A Family of Fast Syndrome Based Cryptographic Hash Functions

Daniel Augot, Matthieu Finiasz and Nicolas Sendrier

Part I

General Facts about Hash Functions

The Merkle-Damgård construction

Recent discoveries The chinese menace

Many functions based on this construction are broken
 MD4, MD5

- ▷ RIPEMD
- ▷ SHA-O, SHA-1
- Attacks inherent to this construction
 - Multicollisions [Joux Crypto 04]
 - Second pre-image [Kelsey, Schneier Eurocrypt 05]

\Lambda Does not always behave like a random oracle.

Merkle-Damgård is not dead yet

► As long as collision resistance remains:

- No multicollisions
- ▷ No second preimage

We wanted to build a hash function:

- Provably collision resistant
- Fast enough to compete with existing constructions

Part II

Description of the New Construction

The simplest compression function

Compress an input of s bits into r.

▶ Use a product by an $r \times s$ binary matrix

Linearity is bad: easy inversion!

The simplest compression function

Compress an input of s bits into r.

▶ Use a product by an $r \times s$ binary matrix

Linearity is bad: easy inversion!

 \blacktriangleright Code the input in a word of length n and given Hamming weight w, then multiply it by an $r \times n$ matrix

⚠️ Constant weight encoding is slow!

The simplest compression function

Compress an input of s bits into r.

▶ Use a product by an $r \times s$ binary matrix

Linearity is bad: easy inversion!

Code the input in a word of length n and given Hamming weight w, then multiply it by an $r \times n$ matrix

Constant weight encoding is slow!

Use a fast/lossy constant weight encoding technique.

Fast constant weight encoding Using regular words

▶ We only consider regular words: words of weight w with one non-zero bit in each n/w bits interval.
 ▷ There are (n/w)^w such words, thus s = w log₂ (n/w).

 \triangleright With an exact encoding it would have been $s = \log_2 {n \choose w}$.

Step by step description One round of the compression function

We use a random $r \times n$ binary matrix \mathcal{H} .

- 1. Concatenate the r chaining bits with s r bits from the document.
- 2. Split the s bits in w equal length strings s_i .
- 3. Convert each s_i in a column index h_i .
- 4. XOR the w columns h_i of \mathcal{H} .
- 5. Return the r-bit column obtained.

Part III

Security Analysis

Theoretical security Regular Syndrome Decoding

Inversion:

 \triangleright Given S, find c of weight w such that $\mathcal{H} \times c = S$.

Collision:

Find c and c' of weight w such that H × c = H × c'.
Or find c of weight < 2w such that H × c = 0.

In both cases: solve an instance of Syndrome Decoding.
 With regular words, this problem is still NP-complete.

Practical security Best known attacks

► Using classical decoding attacks [Canteaut, Chabaud 98].

Practical security Best known attacks

Using classical decoding attacks [Canteaut, Chabaud 98].
 Wagner's generalized birthday paradox [Coron, Joux 04].

Attack complexity Using the generalized birthday paradox

The complexity of this attack depends of a parameter a.
The attack can be applied for any a such that:

$$\frac{2^a}{a+1} \le \frac{r}{w} \log_2\left[\binom{\frac{n}{w}}{2} + 1\right]$$

► Its complexity is $\mathcal{O}\left(2^{\frac{r}{a+1}}\right)$.

Attack complexity Using the generalized birthday paradox

The complexity of this attack depends of a parameter a.
The attack can be applied for any a such that:

$$\frac{2^a}{a+1} \le \frac{r}{w} \log_2\left[\binom{\frac{n}{w}}{2} + 1\right]$$

► Its complexity is $\mathcal{O}\left(2^{\frac{r}{a+1}}\right)$.

It is crucial to keep a as small as possible!
If we want compression it will always be possible to have a = 4.

Part IV

Choosing Suitable Parameters

Choosing fast parameters Measuring the efficiency of a parameter set

The only costly operations are binary XORs

Speed will depend directly of the number N_{XOR} of binary XORs per input bit:

$$\mathcal{N}_{XOR} = rac{rw}{w \log_2 rac{n}{w} - r}.$$

Faster for large values of n:
 the larger H, the faster the hashing.

Some suitable parameters

$\log_2\left(\frac{n}{w}\right)$	w	\mathcal{N}_{XOR}	size of \mathcal{H}
16	41	64.0	$\sim 1 \text{ Gbit}$
15	44	67.7	550 Mbits
14	47	72.9	293 Mbits
13	51	77.6	159 Mbits
12	55	84.6	86 Mbits
11	60	92.3	47 Mbits
10	67	99.3	26 Mbits
9	75	109.1	15 Mbits
8	85	121.4	8.3 Mbits
7	98	137.1	4.8 Mbits
6	116	156.8	2.8 Mbits
5	142	183.2	1.7 Mbits
4	185	217.6	1.1 Mbits

11/15

Obtained speed

- For r = 400, w = 85 and $\log_2 \frac{n}{w} = 8$ MB.
 - \triangleright on a 2GHz P4 we get a throughput of 70Mbits/s.

On a 64 bit CPU with 2MB cache
 no more cache misses.
 twice more binary XORs per CPU cycle.
 throughput: *not tested*.

Possible Extensions

Reducing the output size

If one wants an output shorter than 400 bits
 Add a final transformation g.

- The function g takes r input bits and outputs r'
 Used only once per hashing.
 - ▷ Can be more expensive than one standard round.
 - Possibly inefficient for short documents.

Online generation of ${\cal H}$

lnstead of using a truly random matrix \mathcal{H} , generate only required columns: $\mathcal{H}_i = f(i)$.

Possibility to use much larger matrices.

▷ No more cache miss problems.

What conditions should f verify for collision resistance?
 Impossibility to find: f(i₁) + ... + f(i_{2w}) = 0.
 If f is (as strong as) a block cipher we already have better constructions.

Conclusion

- ♦ We have "provable security".
 ▶ No efficient generic attack.
- ♦ Throughput is high enough for most applications.
- ◊ Very wide parameter choice.
 - ▷ All parameters scale smoothly.
- ♦ Large outputs only.
 - Can be corrected via an output transformation.
- ♦ Uses more memory than other hash functions.
- ♦ Easy to implement!