A Public Key encryption scheme based on the Polynomial Reconstruction problem

Daniel Augot Matthieu Finiasz

Eurocrypt 2003 - Warsaw

INRIA

Reed-Solomon Codes

Definition

\Rightarrow Reed-Solomon code of length n and dimension k
\diamond Choose a set of n distinct points $\left\{x_{1}, \ldots, x_{n}\right\}$ in a field (here $\mathbb{F}_{2^{m}}$). This is the support of the code.
\diamond A message m is a polynomial of degree less than k over $\mathbb{F}_{2^{m}}$ (with $k<n$).
\diamond The codeword c_{m} associated to the message m is its evaluation on the support: the n-tuple $\left(m\left(x_{1}\right), \ldots, m\left(x_{n}\right)\right)$.

As $k<n$ the transmitted codeword contains some redundancy: k values are enough to recover the polynomial m using interpolation.
\Rightarrow if some errors are added to c_{m}, m can still be recovered using a decoding algorithm:
\diamond Euclid's algorithm \rightarrow correct up to $\frac{n-k}{2}$ errors
\diamond Guruswami-Sudan algorithm \rightarrow correct up to $n-\sqrt{n k}$ errors

Polynomial Reconstruction

Given n pairs $\left(x_{i}, y_{i}\right)_{i=1 . . n}$, find a polynomial \mathcal{P} of degree less than k such that $\mathcal{P}\left(x_{i}\right)=y_{i}$ for at least t values of i.
\Rightarrow if all x_{i} are distinct, this corresponds to decoding $n-t$ errors in a Reed-Solomon code of dimension k and length n

Possible attacks:
\diamond exhaustive search on correct positions
\diamond exhaustive search on wrong positions / decoding attack (Sudan algorithm)
\Rightarrow as stated by Naor and Pinkas, if $\binom{n}{k}$ and $\binom{n}{t}$ are exponential in n and if $t<\sqrt{k n}$ the problem is hard
you also need $t>k+1$ for the problem to be hard (interpolation)

The Cryptosystem
 Preliminaries

The secret key of the system is composed of:
\diamond a codeword c, evaluation of a polynomial of degree exactly $k-1$
\diamond an error pattern E of Hamming weight W

The public key is simply the sum $(c+E)$.
\Rightarrow If W is well chosen, recovering the secret key from the public key is exactly an instance of the PR problem.

Messages to be encrypted are polynomials of degree $k-2$ in $\mathbb{F}_{2^{m}}$.

The Cryptosystem

Encoding

RINRIA

The Cryptosystem

\Rightarrow First shorten the code on the positions for which E is non-zero. We get:

$$
\bar{y}=\bar{c}_{m}+\alpha \bar{c}+\infty \overline{\mathbb{L}}+\bar{e}
$$

$\bar{c}_{m}+\alpha \bar{c}$ belongs to the shortened code and \bar{e} is an error pattern of weight smaller or equal to w
\Rightarrow if w is well chosen, one can decode \bar{y} in the shortened code
\Rightarrow the polynomial of degree $k-1$ corresponding to $c_{m}+\alpha c$ can be recovered
$\diamond c_{m}$ was chosen of degree $k-2$
$\diamond c$ is known (it's part of the secret key)
$\diamond \alpha$ can be found by looking at the term of degree $k-1$
$\diamond c_{m}$ can then be recovered and so m too
$y=c_{m}+\alpha(c+E)+e$

Attacks

Note that once you know any of α, e or m you can get the two others, however you get no information at all about the secret key.
\Rightarrow we distinguish two independent categories of attacks
\star Secret Key recovery
\diamond search on good positions
\diamond search on error positions
\star Message recovery \sim decoding in a Reed-Solomon code plus one word $(c+E)$
\diamond exhaustive search on α
\diamond search on error positions (try to find e)
\diamond search on good positions (try to find m)

$$
y=c_{m}+a(c+E)+e
$$

Secret Key recovery

\Rightarrow Recovering the secret key is as difficult as solving an instance of the Polynomial Reconstruction problem

However some attacks exist:
\Rightarrow Error Set Decoding: takes full advantage of the code structure. Shorten the code on β random positions (hoping they correspond to non-null positions of E) and try to decode in the shortened code.
\Rightarrow You can't choose a W too close to the Sudan bound
\Rightarrow Information Set Decoding: consider the code as a random code and try to find k positions containing no errors.

$$
y=c_{m}+a(c+E)+e
$$

Message Recovery

\Rightarrow Decoding in $\mathrm{RS}+1$: that is decoding in the code of dimension $k+1$
\Rightarrow exhaustive search on α
\Rightarrow algebraic method ?
\Rightarrow Error Set Decoding: consists in shortening the code on some positions (hoping they were erroneous) and try to decode, but there is no decoding algorithm \Rightarrow this is of no use
\Rightarrow Information Set Decoding: exactly as for Key Recovery except the dimension of the code is one more, and the error is of smaller weight
\Rightarrow efficient when W is large as $w=n-W-\sqrt{(n-W) k}$

Note that instead of ISD attacks, the Canteaut-Chabaud algorithm can be used as it is far more efficient than exhaustive search.
$y=c_{m}+\alpha(c+E)+e$

Secure Parameters

As usual, we intend to reach a security of 2^{80} binary operations.
$\Rightarrow n$ can't be very small: that is at least 1024
\Rightarrow We choose $k=900$
\Rightarrow optimal for the transmission rate $\frac{k}{n}$
security against the
different attacks as a function of W

$y=c_{m}+\alpha(c+E)+e$

Shortening the public key

Parameters are: $n=1024$ and $\mathbb{F}_{q}=\mathbb{F}_{2^{80}}$
\Rightarrow the public key is $80 \times 1024=81920$ bits long

We can shorten this key by considering a subfield-subcode
\Rightarrow the support is of length 1024 so we can use the subcode over $\mathbb{F}_{2^{10}}$ without any loss of dimension.
\Rightarrow the public key is $c+E$ with c a code word of the $[1024,900]_{2^{10}} R S$ and E an error of weight W with coordinates in $\mathbb{F}_{2^{10}}$. Encryption is still done in $\mathbb{F}_{2^{80}}$
\Rightarrow Now the key is 10240 bits long

We can still shorten the key with subfield-subcodes
\Rightarrow this time we accept a dimension loss and consider the subcode $\left[1024, k^{\prime}\right]_{2^{2}}$
\Rightarrow we have $n-k^{\prime}=5 \times(n-k)$, that is $k^{\prime}=404$
\Rightarrow the key would be 2048 bits long, but the system can no longer be secure
$y=c_{m}+\alpha(c+E)+e$

by placing ourselves in $\mathbb{F}_{2^{84}}$ we can optimize the dimension loss.

The key is 3072 bits long with the dimension loss $I S D_{W}$ and $C C_{W}$ become too easy and the system is insecure

Efficiency

The optimal version of the scheme has the following properties:
\diamond public key size: 3072 bits
\diamond transmission rate: $\frac{k-1}{n}=0.88$ for $k=900$
\diamond encryption complexity: $O(n \log q)$ per bit
\diamond decryption complexity: $O\left(\frac{(n-W)^{2}}{k} \log q\right)$ per bit of plaintext
\diamond block size: 75600 bits of plaintext
\Rightarrow decryption can go faster for a large W \Rightarrow we can use $k=320$ and $W=470$

$$
y=c_{m}+\alpha(c+E)+e
$$

Asymptotic Behavior

We want to see if the security is scalable
\Rightarrow all the parameters of the system are linear in n

Optimal value of $\frac{W}{n}$ as a function of $\frac{k}{n}$

S as a function of $\frac{k}{n}$, Security $=S^{n}$

With $n=1024$ one could reach a security as high as 2^{122}
$y=c_{m}+a(c+E)+e$

We can evaluate precisely the security of this system against all kinds of attack, except the Decoding in RS +1 attack
\Rightarrow Attack by J.-S. Coron: takes advantage of the code structure and recovers the message in a few minutes

How can the system be fixed?
\diamond change the system parameters
\diamond change the kind of code used
\diamond change the way the public key is added to c_{m}
$y=c_{m}+\alpha(c+E)+e$

Conclusion

We obtain a new public key cryptosystem
\star very easy to generate keys in large number

* fast encryption/decryption
\star true exponential security against most attacks
* possibility to have transmission rates close to 1
* resistant to quantum computing

But it first needs a little fix. . .

