A Family of Fast Syndrome Based
Cryptographic Hash Functions

Daniel Augot, Matthieu Finiasz and Nicolas Sendrier

B zczo

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Part |

General Facts about Hash Functions

The Merkle-Damgard construction

Padding
+ length

Chaining Chaining u

1/15

Recent discoveries

» Many functions based on this construction are broken
MD4, MD5
RIPEMD
SHA-O, SHA-1

» Attacks inherent to this construction

Multicollisions [Joux - Crypto 04|
Second pre-image [Kelsey, Schneier - Eurocrypt 05]

/\ Does not always behave like a random oracle.

2/15

Merkle-Damgard is not dead yet

» As long as collision resistance remains:

No multicollisions

No second preimage

» We wanted to build a hash function:
Provably collision resistant

Fast enough to compete with existing constructions

3/15

Part Il

Description of the New Construction

The simplest compression function

Compress an input of s bits into r.

» Use a product by an r X s binary matrix

/\ Linearity is bad: easy inversion!

4/15

The simplest compression function

Compress an input of s bits into r.

» Use a product by an r X s binary matrix

/\ Linearity is bad: easy inversion!

» Code the input in a word of length n and given Hamming
weight w, then multiply it by an » X n matrix

/\ Constant weight encoding is slow!

4/15

The simplest compression function

Compress an input of s bits into r.

» Use a product by an r X s binary matrix
/\ Linearity is bad: easy inversion!
» Code the input in a word of length n and given Hamming
weight w, then multiply it by an » X n matrix

/\ Constant weight encoding is slow!

» Use a fast/lossy constant weight encoding technique.

4/15

Fast constant weight encoding

< >
11 11 1 1 |1 1
+—>
n
w
» We only consider words: words of weight w with

one non-zero bit in each % bits interval.

There are (%)w such words, thus s = w log, (%)

With an exact encoding it would have been s = log, (Z)

5/15

Step by step description

One round of the compression function

use a random 7 X n binary matrix H.

1. Concatenate the r chaining bits with s — r bits
from the document.

2. Split the s bits in w equal length strings s;.
3. Convert each s; in a column index h;.

4. XOR the w columns h; of H.

5. Return the r-bit column obtained.

6/15

Part 111

Security Analysis

Theoretical security

» |Inversion:
Given S, find ¢ of weight w such that H x ¢ = S.

» Collision:
Find ¢ and ¢’ of weight w such that H x ¢ ="H x .
Or find ¢ of weight < 2w such that H x ¢ = 0.

» In both cases: solve an instance of

With regular words, this problem is still NP-complete.

7/15

Practical security
Best known attacks

Coding
Signature [CFS - Asiacrypt 2001]
g ' Hashing
c
S
8
c
.9
Z
O
w

>

» Using classical decoding attacks [Canteaut, Chabaud 98].

8/15

Practical security
Best known attacks

Coding
Signature [CFS - Asiacrypt 2001]
g ' Hashing
c
S
8
c
.9
Z
O
\ w

» Using classical decoding attacks [Canteaut, Chabaud 98].

» Wagner's generalized birthday paradox [Coron, Joux 04].
8/15

Attack complexity
Using the generalized birthday paradox

he complexity of this attack depends of a parameter a.
» The attack can be applied for any a such that:

2 T logy | (#) +1
— 10 .
atl1-w 2|2

» lts complexity is O (Qail).

9/15

Attack complexity
Using the generalized birthday paradox

he complexity of this attack depends of a parameter a.
» The attack can be applied for any a such that:

2 T logy | (#) +1
— 10 .
a1 - w 82\

» lts complexity is O (2#1)

It is crucial to keep a as small as possible!

» If we want compression it will always be possible
to have o = 4.

9/15

Part IV

Choosing Suitable Parameters

Choosing fast parameters

he only costly operations are binary XORs

» Speed will depend directly of the number Nxpr of binary
XORs per input bit:

» Faster for large values of n:

the larger H, the faster the hashing.

10/15

30 |
2
2
15

10

Some suitable parameters

log(n) Nior 1300

250
200
150
100

-50

for: r =400 and a = 4

logy () | w | Nxor | size of H
16 41 64.0 ~ 1 Gbit
15 44 67.7 | 550 Mbits
14 47 72.9 | 293 Mbits
13 51 77.6 | 159 Mbits
12 515} 84.6 86 Mbits
11 60 92.3 47 Mbits
10 67 99.3 26 Mbits
9 75 | 109.1 15 Mbits
8 85 121.4 | 8.3 Mbits
7 98 | 137.1 | 4.8 Mbits
§ 116 | 156.8 | 2.8 Mbits
5 142 | 183.2 | 1.7 Mbits
4 185 | 217.6 | 1.1 Mbits

11/15

Obtained speed

» For r = 400, w = 85 and log, — = 8
matrix size ~ 1MB.
on a 2GHz P4 we get a throughput of 70Mbits/s.

» On a 64 bit CPU with 2MB cache

no more cache misses.
twice more binary XORs per CPU cycle.
throughput: not tested.

12/15

Part V

Possible Extensions

Reducing the output size

» |f one wants an output shorter than 400 bits

Add a final transformation g.

» The function ¢ takes r input bits and outputs r’
Used only once per hashing.
Can be more expensive than one standard round.

Possibly inefficient for short documents.

13/15

Online generation of H

» Instead of using a truly random matrix H, generate only
required columns: H; = f (7).

Possibility to use much larger matrices.

No more cache miss problems.

» What conditions should f verify for collision resistance?
mpossibility to find: f(¢1) + ... 4+ f(i2,) = 0.

f f is (as strong as) a block cipher we already have
vetter constructions.

14/15

Conclusion

¢ We have “provable security”.
No efficient generic attack.

¢ Throughput is high enough for most applications.

¢ Very wide parameter choice.
All parameters scale smoothly.

¢ Large outputs only.
Can be corrected via an output transformation.

¢ Uses more memory than other hash functions.

¢ Easy to implement!
15/15

