
Words of Minimal Weight and Weight
Distribution in Binary Goppa Codes

Matthieu Finiasz

ISIT 2003 – Yokohama



Binary Goppa Codes
Introduction

I Used for cryptography (McEliece cryptosystem)

. Indistinguishable from a random linear code (1)

. Efficient decoding algorithm (2)

I Their weight distribution is “close” to the binomial distribution (required for (1))

. F. Levy-dit-Vehel and S. Litsyn gave a bound for this “closeness” in 1997

. very good for medium weights, but of no use concerning small weight words

I No precise theoretical bounds being known, I tried to obtain experimental results.
Thanks to (2) it was possible to:

. implement an algorithm to find words of minimal weight

. run it to obtain statistical results

. extend it to words of small weight in general

1



Finding words of minimal weight
Algorithm 1: Decoding

Let Γ be a binary Goppa code of length n = 2m, dimension k and minimal distance
2t + 1. We have n− k = mt.

The decoding algorithm can decode up to t errors

I for any given word it can determine if there exists a code word at distance t or less

We try to decode words of weight t + 1
I if the decoding fails we try with another word

I if it succeeds we have obtained a codeword of minimal weight

If we denote by N2t+1 the number of codewords of weight 2t + 1 the average number
of decoding attempts for a successful one is:

A1 =

(
n

t+1

)

N2t+1 ×
(
2t+1
t+1

)

2



Finding words of minimal weight
Algorithm 2: Locator Polynomial

We note g the Goppa polynomial of the code and for any word c we note Lc the
locator polynomial of c, that is, the polynomial of roots the non-zero positions of c.

I given a word c, g2 divides L′c if and only if c is in the code

For a word of minimal weight Lc is monic of degree 2t + 1. As g is also monic and of
degree t we have exactly: g2 = L′c
I we know L′c so we know half the coefficients of Lc

I we can try random values for the other half. Each time Lc is split we have a word
of minimal weight

This time the average number of attempts is:

A2 =
n(t+1)

N2t+1

3



We can compare A1 and A2:

A1

A2
=

(
n

t+1

)
(
2t+1
t+1

)
n(t+1)

≈ t!
(2t + 1)!

A1 ≈ t!
(2t + 1)!

A2

I the first algorithm is asymptotically faster

Decoding is not much slower than testing if a polynomial is split

I A1 will be faster, even for small values of t

4



Theory. . .
What we should expect

In [CFS01] the case of decoding a random syndrome in a Goppa code is studied.

I the ratio of decodable random syndromes is approximately
1
t!

I this is true for a random syndrome

. is it still true for syndromes of words of weight t + 1?

If this ratio is respected we would have A1 =
1
t!

and so:

N2t+1 ≈ nt+1

(2t + 1)!
≈

(
n

2t + 1

)
× 1

2mt

This is exactly the binomial distribution.

5



Known Values

I Goppa codes correcting 3 errors of length 6 512 have been classified

. for each class the exact number of minimal weight word is known

n exact number expected number
16 ∼ 4 2.8
32 128 103
64 ∼ 2 640 2 370
128 47 616 45 073
256 ∼ 806 000 784 509
512 13 264 896 13 084 604

I expected number corresponds to the binomial distribution value

. the error decreases exponentially with n: 30%, 20%, 10.3%, 5.3%, 2.7%,
1.36%. . .

6



Experimental Results

To see what happens with greater lengths we used the following technique

I for a given set of parameters n and t

. generate 20 different random Goppa codes

. for each code find 50 words of minimal weight (using Algorithm 1)

. compute Σ the average value of A1

. compute σ the standard deviation between the different codes

I if we had a binomial distribution we would get

. Σ ≈ t!

. σ ≈ t!√
50

We have to perform 1000×t! decodings for each set of parameters so the computation
takes quite a long time.

7



Here are the results which were obtained:

t 5 6 7 8 9

n Σ σ Σ σ Σ σ Σ σ Σ σ

512 146 21 866 129 5 903 882 45 491 5 128 – –

1 024 138 30 755 100 5 308 755 44 172 5 387 425 400 52 409

2 048 125 16 721 73 4 892 673 44 827 5 094 367 767 48 077

4 096 119 15 769 144 4 773 962 38 685 6 250 368 646 48 756

8 192 120 17 750 112 5 235 790 41 036 5 041 383 443 56 764

16 384 123 14 732 91 5 470 846 39 351 6 242 374 139 59 313

32 768 120 18 662 99 5 193 933 42 309 8 629 357 590 39 353

65 536 116 16 693 81 5 372 914 39 643 5 719 360 973 41 858

Theory 120 17 720 102 5 040 713 40 320 5 702 362 880 51 319

¦ Σ denotes the average number of attempts

¦ σ denotes the standard deviation between the averages obtained with the
different Goppa codes

8



Weight Distribution
Extending to other small weight words

It is possible to run the same experiment for words of larger weight:

I take a word of weight t + 2 and decode it

. either you obtain a word of weight 2t + 1 −→ the probability is known

. or you obtain a word of weight 2t + 2 −→ make some statistics

I if the ratio of decodable words is
1
t!

then N2t+2 still corresponds to the binomial

distribution

Statistics tend to show that this ratio is respected when decoding words of any weight
(greater than t + 1)

I Binary Goppa codes follow the binomial distribution for any small weight

9



Conclusion

• We are able to find words of minimal weight in binary Goppa codes correcting few
errors

• For all the tested parameters the weight distribution is close to the binomial
distribution

• This is true in average but also for any particular code

I We have exactly what we could have expected!

• What will happen when t is greater?

• Is it possible to use the algorithm for other purposes?

• Can syndromes of words of weight t + 1 be considered as random syndromes?

10


