
A Family of Fast Syndrome Based
Cryptographic Hash Functions

Daniel Augot, Matthieu Finiasz and Nicolas Sendrier

Part I

General Facts about Hash Functions

The Merkle-Damg̊ard construction

C
om

pr
es
si
on

D

I.V.

Hash

Padding
+ length

C
om

pr
es
si
on

Chaining
C
om

pr
es
si
on

Chaining

1/15

Recent discoveries
The chinese menace

I Many functions based on this construction are broken

. MD4, MD5

. RIPEMD

. SHA-O, SHA-1

I Attacks inherent to this construction

. Multicollisions [Joux - Crypto 04]

. Second pre-image [Kelsey, Schneier - Eurocrypt 05]

! Does not always behave like a random oracle.

2/15

Merkle-Damg̊ard is not dead yet

I As long as collision resistance remains:

. No multicollisions

. No second preimage

I We wanted to build a hash function:

. Provably collision resistant

. Fast enough to compete with existing constructions

3/15

Part II

Description of the New Construction

The simplest compression function

Compress an input of s bits into r.

I Use a product by an r × s binary matrix

! Linearity is bad: easy inversion!

4/15

The simplest compression function

Compress an input of s bits into r.

I Use a product by an r × s binary matrix

! Linearity is bad: easy inversion!

I Code the input in a word of length n and given Hamming

weight w, then multiply it by an r × n matrix

! Constant weight encoding is slow!

4/15

The simplest compression function

Compress an input of s bits into r.

I Use a product by an r × s binary matrix

! Linearity is bad: easy inversion!

I Code the input in a word of length n and given Hamming

weight w, then multiply it by an r × n matrix

! Constant weight encoding is slow!

I Use a fast/lossy constant weight encoding technique.

4/15

Fast constant weight encoding
Using regular words

n

n

w

1 1 1 1 1 1 1 1

I We only consider regular words: words of weight w with

one non-zero bit in each n
w bits interval.

. There are
(

n
w

)w
such words, thus s = w log2

(
n
w

)
.

. With an exact encoding it would have been s = log2
(

n
w

)
.

5/15

Step by step description
One round of the compression function

We use a random r × n binary matrix H.

1. Concatenate the r chaining bits with s − r bits

from the document.

2. Split the s bits in w equal length strings si.

3. Convert each si in a column index hi.

4. XOR the w columns hi of H.

5. Return the r-bit column obtained.

6/15

Part III

Security Analysis

Theoretical security
Regular Syndrome Decoding

I Inversion:

. Given S, find c of weight w such that H× c = S.

I Collision:

. Find c and c′ of weight w such that H× c = H× c′.

. Or find c of weight < 2w such that H× c = 0.

I In both cases: solve an instance of Syndrome Decoding.

I With regular words, this problem is still NP-complete.

7/15

Practical security
Best known attacks

C
ol

lis
io

n
 r

es
is
ta

n
ce

w

Coding

Signature [CFS - Asiacrypt 2001]

Hashing

I Using classical decoding attacks [Canteaut, Chabaud 98].

8/15

Practical security
Best known attacks

C
ol

lis
io

n
 r

es
is
ta

n
ce

w

Coding

Signature [CFS - Asiacrypt 2001]

Hashing

I Using classical decoding attacks [Canteaut, Chabaud 98].

I Wagner’s generalized birthday paradox [Coron, Joux 04].

8/15

Attack complexity
Using the generalized birthday paradox

The complexity of this attack depends of a parameter a.

I The attack can be applied for any a such that:

2a

a + 1
≤ r

w
log2

[(n
w

2

)
+ 1

]
.

I Its complexity is O
(
2

r
a+1

)
.

9/15

Attack complexity
Using the generalized birthday paradox

The complexity of this attack depends of a parameter a.

I The attack can be applied for any a such that:

2a

a + 1
≤ r

w
log2

[(n
w

2

)
+ 1

]
.

I Its complexity is O
(
2

r
a+1

)
.

It is crucial to keep a as small as possible!

I If we want compression it will always be possible

to have a = 4.

9/15

Part IV

Choosing Suitable Parameters

Choosing fast parameters
Measuring the efficiency of a parameter set

The only costly operations are binary XORs

I Speed will depend directly of the number NXOR of binary

XORs per input bit:

NXOR =
rw

w log2
n
w − r

.

I Faster for large values of n:

. the larger H, the faster the hashing.

10/15

Some suitable parameters

0

10010

20020

12040 16080

25025

30030

15015

505

200

log()n N
XOR

w

for: r = 400 and a = 4

log2

(
n
w

)
w NXOR size of H

16 41 64.0 ∼ 1 Gbit
15 44 67.7 550 Mbits
14 47 72.9 293 Mbits
13 51 77.6 159 Mbits
12 55 84.6 86 Mbits
11 60 92.3 47 Mbits
10 67 99.3 26 Mbits
9 75 109.1 15 Mbits
8 85 121.4 8.3 Mbits
7 98 137.1 4.8 Mbits
6 116 156.8 2.8 Mbits
5 142 183.2 1.7 Mbits
4 185 217.6 1.1 Mbits

11/15

Obtained speed

I For r = 400, w = 85 and log2
n
w = 8

. matrix size ' 1MB.

. on a 2GHz P4 we get a throughput of 70Mbits/s.

I On a 64 bit CPU with 2MB cache

. no more cache misses.

. twice more binary XORs per CPU cycle.

. throughput: not tested.

12/15

Part V

Possible Extensions

Reducing the output size

I If one wants an output shorter than 400 bits

. Add a final transformation g.

I The function g takes r input bits and outputs r′

. Used only once per hashing.

. Can be more expensive than one standard round.

. Possibly inefficient for short documents.

13/15

Online generation of H

I Instead of using a truly random matrix H, generate only

required columns: Hi = f(i).
. Possibility to use much larger matrices.

. No more cache miss problems.

I What conditions should f verify for collision resistance?

. Impossibility to find: f(i1) + . . . + f(i2w) = 0.

. If f is (as strong as) a block cipher we already have

better constructions.

14/15

Conclusion

¦ We have “provable security”.

. No efficient generic attack.

¦ Throughput is high enough for most applications.

¦ Very wide parameter choice.

. All parameters scale smoothly.

¦ Large outputs only.

. Can be corrected via an output transformation.

¦ Uses more memory than other hash functions.

¦ Easy to implement!

15/15

