw’s are directly related to the probability Px by

Px =
1
2

(
1 +

1
2(w−1)n

dw(x)
)

. (6)

Moreover, it is easy to show the following recursive relation

dw(x) =
∑

y∈Fn
2

(−1)f(x+y)dw−1(y) = d1 ∗ dw−1(x) (7)

where ∗ is the convolution product. Using the properties of the Walsh transform
we obtain that d̂w(u) = d̂1(u)w where

d̂1(u) =
∑

x∈Fn
2

d1(x)(−1)u.x (8)

And by using the inverse Walsh transform we finally obtain

dw(x) =
1
2n

∑

u∈Fn
2

(−1)u.xd̂1(u)w. (9)

That is

Px =
1
2


1 +

∑

u∈Fn
2

(−1)u.x

(
d̂1(u)

2n

)w

 . (10)



This has already be observed by Sabine Leveiller in her PhD thesis [Lev04b],
we have just given here another proof of this statement. For reference, one may
look at [LZGB03] since her PhD is in French only.

We will show now that the probability P0 can be distinguished quite well
from the others when w is even. For that it is natural to look at the minimum
difference between P0 and Px, that is to compute minx 6=0(P0 − Px).

Let us begin by defining ∆ to be the minimum of P0−Px when w = 2. Using
(6) we have

∆
def=

1
2

[
d2(0)
2n

−max
x 6=0

(
d2(x)
2n

)]
=

1
2

[
1−max

x 6=0

(
d2(x)
2n

)]
(11)

since d2(0) is equal to 2n by Parseval’s equality. Usually, if f has a good auto-
correlation then this ∆ is very close to 1/2. To see that, looking at the formula
(4) we have

d2(x) =
∑
u

(−1)f(u)+f(u+x) (12)

which is nothing more than an autocorrelation coefficient and should be close to
0. Remark that if this is not the case we are confident that we can distinguish
quite well other values of Px from the others.

In the more general case w = 2p, we can write the difference between P0 and
Px as

min
x 6=0

(P0 − Px) =
1
2

min
x 6=0


 ∑

u∈Fn
2

(
d̂1(u)

2n

)2p

−
∑

u∈Fn
2

(−1)u.x

(
d̂1(u)

2n

)2p

 (13)

that is,

min
x 6=0

(P0 − Px) = min
x 6=0

∑
u,u.x=1

(
d̂1(u)

2n

)2p

. (14)

Notice that this difference is always greater than or equal to 0 which means that
P0 is always greater than or equal to the other probabilities. In the case p = 1
this is nothing more than ∆ and using the Hölder inequality (see Appendix A)
we can see that the worst case for the others p is when all the d̂1(u) are equal.
Since there is 2n−1 terms in the sum, the worst case is when for p = 1 each term
in the sum is equal to ∆/2n−1. We thus get this lower bound

min
x 6=0

(P0 − Px) ≥ 2n−1

(
∆

2n−1

)p

(15)

which corresponds to the bias we will need to detect.

4 Complexity analysis

Let us look at the complexity of attacking the filter generator when we use
multiples of weight 2p + 1. We will suppose that the function has a good auto-



correlation property, meaning that the bias to detect is around

bias ' 1
21+n(p−1)

. (16)

To detect it, we will thus need as many equations as the square of the bias
inverse. Looking for multiples of weight 2p + 1 up to degree D of the LFSR
generator polynomial, we know that we will find around

degree at most D multiples number '
(

D

2p

)
1

2N
' D2p

(2p)!2N
(17)

of them. This result is well known and is derived as follows. We have
(

D
2p

)
poly-

nomials of weight 2p+1 and degree at most D. For each of them, we may assume
that the rest of the Euclidean division by g(X) is equally distributed among the
2N possible values. Hence, the formula (17) just express that we get a multiple
(a rest equal to 0) one time over 2N .

Putting the equations (16) and (17) together, to be able to detect our bias
we need to choose a degree D such that

D2p

(2p)!2N
= 22+2n(p−1). (18)

That means we will have to compute the weight 2p + 1 multiples up to a degree
D where

log2 D =
N

2p
+ n

(
1− 1

p

)
+

1
p
. (19)

We neglect the factorial term (2p)! here since in practice p is 2 or 3. Using
the algorithm of [CJM02], the complexity to compute them is in Dp time and
Dp/2 memory. Remark that the algorithm is completely parallelizable over many
computers. We finally get for the offline part of the attack

log2(offline time) = N/2 + (p− 1)n + 1 (20)

log2(offline memory) = N/4 + (p− 1)n/2 + 1/2. (21)

For the online phase, we will need to identify around dN/ne bits corresponding
to an x equal to 0. We will thus need to approximate the Pxt for L bits in
average where

L =
⌈

N

n

⌉
2n. (22)

This comes from the fact that an x equal to 0 appears in average one time
each 2n keystream bits. We can actually gain a factor 2 because we can skip
the positions for which f(xt) 6= f(0). For each of these L bits, we will have to
compute as many parity checks as the number of multiples. The online phase
complexity is then given by

log2(online time/L) = 2 + 2n(p− 1) (23)



which is in practice really efficient. For the memory we just need to access the
stored multiples and a length of keystream equal to D + L, that is basically

log2(keystream length) =
N

2p
+ n

(
1− 1

p

)
+

1
p
. (24)

Remark that the overall complexity is quite good. Let us compare it with
the time-memory-data tradeoff described in [BS00]. This tradeoff is such that
TM2K = 22N where T is the online time, M the online memory and K the
length of the keystream needed. A good choice is to take M = K = 2N/3

which gives an online time of 22N/3 and the same precomputation time. For
our attack with weight 5 multiples and an n around N/8 (which is typical), we
have the following: an online time complexity in 2N/4 and memory in 25N/16

for a keystream length of 25N/16 bits. This is better than the time-memory-data
tradeoff, especially since the precomputation time is a little smaller too (25N/8

compared to 22N/3).

5 Experimental results

We have successfully carried on this attack on some example generators. We
give here the timing of our program in C. All computations were performed on
a 3.6GHz Pentium4 with 2MB of cache and 2GB of RAM.

We worked on three filter generators of length 53, 59 and 61. In all three cases,
the filtering functions used were good cryptographic functions with a maximum
Walsh coefficients of respectively 32, 24 and 48. We can see in Table 5 the exact
value of the bias for these functions. Notice that it is significantly higher than
our lower bound. As a comparison, for a ∆ equal to one half and an 8-variable
function, our lower bound gives 0.002 for weight 5 and 0.000008 for weight 7.

N n bias for weight 5 bias for weight 7

53 8 0.0039 0.000061
59 8 0.0027 0.000021
61 9 0.0014 0.000006

Table 1. Exact bias to detect the zero inputs for the used functions.

In Table 5 we can see the timings for some successful attacks. We can see that
the online time is really short and that all the computational effort is spent on
computing the low weight multiples. We only used weight 5 multiples because we
did not have the 2 weeks time needed to precompute enough weight 7 multiples.
In all the attacks, the value of L was just chosen to have a very high probability
to get enough zero inputs for f in a keystream of length L.

For the first two filter generators, we applied the exact method described in
this paper. For the last attack however, we did not want to spend too much time
on the multiples computation, so we used a few tricks to improve the practical



N n multiples weight log2 D nb of multiples(time) L online time

53 8 5 18.6 100000(20min) 3200 10 sec
59 8 5 20.47 330000(1day) 3200 30 sec
61 9 5 21 349034(2days) 4000 1 min

Table 2. Successful attack timing on the different generators. Some tricks were used
for the last generator as explained below.

efficiency. Firstly, at the price of doubling the needed keystream, we can get for
each multiple w + 1 parity check equations (by shifting the multiple by one of
its five non null positions). The other improvement is, as explained before, to
deal with erroneous zero inputs detection by spending more time on the last
phase of the attack. Here for instance, we got 3 erroneous positions among the
10 with the higher Px. To get the correct key, we thus had to try all the

(
10
7

)
linear systems since dN/ne is equal to 7 here. Those tricks helped to perform
the attack with less multiples, however we did not really cut down the overall
attack complexity.

To conclude this section, notice that the actual value for D is really close to
the theoretical one. In order to detect the bias, we theoretically needed respec-
tively around 65746, 137200 and 510000 parity checks for each generator. That
gives us, using the approximated formula (17) for the number of multiples, a
theoretical log2 D of 18.4, 20.16 and 21.14 respectively.

6 Conclusion

As a conclusion, we want to detail some important points about the attack we
just presented.

First of all, the probabilistic hypothesis behind the complexity analysis seems
quite sound since the simulations are really close to the predicted results. This is
actually not always the case with other attacks using a binary symmetric channel
model where simulations are usually worse than predicted.

Then, we believe that this attack is difficult to avoid. Using a filtering function
with a bad autocorrelation will certainly weaken the cipher. Moreover, in this
case other inputs than the all zero one could become detectable. Remark as well
that one cannot have a filtering function with too many variables compared to
N. This is for performance reasons but also to have tapping positions with good
behavior.

Finally, the overall complexity of the attack is quite good as explained at
the end of Section 4. In particular, we successfully attacked a length 61 filter
generator in a few seconds after a 2 days precomputation on a single computer.
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A Lemma used in the bias computation

The proof at the end of Section 3 is based on the following lemma applied with

m = 2n−1, s = ∆ and ai =
(cd1(u)

2n

)2

for the u in Fn
2 such that x.u = 1.

Lemma 1. Given m positive real numbers (ai)i=1...m and an integer p > 1 we
have the lower bound

m∑

i=1

ai
p ≥ m

( s

m

)p

(25)

where s
def=

∑m
i=1 ai.

Proof. The result comes almost directly from Hölder’s inequality

m∑

i=1

|xiyi| ≤
(

m∑

i=1

|xi|p
)1/p (

m∑

i=1

|yi|q
)1/q

(26)

where (xi)i=1...m, (yi)i=1...m, p, q are in R and such that 1
p + 1

q = 1. If we apply
it with all the yi equal to 1, the xi equal to the positive ai, the p from the lemma
and the corresponding q we obtain

m∑

i=1

ai ≤
(

m∑

i=1

ai
p

)1/p

m1/q that is

(
m∑

i=1

ai
p

)
≥ (smq)p

. (27)

And since 1
q = 1−p

p we finally obtain
(

m∑

i=1

ai
p

)
≥ spm1−p ≥ m

( s

m

)p

. (28)

Remark that there is an equality when all the ai are equal to s/m.


