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Abstract — To communicate an r-bit secret s
through a wire-tap channel, the syndrome coding
strategy consists of choosing a linear transforma-
tion h and transmitting an n-bit vector x such
that h(x) = s. The receiver obtains a corrupted
version of x and the eavesdropper an even more
corrupted version of x: the (syndrome) function h
should be chosen in such a way as to minimize
both the length n of the transmitted vector and
the information leakage to the eavesdropper. We
give a refined analysis of the information leakage
that involves m-th moment methods.

I. Introduction

The wire-tap channel was introduced by Wyner [11],
as a special case of a broadcast channel defined by
Cover [4](one sender, two receivers subjected to discrete
memoriless channels). In this model Alice transmits a
n-bit string x to Bob who receives a corrupted version
y while the eavesdropper Eve receives an even more
strongly corrupted string z. Alice would like to trans-
mit a secret string s of length r to Bob while ensuring
that almost no information about s is leaked to Eve. In
his original paper [11] Wyner solved the capacity prob-
lem when both Bob’s and Eve’s channels are discrete and
memoriless. His method is existential and non-effective.
The problem was then generalized by not requiring that
Eve’s reception be a degraded version of Bob’s and solved
in [6]. Wyner also introduced syndrome coding to solve
the particular case when the main channel (between Alice
and Bob) is noiseless and Eve receives x corrupted by a
binary symmetric channel with transition probability p.

In short, let σ be the syndrome function of some linear
code C. This just means that σ is the function

σ : {0, 1}n −→ {0, 1}r

x 7→ H tx

for some r × n matrix H that can be thought of as a
parity-check matrix of some linear code C.

Let s ∈ {0, 1}r be the secret message Alice wants to
transmit to Bob. Alice sends over the channel a vector
x ∈ {0, 1}n, randomly chosen among all vectors such that
σ(x) = s. Wyner shows by a non-constructive argument
that, as long as the size r of the syndrome space is chosen
to be smaller than the Shannon entropy of the binary

symmetric channel, there exist codes that leak a vanishing
proportion (with respect to the length r of the secret) of
information bits on the secret to Eve.

In the present paper we shall be interested in more gen-
eral additive channels: this means that if x is transmitted
from Alice to Bob, Eve receives

z = x + b

where b ∈ {0, 1}n is a random variable with any given
probability distribution.

Wire-tap channels were rejuvenated during the 1990’s
under the name of privacy amplification [1]. The problem
under study is a slight variation of the original wire-tap
problem. In this setting Alice and Bob just want to share
a common secret s ∈ {0, 1}r, but they don’t care what
its actual value is: indeed, they want this value to be as
random as possible because its purpose is to be a shared
secret key for a classical cryptographic cipher, for exam-
ple. The overall strategy in this case is similar, it is again
for Alice to send Bob a message x, and to decide with
Bob that their shared secret will be s = h(x) where h
is a properly chosen function. The goal is to minimize
the quantity of information bits leaked to Eve, i.e. the
quantity

H(h(x) |x + b). (1)

The main difference between transmitting a secret (wire-
tap channel) and sharing a secret (privacy amplification)
is that in the latter case one has more leeway in choos-
ing the function h. In particular it does not matter if we
don’t know how to find x such that h(x) equals a given se-
cret s. We only need to ensure that randomly choosing x
produces a uniformly distributed secret s.

The paper [1] strengthens Wyner’s result in the follow-
ing sense: channels are more general and the estimate of
the number of bits leaked to Eve is stronger. Specifically,
in the setting of additive channels, it shows that if the size
r of the secret space is taken to equal the Renyi entropy
of b, then the average number of information bits leaked
to Eve (1) when h is randomly chosen from a family H,
is not more than 1 and can be made exponentially small
in r, if r is taken to be smaller than the Renyi entropy
of b. For this to work, it is enough that H be a universal
class of (hash) functions. Note that it applies in particu-
lar when H is the set of syndrome (i.e. linear) functions,
so that these results are applicable to the wire-tap setting
as well.



Finally let us mention yet another set of relevant re-
sults from another school, that of “extracting random-
ness”, see e.g. [9, 10, 7]. The purpose is not necessar-
ily motivated by cryptography and more generally is to
transform a non-uniform random source b into an almost
uniformly distributed random variable h(b) by applying
a randomly chosen function h from a class H. The goal
is usually not so much to obtain an ultra-fine measure of
the closeness to the uniform distribution of h(b), but to
minimize the amount of randomness in the choosing of h
by making the size of the class of functions H as small
as possible. The source b this time can have any prob-
ability distribution, but the maximum length of the “se-
cret” h(b) is the min-entropy of b (rather than its Renyi
entropy). The quality of the distribution D of h(b) is
measured by the average (over all possible functions h) of
the L1-distance between D and the uniform distribution.

The motivation for the present paper is the need for a
stronger measure of the closeness to the uniform distribu-
tion of the functions h(b). This is best illustrated with a
real-life cryptographic example. Take the example of syn-
drome coding for the wiretap channel, so that if Eve com-
putes σ(z) = s + σ(b) from the received vector, she gets
the secret s corrupted by the random quantity σ(b). Sup-
pose the length of the secret s is that of a standard secret-
key cryptosystem, e.g. r = 128 bits. Even if the difference
in Shannon entropy (or for that matter the L1-distance)
between the probability distribution of σ(b) and that of
the uniform distribution is only a fraction of a bit, say ε,
this does not necessarily rule out the existence of nasty
cryptanalytic attacks. For example, take the probabil-
ity measure P on {0, 1}r such that P (v) = 1/1000, and
P (s) = (1− 1/1000)/(2r − 1) for s 6= v. Then the differ-
ence of P to the uniform distribution, measured both in
Shannon entropy or in L1-distance, is about one tenth of
a bit. However, the attacker will bet on the most proba-
ble syndrome value v, and be right (and therefore discover
the secret key s) on average once in a thousand. This is
in practice an unacceptable level of security.

We see therefore that the measures of the randomness
of σ(b) highlighted above are not always of sufficient qual-
ity to defend against the existence of this sort of attack.
This is made worse by the fact that results that rely upon
universal hashing are averaged on the choice of the func-
tion h (in our case the syndrome function σ). If one
wants a fixed hash function h, how does one choose it ?
If a randomly chosen h leaks on average ε bits, we know
that there must exist an h that leaks not more than ε
bits. However this is highly non-constructive, we have
no way of making sure a given h is good enough. We
can avoid this difficulty with probability estimates, but
since we hardly have anything else at our disposal besides
Markov inequality, this degrades the randomness estimate
(we can guarantee that with probability 1− 1/100, h will
leak not more than 100ε bits).

To counteract the most-likely-syndrome attack, one

must show that the most likely syndrome σ(b) does not
have too high a probability of occurence. To this end we
shall look for a lower bound on the min-entropy of the dis-
tribution of σ(b), i.e. − log2(maxv∈{0,1}r P (σ(b) = v).
We shall take a renewed look at the syndrome coding
strategy for the wire-tap channel: our main result is the
following theorem.

Theorem 1 Let b be a random binary vector of length
n with a fixed probability distribution, with min-entropy
H∞(b) = r. Let H be a uniformly randomly chosen
r × n binary matrix, and let σ be the associated syn-
drome function. The probability, over the choice of H,
that H∞(σ(b)) < r − log2(1 + 2m) is not more than
2−3m2/4+m+r.

To illustrate this result, take up again the above nu-
merical example: suppose b is any random source with
min-entropy at least equal to the secret size of r = 128
bits. Set m = 2(r)1/2. Then, by choosing the linear func-
tion σ at random, we can guarantee that with probability
at least 1−2−233, every syndrome value has a probability
of occurence less than 2−105.

As another illustration, pick a m such that
m = o(r) = o(m2); e.g., m = r/log r.
Then P (H∞(σ(b)) < r − o(r)) ≤ 2−3r2/4(1−o(1)).

II. Informational and coding tools

We shall use the following notions (see [5] for details):

• H(X) : (Shannon) entropy of a random variable X.
This is the usual entropy in communications, source
and channel coding.

H(X) :=
∑

x

P (X = x) log2(1/P (X = x)).

• H(R|T ) = ET [H(R|T = t)] is the conditional en-
tropy or equivocation of T about R.

• R(X) : Renyi entropy (of order two). Denote by
Pc(X) = ΣxP (X = x)2 the (collision) probabil-
ity that X takes the same value twice after two
random independent experiments. Then R(X) :=
− log2(Pc(X)).

Renyi entropy is used to measure randomness pro-
duced by universal hashing (see, e.g., [1]).

• H∞(X): min-entropy of X.

H∞(X) := Max {j : ∀x : Pr{X = x} ≤ 2−j},
Equivalently, H∞(X) = − log2(maxx P (X = x)).

H∞(X) measures the minimum amount of informa-
tion conveyed by a realization of X; it is also the
minimum work factor for an adversarial guessing
strategy (namely, bet on the most probable out-
come).



By noting that

(max
i
{pi})2 ≤ Σp2

i ≤ (max
i
{pi})(Σpi) = max

i
{pi},

we get: H∞(X) ≤ R(X) ≤ 2H∞(X).

It is also easy to check that R(X) ≤ H(X).

We also need some coding terminology (see [2] for an
account centered on coverings): A code C has param-
eters [n, k] if it is a linear subspace of dimension k of
the n-dimensional binary Hamming space (hypercube).
A parity-check matrix H is formed by writing as rows a
basis of the dual code. This means that if the syndrome
function associated to the matrix H is defined by:

σ : {0, 1}n −→ {0, 1}r

x 7→ H tx

then the code C is the set of vectors x such that σ(x) = 0.

III. The coset-coding scheme

A. Description
Let C denote a binary linear code of length n together

with an r × n parity-check matrix H.
Let the secret s be a given vector in the syndrome space

{0, 1}r.
Let the vector x be chosen uniformly among the vectors

of syndrome s (i.e. in a given coset of C). Note that this
is constructive:

1. Pick an “easy” vector y with syndrome s (For ex-
ample, if H is in systematic form,

H = [Ir | P], where Ir is the identity matrix of
order r:

y = Σi∈supp(s)e
i, with {ei} the natural basis.)

2. Add a random c ∈ C, i.e. a random combination of
n− r generating codewords, to y;

3. Transmit x = y + c.

B. Eavesdropper’s uncertainty
Given z = x + b, Eve can compute σ(z) = s + σ(b),

which we can state informally by saying that the eaves-
dropper is submitted to a one-time pad in the syndrome
space. In the syndrome space, we see therefore that Eve’s
equivocation on the secret s is directly linked to the close-
ness to the uniform distribution of s. However, since Eve
also has x + b, one might be object that Eve does not
necessarily have to be bound by the syndrome space: but
a little thought shows that this is indeed the case. In
other words, whatever Eve can do with x+b, she can do
with s + σ(b) alone.

More formally, start by noticing that

H(s | x + b)−H(s | s + Htb) ≤ 0.

This is because, since s + Htb is a function of x + b,
knowledge of x + b can only yield more knowledge (and

less uncertainty) than s + Htb. Let us now prove the
reverse inequality: we have H(s | x+b)−H(s | s+Htb)

= H(s,x + b)−H(x + b)
−H(s, s + Htb) + H(s + Htb)

= H(s,x + b, s + Htb)−H(s, s + Htb)
−[H(x + b, s + Htb)−H(s + Htb)]

= H(x + b | s, s + Htb)−H(x + b | s + Htb)
≥ H(x | s,b)−H(x + b | s + Htb)
= H(x | s)−H(x + b | s + Htb)
≥ 0,

where the last inequality is due to x being uniformly dis-
tributed among vectors with syndrome s, hence the max-
imality of H(x | s).

We have therefore proved that H(s | x+b) = H(s | s+
Htb), meaning that there is no advantage for the eaves-
dropper in possessing x+b on top of its syndrome. Note
that we did not need to suppose anything on the distri-
bution of s.

IV. The m-th moment method

This section is devoted to the proof of Theorem 1. We
shall treat the noise b as a random variable with prob-
ability distribution P , i.e. for any x ∈ {0, 1}n, we have
P (b = x) = P (x). We start with the immediate

Lemma 1 For x 6= 0, s fixed, H uniformly distributed:
Pr{H tx = s} = 2−r.

For any given x 6= 0 and s define the Bernoulli ran-
dom variable Xx,s = 1 if H tx = s, Xx,s = 0 otherwise;
Lemma 1 translates as:

E[Xx,s] = 2−r.

Now define the random variable Xs =
Σx∈{0,1}n,x6=0P (x)Xx,s. For s 6= 0, this quantity
equals the probability that σ(b) equals s, viewed as a
random quantity over the space of matrices H. The
probability that σ(b) equals the zero syndrome is:

P (0) + Σx6=0P (x)Xx,0.

The core result is the following:

Lemma 2 If r ≤ H∞(b), then, for any s ∈ {0, 1}r and
for any integer m ≤ r, E[Xm

s ] ≤ 2m+m2/4−mr.

Proof of Lemma 2: Denote V = {0, 1}n. Let rk de-
note the linear rank function: the mth moment E[Xm

s ]
satisfies (2) − −(7) (see next page). To obtain (4), con-
sider that to generate all m-tuples of rank j, one may
first choose j coordinates among m, then choose a full-
rank j-tuple on these coordinates, and fill in the remain-
ing coordinates. Furthermore, if xj+1, . . . ,xm are linear
combinations of x1, . . .xj , then the (Bernoulli) random
variable Xx1,s . . . Xxm,s either equals Xx1,s . . . Xxj ,s, or



E[Xm
s ] =

∑
(x1,...xm)∈(V \{0})m

P (x1) . . . P (xm)E[Xx1,s . . . Xxm,s] (2)

=
m∑

j=1

∑
rk(x1,...xm)=j

P (x1) . . . P (xm)E[Xx1,s . . . Xxm,s] (3)

≤
m∑

j=1

(
m

j

) ∑
rk(x1,...xm)=rk(x1,...xj)=j

P (x1) . . . P (xj) . . . P (xm)E[Xx1,s . . . Xxj ,s] (4)

≤
m∑

j=1

(
m

j

) ∑
(x1,...xj)∈(V \{0})j

2j(m−j)P (x1) . . . P (xj)(max
u∈V

P (u))m−jE[Xx1,s]j (5)

≤
m∑

j=1

(
m

j

)
2m2/42−r(m−j)

∑
(x1,...xj)∈(V \{0})j

P (x1) . . . P (xj)2−jr (6)

≤ 2m2/4+m2−mr. (7)

equals zero (if s 6= 0 and some xi, i > j, is an even-weight
linear combination of x1, . . .xj).

To obtain (5), use the fact that x1, . . . ,xj are lin-
early independent implies that the random variables
Xx1,s . . . Xxj ,s are independent.

To obtain (6), recall that the hypothesis r ≤ H∞(b)
means that P (u) ≤ 2−r for any u ∈ V . Bound from
above all terms 2j(m−j) by 2m2/4 and apply Lemma 1 to
E[Xx1,s].

Finally, since P is a probability measure, the sums∑
P (x1) . . . P (xj) equal (1 − P (0))j and are upper

bounded by 1.

Proof of Theorem 1: We invoke the “Markov Inequality
of order m”, stating that for a positive random variable
Y and real number λ: P (Y > λ} ≤ E[Y m]/λm.

We apply it to Y = Xs, λ = 2m−r, which yields:
P (Xs > 2m−r) ≤ 2−3m2/4+m. Apply the union bound
to obtain P (∃s | Xs > 2m−r) ≤ 2−3m2/4+m+r. This
means exactly that with probability ≥ 1− 2−3m2/4+m+r

the most likely value of σ(b) occurs with probability not
more than P (0) + 2m−r ≤ 2−r(1 + 2m).

V. Concluding remarks

Note that, in exchange for a stronger requirement on b
than the one in Theorem 3 of [1] (namely, in terms of min-
entropy instead of Renyi’s), we obtain a stronger result
in some respects:

– a lower bound on H∞(σ(b)), implying a fortiori one
on R(σ(b));

– very strong concentration behavior for H∞(σ(b)),
that cannot be obtained by averaging arguments
(Markov inequalities of order 1) alone.

Furthermore, Theorem 1 can be seen to extend to the
case when Bob is subjected himself to a noisy channel.

This has a natural application to biometry [3], where the
“biometric noise” b represents in fact the traits of the
user: in this context, the quantities x + b for each user
are stored in some database, and it should be impossible
to extract from it any information on the secret s with-
out explicit knowledge of the user’s biometric data. The
only natural statistical assumption on this sort of noise
is additivity. Thus our results, valid irrespectively of the
distribution of syndromes, can be put to use. One last
point: by allowing some leeway in the choice of r, i.e.
picking r such that H(b) = r(1 + γ) for some positive γ,
we can refine the upper bounding of E[Xm

s ] in Lemma 2
and get an improved bound on H∞(σ(b)).
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