A Public Key encryption scheme based on the Polynomial Reconstruction problem

Daniel Augot

Matthieu Finiasz

Eurocrypt 2003 – Warsaw

Reed-Solomon Codes Definition

 \Rightarrow Reed-Solomon code of length n and dimension k

- Choose a set of n distinct points $\{x_1, \ldots, x_n\}$ in a field (here \mathbb{F}_{2^m}). This is the support of the code.
- ◇ A message m is a polynomial of degree less than k over F_{2m} (with k < n).
 ◇ The codeword c_m associated to the message m is its evaluation on the support: the n-tuple (m(x₁),...,m(x_n)).

As k < n the transmitted codeword contains some redundancy: k values are enough to recover the polynomial m using interpolation.

 \Rightarrow if some errors are added to c_m , m can still be recovered using a decoding algorithm:

- \diamond Euclid's algorithm \rightarrow correct up to $\frac{n-k}{2}$ errors
- \diamond Guruswami-Sudan algorithm \rightarrow correct up to $n \sqrt{nk}$ errors

Polynomial Reconstruction

Given n pairs $(x_i, y_i)_{i=1..n}$, find a polynomial \mathcal{P} of degree less than k such that $\mathcal{P}(x_i) = y_i$ for at least t values of i.

 \Rightarrow if all x_i are distinct, this corresponds to decoding n-t errors in a Reed-Solomon code of dimension k and length n

Possible attacks:

- exhaustive search on correct positions
- exhaustive search on wrong positions / decoding attack (Sudan algorithm)
- \Rightarrow as stated by Naor and Pinkas, if $\binom{n}{k}$ and $\binom{n}{t}$ are exponential in n and if $t<\sqrt{kn}$ the problem is hard

 \triangle you also need t > k + 1 for the problem to be hard (interpolation)

The Cryptosystem Preliminaries

The secret key of the system is composed of:

- $\diamond\,$ a codeword ${\it c}$, evaluation of a polynomial of degree exactly k-1
- $\diamond\,$ an error pattern E of Hamming weight W

The public key is simply the sum (c+E).

 \Rightarrow If W is well chosen, recovering the secret key from the public key is exactly an instance of the PR problem.

Messages to be encrypted are polynomials of degree k-2 in \mathbb{F}_{2^m} .

The Cryptosystem Decoding

 \Rightarrow First shorten the code on the positions for which *E* is non-zero. We get:

$$\bar{y} = \bar{c}_m + \alpha \, \bar{c} + \rho \, E + \bar{e}$$

 $\bar{c}_m + \alpha \, \bar{c}$ belongs to the shortened code and \bar{e} is an error pattern of weight smaller or equal to w

- \Rightarrow if w is well chosen, one can decode \overline{y} in the shortened code
- \Rightarrow the polynomial of degree k-1 corresponding to $c_m + \alpha c$ can be recovered
 - $\diamond c_m$ was chosen of degree k-2
 - $\diamond c$ is known (it's part of the secret key)
 - $\diamond \alpha$ can be found by looking at the term of degree k-1
 - $\diamond \ c_m$ can then be recovered and so m too

$$y = c_m + \alpha(c+E) + e$$

Attacks

Note that once you know any of α , e or m you can get the two others, however you get no information at all about the secret key.

 \Rightarrow we distinguish two independent categories of attacks

- ★ Secret Key recovery
 - ♦ search on good positions
 - ♦ search on error positions

* Message recovery ~ decoding in a Reed-Solomon code plus one word (c+E)

- $\diamond\,$ exhaustive search on $\alpha\,$
- \diamond search on error positions (try to find e)
- \diamond search on good positions (try to find m)

$$y = c_m + \alpha(c+E) + e$$

Secret Key recovery

⇒ Recovering the secret key is as difficult as solving an instance of the Polynomial Reconstruction problem

However some attacks exist:

- ⇒ Error Set Decoding: takes full advantage of the code structure. Shorten the code on β random positions (hoping they correspond to non-null positions of E) and try to decode in the shortened code.
 - \Rightarrow You can't choose a W too close to the Sudan bound
- \Rightarrow Information Set Decoding: consider the code as a random code and try to find k positions containing no errors.

$$y = c_m + \alpha(c+E) + e$$

Message Recovery

 \Rightarrow Decoding in RS+1: that is decoding in the code of dimension k+1

- \Rightarrow exhaustive search on α
- \Rightarrow algebraic method ?
- ⇒ Error Set Decoding: consists in shortening the code on some positions (hoping they were erroneous) and try to decode, but there is no decoding algorithm
 ⇒ this is of no use
- ⇒ Information Set Decoding: exactly as for Key Recovery except the dimension of the code is one more, and the error is of smaller weight ⇒ efficient when W is large as $w = n - W - \sqrt{(n - W)k}$

Note that instead of ISD attacks, the Canteaut-Chabaud algorithm can be used as it is far more efficient than exhaustive search.

$$y = c_m + \alpha(c+E) + e$$

Secure Parameters

As usual, we intend to reach a security of 2^{80} binary operations. $\Rightarrow n$ can't be very small: that is at least 1024

Shortening the public key

Parameters are: n = 1024 and $\mathbb{F}_q = \mathbb{F}_{2^{80}}$

 \Rightarrow the public key is $80 \times 1024 = 81920$ bits long

We can shorten this key by considering a subfield-subcode

- \Rightarrow the support is of length 1024 so we can use the subcode over $\mathbb{F}_{2^{10}}$ without any loss of dimension.
 - ⇒ the public key is c + E with c a code word of the $[1024, 900]_{2^{10}}$ RS and E an error of weight W with coordinates in $\mathbb{F}_{2^{10}}$. Encryption is still done in $\mathbb{F}_{2^{80}}$
- \Rightarrow Now the key is 10240 bits long

We can still shorten the key with subfield-subcodes

- ⇒ this time we accept a dimension loss and consider the subcode $[1024, k']_{2^2}$ ⇒ we have $n - k' = 5 \times (n - k)$, that is k' = 404
- \Rightarrow the key would be 2048 bits long, but the system can no longer be secure

$$y = c_m + \alpha(c+E) + e$$

with the dimension loss ISD_W and CC_W become too easy and the system is insecure

by placing ourselves in $\mathbb{F}_{2^{84}}$ we can optimize the dimension loss. The key is 3072 bits long

 $y = c_m + \alpha(c+E) + e$

Efficiency

The optimal version of the scheme has the following properties:

- \diamond public key size: 3072 bits
- ♦ transmission rate: $\frac{k-1}{n} = 0.88$ for k = 900
- \diamond encryption complexity: $O(n \log q)$ per bit
- \diamond decryption complexity: $O(\frac{(n-W)^2}{k}\log q)$ per bit of plaintext
- \diamond block size: 75600 bits of plaintext

⇒ decryption can go faster for a large W⇒ we can use k = 320 and W = 470

Asymptotic Behavior

Optimal value of $\frac{W}{n}$ as a function of $\frac{k}{n}$ S as a function of $\frac{k}{n}$, Security = Sⁿ

With n = 1024 one could reach a security as high as 2^{122} $y = c_m + \alpha(c+E) + e$ We can evaluate precisely the security of this system against all kinds of attack, except the Decoding in RS+1 attack

⇒ Attack by J.-S. Coron: takes advantage of the code structure and recovers the message in a few minutes

How can the system be fixed?

- ♦ change the system parameters
- ♦ change the kind of code used
- \diamond change the way the public key is added to c_m

$$y = c_m + \alpha(c+E) + e$$

Conclusion

We obtain a new public key cryptosystem

- * very easy to generate keys in large number
- ★ fast encryption/decryption
- * true exponential security against most attacks
- \star possibility to have transmission rates close to 1
- \star resistant to quantum computing

But it first needs a little fix. . .

