
Short McEliece-based Digital Signatures

Nicolas Courtois Matthieu Finiasz Nicolas Sendrier

ISIT 2002 – Lausane



Public-key cryptography
Some definitions

= computationnaly easy one-way function
= computationnaly difficult inversion problem
= trap: secret inversion algorithm

For example with RSA we have:

= modular exponentiation: x 7→ xe

= eth-root extraction problem
= x 7→ xd

1



From one-way functions to signature

When A signs a document D he computes s(D,A) with the following properties:

¦ for a given D, only A can compute s(D,A)
¦ for a given σ it is impossible to find D such that s(D,A) = σ

It is possible to achieve this with a one-way hash function and a one-way function
with a trap .

2



Using error-correcting codes: the McEliece cryptosystem

⇒ We can use Niederreiter’s variant of the McEliece cryptosystem

To sign we will:

¦ hash the document (using whatever message digest ) into a syndrome

¦ decode this syndrome into an error pattern using the trap

¦ use the equivalent message as signature

To verify the signature we simply compare the results of and

3



Inversion problems

In this scheme we need to apply to the result of

⇒ we need to decode a “random” syndrom

⇒ the trap can decode syndromes corresponding to error patterns of Hamming
weight ≤ t

⇒ we can only decode a small ratio of syndromes

With the original McEliece parameters: t = 50, m = 10, n = 1024.

¦ there are 2500 different syndromes (of length 500)

¦ there are
(
1024
50

) ' 2284 error patterns of weight less than t

⇒ This makes a ratio of 1 decodable syndrome out of 2216.

We need to:

¦ either change so that it returns decodable syndromes

¦ or perform complete decoding

4



Complete decoding

To perform complete decoding we will need to increase this ratio

⇒ It will be greater for codes correcting less errors, as a Goppa code can correct
approximately 1 syndrome out of t!

9! = 362 880
10! = 3 628 800
11! = 39 916 800

If we want the signature time to stay reasonnable we will need a t not greater than 10

5



Secure parameters

We have a small t but still want a good security (about 280 CPU operations)

⇒ n will be large

Number of binary
operations for an attack

(based on the attack by A. Canteaut and

F. Chabaud [CC98])

n t = 9 t = 10
213 269.3 272.3

214 274.0 277.4

215 278.8 287.4

216 283.7 290.9

217 288.2 294.6

{
t = 10 and n = 15
t = 9 and n = 16 ←− 10 times faster

6



Signature algorithm

We use the following algorithm:

¦ add a counter i to the document

¦ apply to the document and i at the same time to obtain a syndrome si

¦ try to decode si with

¦ if it does not work, increment i and try again

We call i0 the smallest value of i for which the decoding is possible.

⇒ The signature will have to contain both (si0) and i0 for the verification

7



Signature size

We index all the words of weight 9 and length 216.

one index between 0 and
(
216

9

)

the counter i0 with an average value of 9!

⇒ The counter must be present for verification and can be made of constant length
if necessary

⇒ Signature is in average 144 bits long.

8



Reducing the signature size. . .

Verification is very fast (summing 9 columns of H and hashing one file)

⇒ The signature can be shortened by omitting some information: verificator will then
try all possible values

⇒ Signature will contain less than t positions

omitted signature length verification
positions partial total WF time

0 125.5 144 9 ∼ µs
1 112.7 131 9 ∼ µs
2 99.7 118 214 ∼ ms
3 86.5 105 227 ∼ 30s
4 73.1 92 240 —
5 59.4 77 254 —

We can verify a signature of 105 bits in about 30 seconds.

9



Reducing more

We can reduce the signature size even more by giving only approximate positions

⇒ group the columns in small clusters of 16 columns

⇒ We decode 3 errors in a shortened code. The parity check matrix H’ of this code is
obtained by applying a Gaussian elimination to H (about 224 column operations).

⇒ We can get signatures of 81 bits.

10



Scalability

⇒ The signature algorithm is easily scalable. For one omitted position we have the
following asymptotic values:

signature cost t!t2m3

signature length (t− 1)m + log2 t

verification cost t2m

public key size tm2m

cost of best decoding attack 2tm(1/2+o(1))

⇒ Security increases much faster than any other parameter

11



Conclusion

? Signature using McEliece is possible!

? The algorithm obtained is polymorphic. It gives:

¦ either very short signatures of 81 bits
¦ or short signatures (131 or 118 bits) with a faster verification

? the signature time is long (about 1 minute)

? the public key is large (1MB)

? its security relies on well known hard problems

? it is easily scalable

12


