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Binary Goppa Codes

Introduction

» Used for cryptography (McEliece cryptosystem)
> Indistinguishable from a random linear code (1)
> Efficient decoding algorithm (2)

» Their weight distribution is “close” to the binomial distribution (required for (1))
> F. Levy-dit-Vehel and S. Litsyn gave a bound for this “closeness” in 1997

> very good for medium weights, but of no use concerning small weight words

» No precise theoretical bounds being known, | tried to obtain experimental results.
Thanks to (2) it was possible to: .

implement an algorithm to find words of minimal weight
run it to obtain statistical results

extend it to words of small weight in general
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Finding words of minimal weight
Algorithm 1: Decoding

be a binary Ggppa code of length n = 2™, dimension k£ and minimal distance
2t + 1. We have n — k = mt.

The decoding algorithm can decode up to ¢ errors
» for any given word it can determine if there exists a code word at distance ¢ or less

We try to decode words of weight ¢ + 1
if the decoding fails we try with another word

if it succeeds we have obtained a codeword of minimal weight

If we denote by No; 1 the number of codewords of weight 2t + 1 the average number
of decoding attempts for a successful one is:
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Finding words of minimal weight
Algorithm 2: Locator Polynomial

We note g the Goppa polynomial of the code and for any word ¢ we note L. the
locator polynomial of ¢, that is, the polynomial of roots the non-zero positions of c.

» given a word ¢, g? divides £/, if and only if ¢ is in the code

For a word of minimal weight L. is monic of degree 2t + 1. As g is also monic and of
degree t we have exactly: ¢° = L/,

we know L so we know half the coefficients of L.

we can try random values for the other half. Each time L. is split we have a word
of minimal weight

This time the average number of attempts is:

o (t+1)

Ao =
’ N2t+1
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We can compare A; and As:

Ar (¢ 11) Lt
Ay (BHn+D (2t 4+ 1)
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» the first algorithm is asymptotically faster

Decoding is not much slower than testing if a polynomial is split

A1 will be faster, even for small values of ¢
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Theory. . .

What we should expect

In [CFSO01] the case of decoding a random syndrome in a Goppa code is studied.

1

the ratio of decodable random syndromes is approximately 4

» this is true for a random syndrome

> is it still true for syndromes of words of weight ¢t + 17

1

If this ratio is respected we would have A = 1 and so:

N st nttt n y 1
T e T \2t+1) T oom

This is exactly the binomial distribution.
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Known Values

» Goppa codes correcting 3 errors of length < 512 have been classified

> for each class the exact number of minimal weight word is known

n | exact number | expected number
16 ~ 4 2.8
32 128 103
64 ~ 2 640 2 370
128 47 616 45 073
256 ~ 806 000 784 509
512 13 264 896 13 084 604

» expected number corresponds to the binomial distribution value

the error decreases exponentially with n: 30%, 20%, 10.3%, 5.3%, 2.7%,
1.36%. . .
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Experimental Results

To see what happens with greater lengths we used the following technique

» for a given set of parameters n and ¢
> generate 20 different random Goppa codes
> for each code find 50 words of minimal weight (using Algorithm 1)
> compute X the average value of A;

> compute o the standard deviation between the different codes

» if we had a binomial distribution we would get
> =~ t!

o ——

V50

We have to perform 1000 x ¢! decodings for each set of parameters so the computation
takes quite a long time.
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Here are the results which were obtained:

t 5 6 7

n > o > o > o > o > o

512 146 | 21 || 866 | 129 || 5903 | 882 | 45491 | 5128 — -

1024 138 | 30 || 755 | 100 || 5308 | 755 | 44 172 | 5387 || 425400 | 52 409
2 048 125 | 16 || 721 73 4892 | 673 || 44827 | 5094 || 367 767 | 48 077
4 096 119 | 15 || 769 | 144 || 4773 | 962 || 38685 | 6 250 || 368 646 | 48 756
8 192 120 | 17 || 750 | 112 || 5235 | 790 || 41036 | 5041 || 383 443 | 56 764
16 384 123 | 14 || 732 | 91 5470 | 846 || 39351 | 6242 || 374 139 | 59 313
32 768 120 | 18 || 662 | 99 5193 | 933 || 42309 | 8 629 || 357 590 | 39 353
65 536 116 | 16 || 693 | 81 5372 | 914 || 39643 | 5719 || 360 973 | 41 858
Theory || 120 | 17 || 720 | 102 || 5040 | 713 || 40320 | 5702 || 362 880 | 51 319

¢ X denotes the average number of attempts

¢ o denotes the standard deviation between the
different Goppa codes
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Weight Distribution

Extending to other small weight words

It is possible to run the same experiment for words of larger weight:

» take a word of weight ¢ + 2 and decode it
> either you obtain a word of weight 2t + 1 — the probability is known
> or you obtain a word of weight 2 + 2 — make some statistics

. . .1 . . .
» if the ratio of decodable words is 0 then N 9 still corresponds to the binomial

distribution

Statistics tend to show that this ratio is respected when decoding words of any weight
(greater than t + 1)

» Binary Goppa codes follow the binomial distribution for any small weight
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Conclusion

We are able to find words of minimal weight in binary Goppa codes correcting few
errors

For all the tested parameters the weight distribution is close to the binomial
distribution

This is true in average but also for any particular code

» We have exactly what we could have expected!

What will happen when t is greater?

Is it possible to use the algorithm for other purposes?

Can syndromes of words of weight £ + 1 be considered as random syndromes?
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