Words of Minimal Weight and Weight
Distribution in Binary Goppa Codes

Matthieu Finiasz

Abstract

The weight distribution of a Goppa code is proven to be “close” to the
binomial weight distribution found in a random linear code. Some bounds
have been found on the distance between the two distributions and this
distance is incredibly small for some particular weights. However, for
smaller weights the bound on the distance is of no use.

Using an algorithm to find words of minimal weight we were able to
perform some statistics on these weight distributions and show that even
for weights close to the minimal weight bound the distribution is still
binomial-like.

Key Words: Goppa codes, weight distribution, minimal weight, syndrome
decoding.

1 Introduction

By construction, a Goppa code is able to decode up to ¢ errors uniquely [1].
Consequently, the minimal distance between two words of such a code (which
is also the minimal weight of a non-zero code word) is at least 2t + 1. What
we are interested in is telling whether or not it is possible to find such minimal
weight words and then evaluate their number.

Little is known about the weight distribution of the Goppa codes, however
it is sure that it is close to a binomial distribution [4]. That is, the number
of words of weight w in a code of length n is approximately (Z) x 21 This
is true when w is not too small, but when w is close to 0 the distribution is
not the same: for instance, for any weight from 1 to 2¢ the number of words
is 0. To compensate for this lack of low weight words, the number of words of
weight just above the minimal weight should be a little larger than the expected
number. We are going to see if this is the case and how this small amount is
distributed over the other weights.

2 An Algorithm for Finding Words of Minimal
Weight

Suppose we have a binary Goppa code I' constructed over the field Fom with the
polynomial g of degree ¢t. This code will correct up to t errors, so we will try to
find code words of weight 2t + 1.

Using a locator polynomial. We call L. the locator polynomial of a code
word c. This is the polynomial of smallest degree which has for roots the field
elements associated to the non-zero positions of ¢. All words in I' have the
following property: the derivative of L. can be divided by g2.

For words of minimal weight this is interesting because L. is of degree 2t + 1
and L/, is of degree 2t, like g2. Moreover, both L, and g? are unitary. So L, = g°.
As we are in a field of characteristic 2 we only know half the coefficients of L.
Anyhow, we can then try to guess the other coefficients so that L. is split over
Fom. Each split L. will correspond to a code word of minimal weight. However
if we call Noyy1 the number of words of minimal weight this algorithm will take,
in average, 2’”(“‘1)/N2t+1 tries to find one minimal weight word.

This is not the best that can be done. For instance another algorithm can
find minimal weight words in a much shorter time.

Using the decoding algorithm. This technique will use the following idea:
we have an algorithm able to decode up to t errors [2]. If we try to decode a
word of weight ¢t + 1 and the decoding works, it will give us a word of weight
between 1 and 2t + 1. As there is no word of weight 1 through 2¢ in I" we will
necessarily have a word of weight 2¢ + 1. However this will only work if the
decoding succeeds. This time the average number of tries before a decoding
succeeds will be: (H’fl)/(Ngt_H (2:-:11))

Whatever the number of minimal weight words, this algorithm will require

less attempts than the previous one: n is smaller than 2™ so (tfl)/(ztj'l) <

(frl)/(ﬂjl) < 2m(t+141/(2t +-1)!. There is a factor t!/(2t 4 1)! between the two
algorithms, so even if testing if a polynomial is split is a little faster than trying

to decode a word, the first algorithm will be much slower than the second one.

3 Experimentation

In this section we will discuss the results obtained through experimentation, but
first of all, we will try to see what results we should expect.

In [5] the case of decoding a random syndrome in a Goppa code is studied.
It is shown that for a binary Goppa code correcting t errors, the ratio of de-
codable syndromes is approximately 1/¢!. This means that a random word has
an average probability of 1/¢! of being at a distance less or equal to ¢ of a code
word. This is true for a random word, but in our algorithm we only consider
words of weight ¢t + 1 for which the average probability could be quite different.

For instance, this is the case for smaller weights: all words of weight ¢ or less
can be decoded, not only 1/¢! of them.

Known exact values. In [3], Goppa codes correcting 3 errors are studied.
They are classified and for each class the exact number of minimal weight word
can be computed. The following table compares the obtained results to the one
which should be expected if there were exactly one decodable word of weight
t + 1 among t!: Noyr1 = n't/(2t 4+ 1)!

n | exact number | expected number
16 ~4 13
32 128 208
64 ~ 2 640 3 328
128 47 616 53 261
256 ~ 806 000 852 176
512 13 264 896 13 634 817

This table shows that when the length of the code increases our approxi-
mation gets closer to the real value. In fact the error decreases exponentially:
225%, 62%, 26%, 12%, 5.7%, 2.7%. ..

Experimental values. To be able to evaluate more precisely the quality of
the estimation we can compare it to experimental results. Applying the decod-
ing algorithm several times to a given Goppa code, we can check the ratio of
decodable words among those of weight ¢ + 1. Our approximation will be good
if this ratio is, in average, close to t!.

We computed the following experiment:

generate a random Goppa code of length n correcting ¢ errors

compute 50 words of minimal weight

compute the average number of tries necessary for each of these 50 words
repeat this 20 times for each set of parameters (n,t)

SO0 0 0

compute the average value (X) and standard deviation (o) for each set of
parameters

The obtained results are shown in the following table:

t 5 6 7 8 9
n X | o X] o X [o Y | o) [o
512 146 21 866 129 5903 882 45 491 5128 -
1024 138 | 30 755 | 100 5308 | 755 44 172 | 5 387 425 400 | 52 409
2 048 125 | 16 721 73 4892 | 673 44 827 | 5 094 367 767 | 48 077
4 096 119 | 15 769 | 144 4773 | 962 38 685 | 6 250 368 646 | 48 756
8 192 120 | 17 750 | 112 5235 | 790 41 036 | 5041 383 443 | 56 764
16 384 123 | 14 732 91 5470 | 846 39 351 | 6 242 374 139 | 59 313
32 768 120 | 18 662 99 5193 | 933 42 309 | 8 629 357 590 | 39 353
65 536 116 | 16 693 81 5372 | 914 39643 | 5719 360 973 | 41 858

Theory [[120 [17 [720 | 102][5040 [713][40320 [5702 [[362880 [51 319

The “Theory” line corresponds to the results which should be expected if
there were exactly 1 among t! decodable words for every binary Goppa code
correcting t errors. The average value X is of course t! and the standard deviation

. ! . .
is \/téfo. This is because, for each Goppa code, the average number of necessary

tries is computed as the average of 50 attempts, each one with a standard
deviation of t!. Results could be more precise if these averages were computed
using more attempts but this could take very long as for example, with t = 9
each attempt already takes a few minutes.

What we can see from this table is that the obtained results are always really
close to the theoretical ones. Looking closer we can also note that for small
values of n, ¥ is always a little larger than ¢!. This is probably due, like for the
3-errors correcting codes, to the approximation errors: the number of words of
minimal weight is a little smaller for small values of n, hence the average number
of decoding attempts is greater. To minimize this error we should probably use
instead of % the value % X (?) which for example for parameters (512, 8) would
give X = 42598. However, when n increases the two approximations tend to be
the same.

Conclusion From these experimentations and known results we can say that
there is a good probability that, for codes of great length, the number of words
of minimal weight tends to be what we expected at the beginning of this section:
Noty1 = (2”;7:11), However, for codes of smaller length, the number of minimal
weight words is a little smaller.

The computational time required to make some statistics on codes correcting
more errors is huge and we therefore cannot really check that our assumption

remains true for a larger ¢, however it seems reasonable to believe that it will.

4 Weight Distribution

In this section we consider as true the assumption that, among a set of word
of any given weight greater than ¢, there are always a ratio of 1/t! decodable
words. We’ve seen in the previous part that this was certainly the case for words
of weight ¢ + 1, therefore this must also be true for words of greater \ivleight.

t

Trying to decode words of weight ¢t + 1 we find that Noyy; = h If we

take a word of weight ¢+ 2 and try to decode it we get the following possibilities:
¢ it is not decodable: this happens with probability 1 — %
o it decodes in a word of weight 2t+2: this happens with probability Nos o X
(5)
(52)

¢ it decodes in a word of weight 2¢+1: this happens with probability Nos 1 X
(i) _
= ni—1!

[
%)(2";7:22), In a more general
manner, starting from words of weight ¢ + «, we have the following formula:

From this we can deduce that: Notio = (1 —

L #) where = [wta
TP PR G I

From this we get:

O R O S)
Norse = e (ﬂ = M)

t+a t+a 8
pt+a < 2tta—1 (zg)
LAY PRI < A
(Qt + Oé)' w=a (tfa) (ﬁa)
Which in first order approximation in % gives: Nopio = (Q”ttft), x (1 — % +
O(1/n?)). Hence, for small values of a (before the £ term can cause a significant
error), we will have Noyi o = (Q”%t),

Note that this is exactly the binomial distribution: (2‘7;“) ~ (Q?i:r)‘?nt =

t+a . . .
—t——. Therefore we can say that, if our assumption is true, even for the

2t+a)!
s(m;;ll)er weights the weight distribution of a binary Goppa code is the standard
binomial distribution we get with a random code.

So a Goppa code will have, as expected, a binomial weight distribution, even
for small weights. But what about the “gap” created by the absence of words
of weight 1 to 2¢t7 We came to our conclusion under the assumption that for
any weight w the probability a word of weight w was decodable is % As we've
seen with the statistics in section 3 this assumption will be more exact when
n is large, and in this case the “gap” becomes really small compared to the
number of words of weight 2¢ 4+ 1. For this reason it seems normal that under

our assumption we do not notice any compensation for this “gap”.

5 Conclusion

Starting from the assumption that for a given w > t+ 1, a word of weight w has
the same probability of being decodable as any word, we could show that the
weight distribution of a binary Goppa code is close to the binomial distribution,
even for words of small weight and especially when n is large. Thanks to the
decoding algorithm we could make some statistics on the probability a word of
weight ¢ + 1 is decodable and show that the assumption was reasonable. With
this algorithm we also have a way to find minimal weight code words in any
Goppa code. However its complexity grows in ¢! so it will only work for ¢ small
(that is ¢ < 10 in practice). As this algorithm requires to be able to decode to
work it can be seen as a trap which might find a use for cryptography, but this
is another problem...

References

1]

2]

V. D. Goppa. “A new class of linear error-correcting codes” In Probl.
Inform. Transm., vol. 6, pp. 207-212, 1970.

E. R. Berlekamp. “Goppa codes” In IEEE Trans. Inform. Theory, vol.
IT-19, pp. 590-592, 1973.

Anne Canteaut. PHD Thesis : “Attaques de cryptosystémes a mots de
poids faible et construction de fonctions ¢-Résilientes” chapitre 2, exemple
2.14.

F. Levy-dit-Vehel and S. Litsyn. “Parameters of Goopa Codes Revisited”
In IEEE Transactions on Information Theory, vol. 43, no. 6, November
1997.

N. Courtois, M. Finiasz, and N. Sendrier. “How to achieve a McEliece-
based digital signature scheme” In ASIACRYPT 2001, Springer-Verlag,
2001. http://eprint.iacr.org/2001/010 and RR-INRIA 4118.

