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CRYPTOGRAPHICAL BOOLEAN FUNCTIONS
CONSTRUCTION FROM LINEAR CODES

Philippe Guillot1

Abstract. This paper presents an extension of the Maio-
rana-McFarland method for building Boolean functions with
good cryptographic properties.

The original Maiorana-McFarland construction was pro-
posed to design bent functions. Then, it was extended in [1]
to build highly nonlinear resilient functions.

The classical construction splits the set of variables into
two separate subsets. There, is proposed a decomposition
of the whole working space into two complementary vector
spaces. One of these spaces is considered as a linear code
and its parameters assigns cryptographic properties to the
constructed Boolean function.

The cryptographical properties we are interested in are
nonlinearity, resiliency and propagation properties.

The obtained functions are linearly equivalent to those
constructed by the traditional way. Thus, no improvement
for affine invariant parameters such as nonlinearity is ex-
pected. On the other hand, for non affine invariant crypto-
graphic parameters such as resiliency order or propagation
order, better values are obtained.

1. Motivation

Cryptographic algorithms design is still based on confusion and
diffusion principles stated by Shannon in 1949 (see [6]). Diffusion
means that a bit change in the key is propagated in the whole
ciphertext. It is performed by linear transformations. Confusion
means that the relationship between the key, the plaintext and the
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2 P. GUILLOT

ciphertext is complex and involved. It is performed by nonlinear
transformations and mostly implemented as Boolean functions.

The nonlinearity may be defined in at least four ways.
First, a Boolean function is nonlinear if it is not correlated to

any affine function. This is the correlation criterion. It means that
the function is far from the set of affine functions.

Nonlinearity may also be defined through propagation proper-
ties. If some variables are changed, is the value changed too ?
If the function has a linear structure, then the answer is always
predictable : yes or no depending on which variables are changed.
For cryptographic oriented functions, the answer should be unpre-
dictable.

Third, a linear function is expressed as a n-variable polynomial
of degree one. A nonlinear function should be expressed as a
polynomial of degree as high as possible.

Finally, a linear function is simple. A nonlinear function is
expected to be complex. The complexity may be measured by
several ways : number of gates to implement it, number of nodes
in a Binary Decision Diagram, and so on.

The designer has to deal with all these criteria together. It is
rarely possible to optimize all of them. We are mainly interested in
the sequel in a compromise between correlation and propagation
criteria.

2. Spectral Analysis

The mathematical tool to explore nonlinearity of boolean func-
tions consists in two objects: the Walsh transform and the auto-
correlation function. In this section, we recall basic results and
definitions which will be used in the sequel.

Let n be any integer ≥ 2 and Fn
2 be the n-dimensional vector

space over the field F2. For any vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Fn

2 , the inner product of x and y is x · y =
x1y1 + · · ·+ xnyn ∈ F2.

A Boolean function over Fn
2 is a mapping Fn

2 → F2.
The Fourier transform of a Boolean function f is by definition

the real valued function f̂ defined as

∀u ∈ Fn
2 f̂(u) =

∑
x∈Fn

2

f(x)(−1)u·x.
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The Fourier transform of the sign function fχ = (−1)f = 1−2f
is called the Walsh transform of f :

∀u ∈ Fn
2 f̂χ(u) =

∑
x∈Fn

2

(−1)f(x)+u·x.

For all u ∈ Fn
2 , the Wash transform value f̂χ(u) is the number

of times f(x) equals u · x minus the number of time it differs.
Thus f̂χ(u) measures the correlation between f and the linear
form λu : x 7→ u · x. The function f is statistically independent
from λu if and only if f̂χ(u) = 0. In particular, f is balanced if
and only if f̂χ(0) = 0.

The power of this tool is based on the orthogonality relation of
the so called Walsh functions χu : x 7→ (−1)u·x:

∀(u, v) ∈ Fn
2 × Fn

2

∑
x∈Fn

2

χu(x)χv(x) =
∑
x∈Fn

2

(−1)(u+v)·x

=

{
2n if u = v;
0 elsewhere.

For any p-dimensional vector subspace E of Fn
2 , the dual of E,

denoted E⊥, is the (n−p)-dimensional vector space of linear forms
that vanish on E.

E⊥ = {u ∈ Fn
2 | ∀x ∈ E, u · x = 0}.

If f is defined on a vector subspace E of Fn
2 , the expression of

the Fourier transform of f is given by

f̂(u) =
∑
x∈E

f(x)(−1)u·x.

A first glance, f̂ is defined over the whole space Fn
2 , but in fact

f̂(u) remains unchanged when u is added to any element of E⊥.
In other word, f̂ is constant on any coset of E⊥. Thus, f̂ may be
considered as defined over the quotient space Fn

2/E
⊥.

For convenience and easier computation, it may be useful to
consider a complementary space F of E, i.e. such that Fn

2 =
E⊕F . The dual spaces E⊥ and F⊥ are complementary too and the
quotient space Fn

2/E
⊥ is isomorphic to F⊥. Thus, f̂ is considered

as defined on F⊥.
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The second object of the spectral analysis is the autocorrelation
function. For any Boolean function f over Fn

2 , the autocorrelation
function of f , denoted rf is by definition:

rf :
Fn

2 → R
u 7→

∑
x∈Fn

2

(−1)f(x)+f(x+u) .

The value rf (u) is the number of time f(x) equals f(x+u) mi-
nus the number of times it differs. Thus it measure the avalanche
effect of vector u.

If rf (u) = 0 then the value of f is unpredictable when the
variables xi such that ui = 1 are changed.

If rf (u) = ±2n then the function x 7→ f(x) + f(x + u) is
constant. In this case, the vector u is called a linear structure
for f . The set of linear structures over Fn

2 is the subset of Boolean
function that do have a linear structure. The set of affine functions
over Fn

2 is a subset of the set of linear structures (see [4]).

3. Cryptographic criteria

In a symmetric algorithm, the Boolean function is in charge
of the confusion property. Thus, it has to be highly nonlinear.
The nonlinearity is measured by the distance δ(f) of the Boolean
function f from the set of affine functions. It can be expressed by
mean of the Walsh transform (see [4]) :

δ(f) = 2n−1 − 1
2

max
u∈Fn

2

(
|f̂χ(u)|

)
.

The lower is the greatest magnitude of the Walsh transform,
the further is the function from the set of affine functions.

Another nonlinearity measure is given by the distance σ(f) of
the Boolean function f from the set of linear structures. It can be
expressed by mean of the autocorrelation function (see [4]) :

σ(f) = 2n−2 − 1
4

max
u∈Fn

2 \{0}

(
|rf (u)|

)
.

Similarly, the lower is the greatest magnitude of the autocor-
relation function on nonzero vectors, the further is the function
from the set of linear structures.
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The cryptographer should minimize maximum magnitude of
both the Walsh transform and the autocorrelation function in or-
der to design non linear functions with good cryptographic prop-
erties.

Both δ and σ are affine invariants, i.e. the values δ(f) and
σ(f) remain unchanged if f is composed with any invertible affine
mapping on Fn

2 .
A Boolean function is said to be k-resilient, if the knowledge

of any k variables does not provide any statistical information on
the value of f . A function is 0-resilient means that it is balanced.
Resiliency has a nice characterization by mean of the Walsh trans-
form (see [7]).

Proposition 3.1. A Boolean function f over Fn
2 is k-resilient if

and only if for any vector u ∈ Fn
2 of weight less than or equal to

k, its Walsh transform vanishes at vector u, i.e. f̂χ(u) = 0.

A Boolean function satisfies the propagation criterion at order
k, which is denoted PC(k), if changing any k variables does not
allow to guess if the value of f changes or not. Similarly, prop-
agation criterion has a characterization by mean of the autocor-
relation function. The following proposition is a straightforward
consequence of the definition.

Proposition 3.2. A Boolean function f over Fn
2 satisfies PC(k)

if and only if for any nonzero vector u ∈ Fn
2 \ {0} of weight less

than or equal to k, its autocorrelation function vanishes at vector
u, i.e. rf (u) = 0.

4. The Maiorana-McFarland Construction

The Maiorana-McFarland construction was originally designed
to build bent function (see [3]). It has been extended in [1] to
build resilient functions. Here, we extend it again according to a
technique similar to those proposed in [2].

Let n ≥ 2 be an integer and Fn
2 = E ⊕ F a decomposition into

two complementary vector subspaces : E of dimension p and F of
dimension q = n− p.

For any mapping π : E → Fn
2 and any mapping h : E → F2

the Maiorana-McFarland construction defines a Boolean function
f as follows :

J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA’05
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f : E ⊕ F → F2

x+ y 7→ π(x) · y + h(x) .

The mapping π is defined onto Fn
2 , but as π(x) is only involved

by an inner product with an element of F , the value of f is un-
changed when π(x) is translated by any vector in F⊥. Thus, π
may be considered to be defined onto the quotient space Fn

2/F
⊥,

which is isomorphic to E⊥.
The traditional definition appears to be a particular case of

this definition by considering E = {(x1, . . . , xn) ∈ Fn
2 | xp+1 =

0, . . . , xn = 0} and F = {(x1, . . . , xn) ∈ Fn
2 | x1 = 0, . . . , xp = 0}.

Conversely, any linear equivalent of the classical Maiorana-
McFarland construction may be obtained by the way presented
here.

In order to establish the correlation properties of the function
f , the following proposition expresses the Walsh transform.

Proposition 4.1. For any w ∈ Fn
2 , let w = u + v be the unique

decomposition of w in the direct sum E⊥ ⊕ F⊥ with u ∈ E⊥ and
v ∈ F⊥.

f̂χ(u+ v) = 2q
∑

x∈π−1(u)

(−1)h(x)+v·x (1)

Proof. By definition, for any w ∈ Fn
2 ,

f̂χ(w) =
∑

(x,y)∈E×F

(−1)π(x)·y+h(x)+w·(x+y)

=
∑
x∈E

(−1)h(x)+w·x
∑
y∈F

(−1)(π(x)+w)·y

The latter sum equals |F | = 2q if π(x) + w ∈ F⊥ and 0 else-
where. Thus, the only nonzero terms in the above sum are those
such as π(x) ∈ w+F⊥. As, x ∈ E in the sum, w ·x = u ·x+v ·x =
v · x. Moreover, π(x) ∈ w + F⊥ ⇔ x ∈ π−1(u) and the result
holds. �

In order to study resiliency, we are interested in the case where
the Walsh transform vanishes. This occurs in two cases : either
if π−1(u) is empty or if the function x 7→ h(x) + v · x is balanced
on the subset π−1(u) of E. This latter property is not so easy to
check in general. An interesting particular case is when π−1(u) is
an affine subspace of E.
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Proposition 4.2. Let u be an element of E⊥, if the preimage
π−1(u) is the affine subspace of E defined by direction Vu and
element xu, then, for all v ∈ F⊥,

f̂χ(u+ v) = 2q(−1)v·xu (̂hu)χ(v),

where hu denotes the Boolean function on Vn defined by t 7→ h(t+
xu).

Proof. Set x = t+ xu in the sum of expression (1) and the result
holds. �

In order to establish propagation properties of the function f ,
the following proposition expresses the autocorrelation function.

Proposition 4.3. For any z ∈ Fn
2 , let z = x + y the unique

decomposition of z in the direct sum E⊕F with x ∈ E and y ∈ F .

rf (x+ y) = 2q
∑

t∈E|π(t)+π(t+x)∈F⊥

(−1)h(t)+h(t+x)+π(t)·y.

Proof.

rf (x+ y) =
∑

(t,s)∈E×F

(−1)π(t)·s+h(t)+π(t+x)·(s+y)+h(t+x)

=
∑
t∈E

(−1)h(t)+h(t+x)+π(t+x)·y
∑
s∈F

(−1)(π(t)+π(t+x))·s

The latter sum equals |F | = 2q if π(t) and π(t+ x) belong to the
same F⊥–coset, and equals 0 elsewhere. Thus, the only nonzero
terms are those for which π(t) + π(t+ x) ∈ F⊥. �

If x = 0, then any t in E satisfies the condition π(t)+π(t+x) =
0 ∈ F⊥. Thus for any y ∈ F ,

rf (y) = 2q
∑
t∈E

(−1)π(t)·y.

Let u = π(t). For any y in F ,

rf (y) = 2q
∑

u∈E⊥

ψ(u)(−1)u·y = 2qψ̂(y), (2)

where, for any u ∈ E⊥, the value ψ(u) is the number of elements
of the preimage π−1(u).
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8 P. GUILLOT

5. Practical constructions

5.1. π is one-to-one

We assume in this section, that for any u ∈ E⊥, the preimage
π−1(u) contains at most one element. This is possible only if
p ≤ q. If this preimage is nonempty, then the vector space Vu of
proposition 4.1 is always the null vector space and (̂hu)χ(u) = ±1.
Consequently, for all (u, v) ∈ E⊥ × F⊥,

f̂χ(u+ v) =
{
±2q if π−1(u) 6= ∅;
0 elsewhere. (3)

The assumption on π implies that for all t and x in E,

π(t) + π(t+ x) ∈ F⊥ ⇐⇒ x = 0.

From proposition 4.3, if x 6= 0 then rf (x+y) = 0. Finally, from
relation (2), for all (x, y) ∈ E × F ,

rf (x+ y) =
{

2qϕ̂π(E)(y) if x = 0;
0 elsewhere, (4)

where ϕπ(E) denotes the indicator of the image π(E) in E⊥.
From relation (3), the following correlation properties of f are

deduced:

• f is balanced if and only if f̂χ(0) = 0, i.e. 0 6∈ π(E). This
requires in particular p < q.

• If for all x ∈ E, the coset leaders of π(x) + F⊥, which
are by definition the element of lowest weight, have weight
at least k, then f̂χ vanishes for all vectors of weight < k.
Therefore, f is (k − 1)-resilient.

• As f̂χ has constant magnitude equal to 2q, the nonlinearity
of f is δ(f) = 2n−1 − 2q−1.

From relation (4), the following propagation properties of f are
deduced:

• As rf (z) is nonzero only for z ∈ F , if F has minimum dis-
tance d, then f satisfies the propagation criterion PC(d−
1).
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CRYPTOGRAPHICAL BOOLEAN FUNCTIONS 9

• The distance from f to the set of linear structures depends
on the nonlinearity of the π(E) indicator ϕπ(E). Namely,

σ(f) = 2n−2 − 2q−2 max
u∈E⊥\{0}

|ϕ̂π(E)(u)|.

In particular, if π(E) spans the whole space Fn
2 , then no nonzero

linear form is constant over π(E) and f is non degenerate in the
sense that it is not affinely equivalent to a Boolean function of
strictly less variables.

Relation (4) shows that the propagation order may be increased
if ϕπ(E) is chosen resilient. But on the other hand, due to the
Sarkar-Maitra’s bound (see [5]), this increases the greatest mag-
nitude of the autocorrelation function and thus decreases the dis-
tance from the set of linear structures.

Note that the cryptographic properties of f only depend on the
properties of the vector space F and of the image π(E). Once the
image π(E) and the vector space chosen, choice of permutation π
and Boolean function h lead to 2p! × 22p

different functions with
similar cryptographic properties.

By an appropriate choice of π or h, the algebraic degree of f
can be increased to the maximum value, which equals p.

Unfortunately, the following proposition states that, when π is
one-to-one, no better resiliency order than the classical construc-
tion can be expected.

Proposition 5.1. If π is one-to-one, then the maximum resiliency
order k reached by such a construction satisfies

2p ≤
(

q

k + 1

)
+

(
q

k + 2

)
+ · · ·+

(
q

q

)
(5)

This is based on the following result:

Lemma 5.2. Let C be any d-dimensional vector subspace of Fn
2 .

For any integer k such that 0 ≤ k ≤ n − d, Then there exists at
least

N = 1 +
(
n− d

1

)
+ · · ·+

(
n− d

k

)
(6)

coset leaders of C of weight less than or equal to k.
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Proof. Without a loss of generality, one may assume that a gen-
erator matrix of C is of the systematic form

G =

 1
. . . A

1


with information positions on the d first components. Each coset
admits a unique element that vanishes on the information set,
namely of the form x = (0, . . . , 0, xd+1, . . . , xn). The correspond-
ing coset leader has necessarily lower weight than x. The value of
N in (6) is the number of such vector x of weight ≤ k. �

Proof. (of proposition 5.1) Inequality (5) in proposition 5.1 states
that the number of coset leaders of weight > k given by lemma 5.2,
is greater than or equal to the number of vectors in E. �

Example. Let p = 4 and q = 5 and F be the 5-dimensional vector
space given by the generator matrix

GF =


1 0 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1
0 0 1 0 0 1 0 1 0
0 0 0 1 0 0 0 1 1
0 0 0 0 1 1 1 0 0

 .

This vector space has minimum distance d = 3, thus the function
f satisfies PC(2). A generator matrix of the dual space F⊥ is

GF⊥ =


0 0 1 0 1 1 0 0 0
1 1 0 0 1 0 1 0 0
1 0 1 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1

 .

The 2p = 16 cosets defined by vectors u = (u1, . . . , u5, 0, 0, 0, 0)
with (u1, . . . , xu) ∈ {00011, 00101, 00110, 00111, 1001, 1011, 1100,
1110, 1111, 10001, 10010, 10101, 10110, 10111, 11000, 11001} only
contain vectors of weight ≥ 2. Consequently, the function f is 1-
resilient.

As maxu∈Fn
2
|f̂χ(u)| = 32, the nonlinearity of f is δ(f) = 28 −

24 = 240.
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For all x ∈ F5
2\{0}, the indicator of π(E) satisfies, |ϕ̂π(E)(x)| ≤

4, thus maxz∈Fn
2 \{0} |rf (z)| = 128 and the distance from f to the

set of linear structures is σ(f) = 128− 32 = 96.

5.2. π is two-to-one

In this section, we assume that π is a two-to-one mapping, that
is to say, for any u in π(E), the preimage π−1(u) contains exactly
two elements, namely xu and x′u. This implies p+ 1 ≥ q.

We first examine the Walsh transform of f in such a case. As
any pair is a one-dimensional affine subspace, the proposition 4.2
is applicable. With the notations of proposition 4.2, Vu is the
vector space {0, xu + x′u} and for any v ∈ F⊥,

(̂hu)χ(v) = (−1)h(xu)+v·xu + (−1)h(x′u)+v·x′u

=

{
0 if h(xu) + h(x′u) 6= v · (xu + x′u);
±2 elsewhere.

For convenience, let H denote the Boolean mapping on F⊥

defined by H : x 7→ h(xu) + h(x′u). The Walsh transform of f is
expressed, for any u ∈ E⊥ and any v ∈ F⊥:

f̂χ(u+v) =

{
0 if either π−1(u) = ∅ or H(u) 6= v · (xu + x′u);
±2q+1 elsewhere.

(7)
In particular, f is balanced if either no vector of E maps to 0

by π or h(x0) 6= h(x′0).
We study now the autocorrelation function of f .
For any t and x in E, if x 6= 0, then stating that π(t) and

π(t + x) belong to the same F⊥–coset defined by vector u ∈ E⊥

means that {t, t+x} is precisely the pair {xu, x
′
u} for this coset, and

xu + x′u = x. Thus, from proposition 4.3, and as the pair {xu, x
′
u}

appears for both xu = t and xu = t + x, for any x ∈ E \ {0} and
any y ∈ F ,

rf (x+ y) = 2q+1
∑

u∈E⊥|xu+x′u=x

(−1)H(u)+u·y. (8)

Maximizing the propagation order requires that the autocor-
relation function has as many zero values as possible. If for any
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u ∈ E⊥ the sum xu + x′u is a constant x0 independent of u, then
the sum (8) is nonzero only for x = 0 or x = x0. Let us study this
particular case now.

Relation (7) becomes, for any u ∈ E⊥ and v ∈ F⊥:

f̂χ(u+ v) =

{
0 if either π−1(u) = ∅ or H(u) 6= v · x0;
±2q+1 elsewhere.

(9)

Let F ′ be the vector subspace of F⊥ defined by F ′ = {v ∈
F⊥ | v · x0 = 0}. As x0 ∈ E, then x0 6∈ F . Therefore, F ′ is a
hyperplane of F⊥. Each F⊥-coset is the union of two F ′-cosets
defined by the value ε of the linear form v 7→ v · x0. Thus, each
F ′-coset is characterized by a vector u ∈ E⊥ that defines a F⊥-
coset, and a value ε ∈ F2. If any coset defined by u ∈ E⊥ and
εu ∈ F2 such that H(u) = εu only contains vectors of weight ≥ k,
then, from relation (9), the function f is (k − 1)-resilient.

To maximize the resiliency order, for any F⊥–coset Fu defined
by vector u ∈ E⊥, one may choose h(xu) at random in F2 and
define h(x′u) such that h(xu) + h(x′u) = εu, where εu defines the
F ′–coset in Fu which has the greatest minimum weight.

For the propagation point of view, the autocorrelation function
has to be considered. Let G be the real valued function defined
for any u ∈ E⊥ by

G(u) = ϕπ(E)(u)Hχ(u) =


0 if u 6∈ π(E);
1 if u ∈ π(E) and H(u) = 0;
−1 if u ∈ π(E) and H(u) = 1.

(10)
Relation (8) becomes, for any x ∈ E and y ∈ F :

rf (x+y) =


2q+1ϕ̂π(E)(y) if x = 0, i.e. x+ y ∈ F ;
2q+1Ĝ(y) if x = x0, i.e. x+ y ∈ x0 + F ;
0 elsewhere.

(11)

It results from this relation that, if vector space F and the
coset x0 + F have minimum nonzero weight k, then f satisfies
PC(k − 1), and also, let M be the maximum of maxy∈F |Ĝ(y)|
and maxy∈F\{0} |ϕ̂π(E)(y)|, the distance of f from the set of linear
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structures is

σ(f) = 2n−2 − 2q−1M.

Example. The following example shows the construction of a 10
variable 2-resilient and PC(2) Boolean function f with δ(f) = 480
and σ(f) = 96.

Let p = 5 and q = 5 and F be the 5-dimensional vector space
given by the following generator matrix :

GF =


1 0 0 0 0 1 0 1 1 0
0 1 0 0 0 1 0 1 0 1
0 0 1 0 0 0 1 1 0 1
0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 0 0 1 1 1

 .

The vector space F has minimum distance d = 4. Let E be the
complementary space of F of vectors whose 5 first components are
null. Let x0 be the element of E equal to (0, 0, 0, 0, 0, 1, 1, 0, 1, 0).
All the vectors in the coset x0 + F are of weight ≥ 3, thus the
constructed function f satisfies PC(2).

Let E be the set of vectors u = (u1, . . . , u5, 0, . . . , 0), with
u1 · · ·u5 ∈ {00000, 10100, 01100, 01010, 11010, 10110, 11110,
00001, 10101, 01101, 11101, 10011, 01011, 11011, 10111, 01111}.
The 16 cosets u + F⊥, with u ∈ E are split by the linear form
t 7→ x0 · t, into two subsets and one of them only contains vectors
of weight ≥ 3. For any u ∈ E , let εu ∈ {0, 1} be such that the
coset {t ∈ u+F | x0 · t = εu} only contains vectors of weight ≥ 3.
The values of εu are respectively 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1,
0, 0, 1, 1. Thus it is possible to construct a 2-resilient function:

• define the image π(E) = E , and for any t ∈ E′, choose
once the same element in E for π(t) and π(t+ x0);

• for any t ∈ E′, let u = π(t). Choose randomly h(t) and
define h(t+ x0) = h(t) + εu.

As maxu∈Fn
2
|f̂χ(u)| = 64, the nonlinearity of f is δ(f) = 29 −

25 = 480.
For all x ∈ F5

2\{0}, the indicator of π(E) satisfies, |ϕ̂π(E)(x)| ≤
6, and for all x ∈ F5

2, the function G defined by relation (10) satis-
fies |Ĝ(x)| ≤ 10, thus maxz∈Fn

2 \{0} |rf (z)| = 640 and the distance
from f to the set of linear structures is σ(f) = 256− 160 = 96.
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6. Conclusion

We have studied a family of Boolean functions defined on a di-
rect sum E⊕F of the whole space Fn

2 , similarly to the Maiorana-
McFarland construction. The cryptographic properties of the ob-
tained functions depend on the parameters of the vector subspace
F , seen as a linear code. In a particular construction, the vector
space E is split as a union of affine subspaces. The two cases
of affine subspaces of dimension 0 and 1 have been studied, en-
hancing the cryptographic properties of the constructed Boolean
functions.

It remains to study other decompositions of vector space E as
union of affine subspaces of greater dimension. Another research
direction is to consider E as a union of quasi-disjoint vector spaces,
that is to say vector spaces that intersect only on the zero vector.

Other important cryptographic parameters, such as algebraic
immunity, have also to be considered and studied.
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