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Abstract

The recently developed algebraic attacks apply to all keystream genera-
tors whose internal state is updated by a linear transition function, includ-
ing LFSR-based generators. Here, we describe this type of attacks and we
present some open problems related to its complexity. We also investigate the
design criteria which may guarantee a high resistance to algebraic attacks for
a keystream generator based on a linear transition function.

1 Introduction

In an additive stream cipher, the ciphertext is obtained by adding bitwise the plain-
text to a pseudo-random sequence called the keystream. The keystream generator
is a finite state automaton whose initial internal state is derived from the secret key
and from a public initial value by a key-loading algorithm. At each time unit, the
keystream digit produced by the generator is obtained by applying a filtering func-
tion to the current internal state. The internal state is then updated by a transition
function. Both filtering function and transition function must be chosen carefully
in order to make the underlying cipher resistant to known-plaintext attacks. In
particular, the filtering function must not leak too much information on the internal
state and the transition function must guarantee that the sequence formed by the
successive internal states has a high period.

Stream ciphers are mainly devoted to applications which require either an ex-
ceptional encryption rate or an extremely low implementation cost in hardware.
Therefore, a linear transition function seems to be a relevant choice as soon as the
filtering function breaks the inherent linearity. Amongst all possible linear transition
functions, those based on LFSRs are very popular because they are appropriate for
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low-cost hardware implementations, produce sequences with good statistical prop-
erties and can be easily analyzed. LFSR-based generators have been extensively
studied. It is known that the involved filtering function must satisfy some well-
defined criteria (such as a high nonlinearity, a high correlation-immunity order,...),
and the designers of such generators now provide evidence that their ciphers cannot
be broken by the classical attacks.

However, the recent progress in research related to algebraic attacks, introduced
by Courtois and Meier [8], seems to threaten all keystream generators based on
a linear transition function. In this context, it is important to determine whether
such ciphers are still secure or not. Here, we investigate some related open problems,
concerning the complexity of algebraic attacks (and of their variants) and concerning
the design criteria of LFSR-based stream ciphers which guarantee a high resistance
to these cryptanalytic techniques.

2 Basic principle of algebraic attacks

Here, we focus on binary keystream generators based on a linear transition function,
which can be described as follows. We denote by xt the n-bit internal state of the
generator at time t. The filtering function f is first assumed to be a Boolean function
of n variables, i.e., that at time t the generator outputs only one bit, st = f(xt).
The transition function is supposed to be linear and is denoted by L : Fn

2 → Fn
2 .

Therefore, we have
st = f(Lt(x0)) ,

where x0 is the initial state. We only consider the case where both the filtering
function and the transition function are publicly known, i.e., independent from the
secret key.

The basic principle of algebraic attacks goes back to Shannon’s work: these
techniques consist in expressing the whole cipher as a large system of multivari-
ate algebraic equations, which can be solved to recover the secret key. A major
parameter which influences the complexity of such an attack is then the degree of
the underlying algebraic system. When the transition is linear, any keystream bit
can obviously be expressed as a function of degree deg(f) in the initial state bits.
Therefore, it is known for a long time that the filtering function involved in such a
stream cipher must have high degree.

However, as pointed out by Courtois and Meier [8], the keystream generator may
be vulnerable to algebraic attacks even if the degree of the algebraic function is high.
Actually, the attack applies as soon as there exist relations of low degree between
the output and the inputs of the filtering function f . Such relations correspond to
low degree multiples of f , i.e., to relations g(x)f(x) = h(x) for some g where h has
a low degree. But it was proved in [13, 14] that, in the case of algebraic attacks over
F2, the existence of any such relation is equivalent to the existence of a low degree
function in the annihilator ideal of f or of (1 + f). Indeed, if g(x)f(x) = h(x) with
deg(h) ≤ d, we obtain, by multiplying this equation by f(x), that

g(x) [f(x)]2 = h(x)f(x) = g(x)f(x) = h(x) ,

leading to h(x) [1 + f(x)] = 0.
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Let AN(f) denote the annihilator ideal of f , AN(f) = {g | g(x)f(x) = 0, ∀x}.
Since the keystream bit at time t is defined by st = f ◦ Lt(x0), we deduce that:

• if st = 1, any function g in AN(f) leads to g ◦ Lt(x0) = 0 for all t ≥ 0;

• if st = 0, any function g′ in AN(1 + f) leads to g′ ◦ Lt(x0) = 0 for all t ≥ 0.

Therefore, if we collect the relations provided by all functions of degree at most d in
AN(f)∪AN(f +1) for N known keystream bits, we obtain a system of equations of
degree d depending on n variables, which correspond to the bits of the initial state.
Solving such a multivariate polynomial system is a typical problem studied in Alge-
braic Geometry and Commutative Algebra. The main known algorithms (from the
simplest to the most efficient one) are the method of linearization, XL, Buchberger
algorithms, F4 and F5. These algorithms have different time complexities and they
do not require the same number of independent equations. Even if they are essen-
tial ingredients of algebraic attacks, these algorithms are not investigated here (see
e.g. [12, 4] for recent results on the relationships between these techniques).

In order to get a rough estimate of the complexity of algebraic attacks for deter-
mining the suitable parameters for the keystream generator, we only focus on the
simplest technique, called linearization. It consists in identifying the system with a
linear system of

∑d
i=1

(
n
i

)
variables, where each product of i bits of the initial state

(1 ≤ i ≤ d) is seen as a new variable. The entire initial state is then recovered by a
Gaussian reduction (or by more sophisticated techniques) whose time complexity is
roughly (

d∑
i=1

(
n

i

))ω

' nωd ,

where ω is the exponent of the matrix inversion algorithm, i.e., ω ' 2.37 [6].
However, the system can be solved only if we are able to collect

∑d
i=1

(
n
i

)
linearly

independent equations. The problem of determining the rank of the set g ◦ Lt(x)
for all 0 ≤ t < N and all g of degree at most d in AN(f) ∪AN(1 + f) is still open.
For instance, a function g in AN(f) may be invariant under composition by the
transition function. Another open problem related to the complexity of the attack
is to determine the proportion of monomials of degree at most d that appear in the
system. This proportion may vary with the transition function.

3 Complexity of algebraic attacks

The relevant parameter in the context of algebraic attack, called the algebraic im-
munity of the filtering function, AI(f), is the lowest degree achieved by a function
in AN(f) ∪ AN(1 + f). From a cryptanalytic point of view, the algebraic immu-
nity seems more important than the number of functions with a given degree in
AN(f) ∪ AN(1 + f), which only influences the number of keystream bits required
for the attack, and not the time-complexity (except maybe for some refinements
such as fast algebraic attacks).

The set AN(f) of all annihilating functions of f is obviously an ideal in the
ring of all Boolean functions, and it is generated by (1 + f). It consists of the
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22n−wt(f) functions of n variables which vanish on the support of f , i.e., on all x such
that f(x) = 1, where wt(f) denotes the size of the support of f . The number of
functions of degree at most d in AN(f) is equal to 2κ where κ is the dimension of
the kernel of the matrix obtained by restricting the Reed-Muller code of length 2n

and order d to the support of f . In other words, the rows of this matrix correspond
to the evaluations of the monomials of degree at most d on {x, f(x) = 1}. Since this
matrix has

∑d
i=0

(
n
i

)
rows and wt(f) columns, its kernel is non-trivial when

d∑
i=0

(
n

i

)
> wt(f) .

Similarly, AN(1 + f) contains some functions of degree d or less if

d∑
i=0

(
n

i

)
> 2n − wt(f) .

Thus, as pointed out in [10], the algebraic immunity of an n-variable function is
related to its Hamming weight. Most notably, for odd n, only balanced functions
can have optimal algebraic immunity. A trivial corollary is also that, for any n-
variable Boolean function, we have AI(f) ≤ dn/2e.

Another interesting property is that the highest possible algebraic immunity for
a function is related to the number of its 0-linear structures. Let S0(f) be the set
of all 0-linear structures for f , i.e., S0(f) = {a ∈ Fn

2 , f(x + a) = f(x), ∀x}. Then,

AI(f) ≤
⌈n− dim(S0(f))

2

⌉
.

This bound is important for instance in the case of filtered LFSRs, since the filtering
function usually depends only on a small subset of the internal state bits.

We deduce from the previous discussion that if an m-variable Boolean function
is used for filtering the n-bit internal state of the generator, the complexity of the
algebraic attack will be at most n

ωm
2 . This value must be higher than the complexity

of an exhaustive search for the key. We here suppose that the size of the internal
state is minimal with respect to key-size k, i.e. that n = 2k (it is known that
the size of the internal state must be at least twice the key size in order to resist
time-memory trade-off attacks). Therefore, we must have (n)

ωm
2 ≥ 2k, i.e.,

m ≥ 0.84

[
k

1 + log2(k)

]
.

For instance, a filter generator with a 128-bit key and a 256-bit internal state must
use a filtering function of at least 16 variables. Note that the recommended num-
ber of variables is probably higher than the previous bound because more efficient
techniques can be used for solving the algebraic system.

4 Algebraic immunity of balanced functions

For 5-variable functions, it is possible to compute the algebraic immunity of all
Boolean functions using the classification due to Berlekamp and Welch (because
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algebraic immunity is invariant under composition by a linear permutation). We
here focus on balanced functions because they are the only ones that may have
optimal algebraic immunity for n odd. We can compute the algebraic immunity of
all 601, 080, 390 balanced functions of 5 variables:

AI(f) 1 2 3
nb. of balanced f 62 403,315,208 197,765,120
proportion of balanced f 10−7 0.671 0.329

Similar simulations can be performed as far as the functions of n variables are
classified into equivalence classes under composition by a linear permutation. But,
such a classification only exist for n = 6 and for cubic functions up to 8 variables.

Even if some well-known constructions of cryptographic Boolean functions have
been proved to have a low algebraic immunity, probabilistic arguments tend to show
that the proportion of balanced functions with low algebraic immunity is very small.
It has been proved in [14] that the probability that a balanced function of n variables
has algebraic immunity less than 0.22n tends to zero when n tends to infinity. An
upper bound on the probability that a balanced function has an annihilator of degree
less than d is also given. This bound involves a part of the weight enumerator of
RM(d, n) and any new information on its complete weight distribution can clearly
improve the result. However, this bound does not say anything on the average value
of the algebraic immunity or on the proportion of balanced functions with optimal
algebraic immunity.

The proportion of balanced functions with optimal algebraic immunity obviously
corresponds to the probability that a subset of 2n−1 columns of the Reed-Muller
code of length 2n and of order dn/2e has maximal rank. If we assumed that the
generator matrices of the Reed-Muller codes behave like random matrices, we would
deduce that the probability that a balanced function has optimal algebraic immunity
is (almost) constant. More precisely, it would be deduced for n even, that the
probability that AN(f) has minimal degree n/2 is almost 1 and, for n odd, that the
probability that AN(f) has minimal degree n+1

2
(resp. n−1

2
) is 0.289 (resp. 0.711).

One can first observe a difference with the results obtained for n = 5, which is not
very surprising because RM(2, 5) does not behave like a random code (its weight
distribution is clearly not close to the distribution expected for a random code with
similar parameters). Moreover, simulations tend to show that the situation differs
very much from the expected one. Actually, the proportion of balanced functions
of n variables with optimal algebraic immunity seems to decrease when n increases,
and the average value of the algebraic immunity appears to decrease with n.

Algebraic immunity and other cryptographic criteria. Besides the Ham-
ming weight of the function, its nonlinearity is also related to its algebraic immu-
nity [10]. It can be proved that, for any linear function ϕ, the algebraic immunity of
f + ϕ is at most AI(f) + 1. Therefore, any function f of n variables with algebraic
immunity at least d satisfies

NL(f) ≥
d−2∑
i=0

(
n

i

)
.
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It follows that any function with optimal algebraic immunity has a high nonlinearity,
more precisely

NL(f) ≥
{

2n−1 − (
n

n−1
2

)
if n is odd

2n−1 − 1
2

(
n
n
2

)− (
n

n
2
−1

)
if n is even

A high nonlinearity and a high algebraic immunity are then compatible criteria.
Another important consequence is that the nonlinearity of a function may be a
sufficient criterion to decide whether it has low algebraic immunity (but the converse
is not true).

Another cryptographic property that implies that a function does not have a
maximal algebraic immunity is the notion of normality. A function is said to be k-
normal (resp. k-weakly normal) if there exists an affine subspace of dimension k on
which the function is constant (resp. affine). Since the minimum weight codewords
of RM(r, n) are those whose support is an affine subspace of dimension n − r, we
deduce that any k-normal function f of n variables has algebraic immunity at most
n − k. Similarly, any k-weakly normal function has algebraic immunity at most
n− k + 1. Non-normal (and non-weakly normal) functions may be good candidates
if we want to construct functions with optimal nonlinearity.

The existence of links between algebraic immunity and other cryptographic cri-
teria remains unknown. For instance, the relation between the distance of a function
to all low-degree functions (i.e., its distance to R(d, n)) and its algebraic immunity
is still unclear. Correlation-immunity does not seem to be a priori incompatible
with optimal algebraic immunity: there exists a 1-resilient function of 5 variables
with optimal algebraic immunity. However, the link with all known criteria must be
investigated further.

Algebraic immunity of known constructions. Some bounds have been es-
tablished on the algebraic immunity of the cryptographic functions obtained by
applying some classical constructions.

First, the algebraic immunity of a function can be derived from the algebraic
immunities of its restrictions to a given hyperplane and to its complement [10]. For
instance, if

f(x1, . . . , xn) = (1 + xn)f1(x1, . . . , xn−1) + xnf2(x1, . . . , xn−1) ,

we have:

• if AI(f1) 6= AI(f2), then AI(f) = min(AI(f1), AI(f2)) + 1;

• if AI(f1) = AI(f2), then AI(f) ∈ {AI(f1), AI(f1) + 1}.
Therefore, it is obvious how to construct a function of 2t variables with optimal
algebraic immunity from two functions of (2t−1) variables with respective algebraic
immunities equal to t and to (t−1). But, constructing a function of (2t+1) variables
with optimal algebraic immunity from two functions of 2t variables is much more
difficult since both restrictions must have optimal algebraic immunity and they must
also satisfy some additional conditions.
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Some bounds on the algebraic immunities of some classical constructions, such
as the Maiorana-McFarland family, can be found in [14, 10]. Moreover, an iterative
construction which provides an infinite family of balanced Boolean functions with
optimal algebraic immunity is presented in [11].

Computing the algebraic immunity of a Boolean function. The basic al-
gorithm for computing the algebraic immunity of an n-variable function consists
in performing a Gaussian elimination on the generator matrix of the punctured
RM(bn−1

2
c, n) restricted to the support of f . This matrix has wt(f) columns and

k(bn−1
2
c, n) =

∑bn−1
2
c

i=0

(
n
i

)
rows. Therefore, the algorithm requires k2(bn−1

2
c, n)wt(f)

operations, which is close to 23n−3 when f is balanced. As noted in [14], the com-
plexity can be significantly reduced if we only want to check whether a function has
annihilators of small degree d, since we do not need to consider all positions in the
support of f . Indeed, considering a number of columns which is only slightly higher
that the code dimension k(d, n) is usually sufficient for proving that a function does
not admit any annihilator of degree d.

A technique for reducing the size of the matrix over which the Gaussian elimina-
tion is performed is presented in [14]. The idea is that the elements in the support
of f with low Hamming weight provide simple equations that can be removed from
the matrix by a substitution step. However, due to the lack of simulation results, it
is very hard to evaluate the time complexity of the substitution step in practice.

Gröbner bases algorithms such as F5 provide other techniques for computing the
size of the annihilator ideal. But they need to be compared with the basic techniques
in this particular context.

5 Resistance to fast algebraic attacks

At CRYPTO 2003, Courtois presented some important improvements on algebraic
attacks, called fast algebraic attacks [7]. The refinement first relies on the existence
of some low degree relations between the bits of the initial state and not only one
but several consecutive keystream bits. In other word, the attacker wants to find
some low degree relations g between the inputs and outputs of the function

Fm: Fn
2 → Fm

2

x 7→ ((f(x), f(L(x)), . . . , f(Lm(x))

where L is the linear transition function. This function is very similar to the so-called
augmented function defined in [1]. The fact that the augmented function may be
much weaker than the filtering function, i.e, than F0 with the previous notation, has
been pointed out by Anderson [1] in the context of (fast) correlation attacks. It is an
open problem to determine whether there exist relationships between the algebraic
immunity of f and the algebraic immunity of Fm. Moreover, finding the low degree
relations between the n inputs and m outputs of Fm becomes infeasible when m
increases. The direct algorithm used for a function S with n inputs and m outputs
consists in finding the low degree annihilators for the characteristic function ΦS of
S, which is the Boolean function of (n + m) variables defined by

ΦS(x1, . . . , xn, y1, . . . , ym) = 1 if and only if yi = Si(x1, . . . , xn), ∀i .
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Due to its high complexity, it can only be used for small values of m.
Since the computation of low degree relations involving several keystream bits is

usually infeasible, Courtois proposed to focus on particular subclasses of relations
that can be obtained much faster. The relations considered in the attack are given
by linear combinations of relations of the form

g(x0, . . . , x`−1, st, . . . , st+m)

where the terms of highest degree do not involve any keystream bits. Then, an ad-
ditional precomputation step consists in determining the linear combinations of the
previous relations which cancel out the highest degree monomials. Some algorithms
for this step have been proposed in [7, 2]. This technique helps to decrease the
degree of the relations used in the attack for different practical examples. But, here
again, we do not have any theoretical result connecting the algebraic immunity of
the function and the existence of such low degree linear combinations.

6 Using more sophisticated filtering functions

Many stream ciphers do not use a simple Boolean filtering function; they prefer more
sophisticated mappings in order to render the attacks more difficult or in order to
increase the throughput of the generator.

Multi-output Boolean functions. A basic technique for increasing the speed
of the generator consists in using a filtering function with several outputs. Such
functions are called vectorial Boolean functions, or S(ubstitution)-boxes by analogy
with block ciphers. But, as pointed out in [15], the resistance of the generator to fast
correlation attacks usually decreases with the number of output bits of the function.
For a single output function, the attack exploits the fact that the output may be
approximated by an affine function of the input variables. But, for a function S
with m outputs, the attacker can apply any Boolean function g of m variables to
the output vector (y1, . . . , ym) and he or she can perform the attack on the resulting
sequence z = g(y1, . . . , ym). Therefore, the relevant parameter is not the nonlinearity
of the vectorial function, which is the lowest Hamming distance between any linear
combination of the components of S and the affine functions, but the so-called
unrestricted nonlinearity [5], which is the lowest distance between any function g ◦S
and the affine functions, where g varies in the set of all nonzero Boolean functions
of m variables.

For similar reasons, the algebraic immunity of a vectorial function tends to de-
crease with the number of output bits. For an S-box with n inputs and m outputs,
there exists a relation of degree at most d in the input variables (and of any degree
in the output variables) if

d∑
i=0

(
n

i

)
> 2n−m .

A particular case of generators based on multi-output Boolean functions are the
word-oriented ciphers. In order to increase the performance of software implemen-
tations, many ciphers use LFSRs over an extension field F2m and the associated
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filtering function is usually a mapping from Fn
2m into F2m . This technique is used

for instance in the stream cipher SNOW-v2.0, in the SOBER family and in Turing.
The associated filtering function can obviously be seen as a vectorial Boolean func-
tion with mn inputs and m outputs. Consequently, all results previously mentioned
apply, but the major open issue here is to determine whether word-oriented attacks
can be mounted which exploit the particular structure of the function defined as a
polynomial over F2m .

Functions with memory. In some keystream generators, the filtering function
is replaced by a finite automaton with some memory bits. An example is the E0

keystream generator used in the Bluetooth wireless LAN system, which uses a com-
bining function with 4 inputs and 4 memory bits. However, (fast) algebraic at-
tacks [3] can still be applied on such systems. Armknecht and Krause proved that,
for any filtering function of n variables with M memory bits, there always exists a
relation of degree at most dn(M+1)

2
e between (M +1) consecutive output bits and the

bits of the initial state, for a given initial assignment of the memory bits. Obviously,
relations of lower degree may exist. For instance, the function used in E0 provides a
relation of degree 4 involving 4 consecutive output bits, which leads to an algebraic
attack of running-time around 267 [3]. A similar situation occurs for multi-output
functions with memory [9].

The main open issue related to the use of such sophisticated functions is to
improve the efficiency of the algorithms for computing their algebraic immunity for
a large number of input variables. Another related open problem is to find some
general constructions which guarantee a high resistance to all these attacks.
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ators using Gröbner bases. Technical Report 4739, INRIA, 2003. Available at
ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-4739.pdf.

[14] W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of
Boolean functions. In Advances in Cryptology - EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 474–491. Springer-Verlag,
2004.

[15] M. Zhang and A. Chan. Maximum correlation analysis of nonlinear S-boxes in
stream ciphers. In Advances in Cryptology - CRYPTO 2000, volume 1880 of
Lecture Notes in Computer Science, pages 501–514. Springer-Verlag, 2000.

10


