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Reed-Solomon Codes
Definition

⇒ Reed-Solomon code of length n and dimension k
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

¦ Choose a set of n distinct points {x1, . . . , xn} in a field (here F2m).
This is the support of the code.

¦ A message m is a polynomial of degree less than k over F2m (with k < n).

¦ The codeword cm associated to the message m is its evaluation on the support:
the n-tuple (m(x1), . . . , m(xn)).

As k < n the transmitted codeword contains some redundancy: k values are enough
to recover the polynomial m using interpolation.

⇒ if some errors are added to cm, m can still be recovered using a decoding algorithm:

¦ Euclid’s algorithm → correct up to n−k
2 errors

¦ Guruswami-Sudan algorithm → correct up to n−
√

nk errors
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Polynomial Reconstruction

Given n pairs (xi, yi)i=1..n, find a polynomial P of degree

less than k such that P(xi) = yi for at least t values of i.

⇒ if all xi are distinct, this corresponds to decoding n− t errors in a Reed-Solomon
code of dimension k and length n

Possible attacks:
¦ exhaustive search on correct positions

¦ exhaustive search on wrong positions / decoding attack (Sudan algorithm)

⇒ as stated by Naor and Pinkas, if
(
n
k

)
and

(
n
t

)
are exponential in n and if t <

√
kn

the problem is hard

! you also need t > k + 1 for the problem to be hard (interpolation)
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The Cryptosystem
Preliminaries

The secret key of the system is composed of:

¦ a codeword c, evaluation of a polynomial of degree exactly k − 1
¦ an error pattern E of Hamming weight W

The public key is simply the sum (c + E).

⇒ If W is well chosen, recovering the secret key from the public key is exactly an
instance of the PR problem.

Messages to be encrypted are polynomials of degree k − 2 in F2m.

3



The Cryptosystem
Encoding

m

F280 error of weight w

public key

ciphertext element of

error of weight Wcodeword of degree k-1 +

codeword of degree k-2
corresponding to

y = cm+α(c+E)+e
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The Cryptosystem
Decoding

⇒ First shorten the code on the positions for which E is non-zero. We get:

ȳ = c̄m + α c̄ + α Ē + ē

c̄m + α c̄ belongs to the shortened code and ē is an error pattern of weight smaller or
equal to w

⇒ if w is well chosen, one can decode ȳ in the shortened code

⇒ the polynomial of degree k − 1 corresponding to cm + α c can be recovered

¦ cm was chosen of degree k − 2
¦ c is known (it’s part of the secret key)

¦ α can be found by looking at the term of degree k − 1
¦ cm can then be recovered and so m too

y = cm+α(c+E)+e
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Attacks

Note that once you know any of α, e or m you can get the two others, however you
get no information at all about the secret key.

⇒ we distinguish two independent categories of attacks

? Secret Key recovery

¦ search on good positions

¦ search on error positions

? Message recovery ∼ decoding in a Reed-Solomon code plus one word (c + E)
¦ exhaustive search on α

¦ search on error positions (try to find e)

¦ search on good positions (try to find m)

y = cm+α(c+E)+e
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Secret Key recovery

⇒ Recovering the secret key is as difficult as solving an instance of the Polynomial
Reconstruction problem

However some attacks exist:

⇒ Error Set Decoding: takes full advantage of the code structure. Shorten the code
on β random positions (hoping they correspond to non-null positions of E) and
try to decode in the shortened code.
⇒ You can’t choose a W too close to the Sudan bound

⇒ Information Set Decoding: consider the code as a random code and try to find k
positions containing no errors.

y = cm+α(c+E)+e
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Message Recovery

⇒ Decoding in RS+1: that is decoding in the code of dimension k + 1
⇒ exhaustive search on α
⇒ algebraic method ?

⇒ Error Set Decoding: consists in shortening the code on some positions (hoping
they were erroneous) and try to decode, but there is no decoding algorithm
⇒ this is of no use

⇒ Information Set Decoding: exactly as for Key Recovery except the dimension of
the code is one more, and the error is of smaller weight
⇒ efficient when W is large as w = n−W −

√
(n−W )k

Note that instead of ISD attacks, the Canteaut-Chabaud algorithm can be used as it
is far more efficient than exhaustive search.

y = cm+α(c+E)+e
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Secure Parameters

As usual, we intend to reach a security of 280 binary operations.

⇒ n can’t be very small: that is at least 1024

⇒ We choose k = 900
⇒ optimal for the transmission rate k

n
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y = cm+α(c+E)+e
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Shortening the public key

Parameters are: n = 1024 and Fq = F280

⇒ the public key is 80× 1024 = 81920 bits long

We can shorten this key by considering a subfield-subcode

⇒ the support is of length 1024 so we can use the subcode over F210 without any
loss of dimension.
⇒ the public key is c + E with c a code word of the [1024, 900]210 RS and E an

error of weight W with coordinates in F210. Encryption is still done in F280

⇒ Now the key is 10240 bits long

We can still shorten the key with subfield-subcodes

⇒ this time we accept a dimension loss and consider the subcode [1024, k′]22

⇒ we have n− k′ = 5× (n− k), that is k′ = 404
⇒ the key would be 2048 bits long, but the system can no longer be secure

y = cm+α(c+E)+e
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Efficiency

The optimal version of the scheme has the following properties:

¦ public key size: 3072 bits

¦ transmission rate: k−1
n = 0.88 for k = 900

¦ encryption complexity: O(n log q) per bit

¦ decryption complexity: O((n−W )2

k log q) per bit of plaintext

¦ block size: 75600 bits of plaintext

⇒ decryption can go faster for a large W
⇒ we can use k = 320 and W = 470
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Asymptotic Behavior

We want to see if the security is scalable

⇒ all the parameters of the system are linear in n
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y = cm+α(c+E)+e
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. . .

We can evaluate precisely the security of this system against all kinds of attack, except
the Decoding in RS+1 attack

⇒ Attack by J.-S. Coron: takes advantage of the code structure and recovers the
message in a few minutes

How can the system be fixed?

¦ change the system parameters

¦ change the kind of code used

¦ change the way the public key is added to cm

y = cm+α(c+E)+e
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Conclusion

We obtain a new public key cryptosystem

? very easy to generate keys in large number

? fast encryption/decryption

? true exponential security against most attacks

? possibility to have transmission rates close to 1

? resistant to quantum computing

But it first needs a little fix. . .
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