
A Public Key encryption scheme based on the
Polynomial Reconstruction problem

Daniel Augot Matthieu Finiasz

Eurocrypt 2003 – Warsaw



Reed-Solomon Codes
Definition

⇒ Reed-Solomon code of length n and dimension k
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

¦ Choose a set of n distinct points {x1, . . . , xn} in a field (here F2m).
This is the support of the code.

¦ A message m is a polynomial of degree less than k over F2m (with k < n).

¦ The codeword cm associated to the message m is its evaluation on the support:
the n-tuple (m(x1), . . . , m(xn)).

As k < n the transmitted codeword contains some redundancy: k values are enough
to recover the polynomial m using interpolation.

⇒ if some errors are added to cm, m can still be recovered using a decoding algorithm:

¦ Euclid’s algorithm → correct up to n−k
2 errors

¦ Guruswami-Sudan algorithm → correct up to n−
√

nk errors

1



Polynomial Reconstruction

Given n pairs (xi, yi)i=1..n, find a polynomial P of degree

less than k such that P(xi) = yi for at least t values of i.

⇒ if all xi are distinct, this corresponds to decoding n− t errors in a Reed-Solomon
code of dimension k and length n

Possible attacks:
¦ exhaustive search on correct positions

¦ exhaustive search on wrong positions / decoding attack (Sudan algorithm)

⇒ as stated by Naor and Pinkas, if
(
n
k

)
and

(
n
t

)
are exponential in n and if t <

√
kn

the problem is hard

! you also need t > k + 1 for the problem to be hard (interpolation)

2



The Cryptosystem
Preliminaries

The secret key of the system is composed of:

¦ a codeword c, evaluation of a polynomial of degree exactly k − 1
¦ an error pattern E of Hamming weight W

The public key is simply the sum (c + E).

⇒ If W is well chosen, recovering the secret key from the public key is exactly an
instance of the PR problem.

Messages to be encrypted are polynomials of degree k − 2 in F2m.

3



The Cryptosystem
Encoding

m

F280 error of weight w

public key

ciphertext element of

error of weight Wcodeword of degree k-1 +

codeword of degree k-2
corresponding to

y = cm+α(c+E)+e

4



The Cryptosystem
Decoding

⇒ First shorten the code on the positions for which E is non-zero. We get:

ȳ = c̄m + α c̄ + α Ē + ē

c̄m + α c̄ belongs to the shortened code and ē is an error pattern of weight smaller or
equal to w

⇒ if w is well chosen, one can decode ȳ in the shortened code

⇒ the polynomial of degree k − 1 corresponding to cm + α c can be recovered

¦ cm was chosen of degree k − 2
¦ c is known (it’s part of the secret key)

¦ α can be found by looking at the term of degree k − 1
¦ cm can then be recovered and so m too

y = cm+α(c+E)+e
5



Attacks

Note that once you know any of α, e or m you can get the two others, however you
get no information at all about the secret key.

⇒ we distinguish two independent categories of attacks

? Secret Key recovery

¦ search on good positions

¦ search on error positions

? Message recovery ∼ decoding in a Reed-Solomon code plus one word (c + E)
¦ exhaustive search on α

¦ search on error positions (try to find e)

¦ search on good positions (try to find m)

y = cm+α(c+E)+e
6



Secret Key recovery

⇒ Recovering the secret key is as difficult as solving an instance of the Polynomial
Reconstruction problem

However some attacks exist:

⇒ Error Set Decoding: takes full advantage of the code structure. Shorten the code
on β random positions (hoping they correspond to non-null positions of E) and
try to decode in the shortened code.
⇒ You can’t choose a W too close to the Sudan bound

⇒ Information Set Decoding: consider the code as a random code and try to find k
positions containing no errors.

y = cm+α(c+E)+e
7



Message Recovery

⇒ Decoding in RS+1: that is decoding in the code of dimension k + 1
⇒ exhaustive search on α
⇒ algebraic method ?

⇒ Error Set Decoding: consists in shortening the code on some positions (hoping
they were erroneous) and try to decode, but there is no decoding algorithm
⇒ this is of no use

⇒ Information Set Decoding: exactly as for Key Recovery except the dimension of
the code is one more, and the error is of smaller weight
⇒ efficient when W is large as w = n−W −

√
(n−W )k

Note that instead of ISD attacks, the Canteaut-Chabaud algorithm can be used as it
is far more efficient than exhaustive search.

y = cm+α(c+E)+e
8



Secure Parameters

As usual, we intend to reach a security of 280 binary operations.

⇒ n can’t be very small: that is at least 1024

⇒ We choose k = 900
⇒ optimal for the transmission rate k

n

security against the
different attacks as a function of W

ISDw
ESDW

ISDW

CCw

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

80

74

CCW

k =900
q =280

y = cm+α(c+E)+e
9



Shortening the public key

Parameters are: n = 1024 and Fq = F280

⇒ the public key is 80× 1024 = 81920 bits long

We can shorten this key by considering a subfield-subcode

⇒ the support is of length 1024 so we can use the subcode over F210 without any
loss of dimension.
⇒ the public key is c + E with c a code word of the [1024, 900]210 RS and E an

error of weight W with coordinates in F210. Encryption is still done in F280

⇒ Now the key is 10240 bits long

We can still shorten the key with subfield-subcodes

⇒ this time we accept a dimension loss and consider the subcode [1024, k′]22

⇒ we have n− k′ = 5× (n− k), that is k′ = 404
⇒ the key would be 2048 bits long, but the system can no longer be secure

y = cm+α(c+E)+e
10



ISDw

ESDW

ISDW

CCw
CCW

0

50

100

150

200

250

300

20 40 60 100 120 140 160 180 200

80

82

66.4

k =900
q =1024
q =40

by placing ourselves in F284

we can optimize the dimension loss.
The key is 3072 bits long

with the dimension loss ISDW and CCW

become too easy and the system is insecure

ISDw

ESDW

ISDW

CCw
CCW

0

50

100

150

200

250

300

20 40 60 80 100 120 140 160 180 200

80

74

k =900
q =4096
q =80

y = cm+α(c+E)+e
11



Efficiency

The optimal version of the scheme has the following properties:

¦ public key size: 3072 bits

¦ transmission rate: k−1
n = 0.88 for k = 900

¦ encryption complexity: O(n log q) per bit

¦ decryption complexity: O((n−W )2

k log q) per bit of plaintext

¦ block size: 75600 bits of plaintext

⇒ decryption can go faster for a large W
⇒ we can use k = 320 and W = 470

ISDw

ESDW

ISDW

CCw
CCW

0

100

200

300

400

100 200 300 400 500 600 700 800

80

471

k =320
q =1024
q =10240

y = cm+α(c+E)+e
12



Asymptotic Behavior

We want to see if the security is scalable

⇒ all the parameters of the system are linear in n

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

0.2 0.4 0.6 0.8 10.64

1.0867

Optimal value of W
n as a function of k

n S as a function of k
n, Security = Sn

With n = 1024 one could reach a security as high as 2122

y = cm+α(c+E)+e
13



. . .

We can evaluate precisely the security of this system against all kinds of attack, except
the Decoding in RS+1 attack

⇒ Attack by J.-S. Coron: takes advantage of the code structure and recovers the
message in a few minutes

How can the system be fixed?

¦ change the system parameters

¦ change the kind of code used

¦ change the way the public key is added to cm

y = cm+α(c+E)+e
14



Conclusion

We obtain a new public key cryptosystem

? very easy to generate keys in large number

? fast encryption/decryption

? true exponential security against most attacks

? possibility to have transmission rates close to 1

? resistant to quantum computing

But it first needs a little fix. . .

15


