Selected Topics on Security and Cryptography 2005

Codes in Cryptography

Matthieu Finiasz

Outline

Introduction to linear error-correcting codes
II Some famous linear codes
III The McEliece public key cryptosystem
IV Other cryptographic constructions relying on hard coding problems

V Other applications where codes can be useful...

Part I

Introduction to linear error-correcting codes

What are error-correcting codes?

- They make possible the correction of errors when communicating over a noisy channel.
\triangleright Add redundancy to the transmitted information.
\triangleright Correct errors when the received data is corrupted.
- Stronger than a simple CRC or checksum: these can only detect errors.

Where are they used?

\diamond DVD, CD: reduce the effect of dust and scratches
\diamond cell-phones: improve communication quality
\diamond Mars Pathfinder: save energy when sending pictures to Earth.
\triangleright for a same final error probability, it is cheaper to emit longer with less power
\diamond cryptography...

What are linear codes?

- The most widely used kind of error-correcting codes, \triangleright tend to be replaced by convolutional codes...
- Error-correcting codes for which the redundancy depends linearly of the information.
- Can be defined by a generator matrix \mathcal{G} :

- The generator matrix \mathcal{G} may not be given in systematic form, but is always of maximal rank.
- The code \mathcal{C} is the vectorial subspace of dimension k defined by \mathcal{G}
\triangleright there is not a unique generator matrix.
- The length n of the code is the length of a code word. \triangleright the matrix \mathcal{G} is of size $k \times n$.
- The ratio $r=\frac{k}{n}$ is the transmission rate of the code.

Decoding

- The transmitter sends $c=m \mathcal{G}$, but the receiver will get $c^{\prime}=c+e$.
\triangleright Decoding consists in recovering c from c^{\prime}.
- Most often, we want maximum likelihood decoding:
\triangleright find the code word which had the best probability of giving the received word.
\triangleright This will depend on the channel/noise.

The binary symmetric channel

- The Hamming weight of a word c is it's number of non-zero coordinates.
\triangleright Most probable errors are those of lower weight.
- Decoding c^{\prime} consists in finding the closest (for the Hamming distance) code word.

Minimal distance

- The minimal distance d of a code is the minimum of the Hamming distance between two code words.
\triangleright It is also the smallest possible weight for a non-zero code word.
- For any code $d \leq n-k+1$.
\triangleright If $d=n-k+1$ the code is called Maximum Distance Separable (MDS).
- We note $[n, k, d]$ a code of length n, dimension k and minimal distance d.

Bounded decoding

- Maximum likelihood decoding is often hard to achieve.
- We restrict to bounded decoding up to the distance t :
\triangleright find any code word at distance less or equal to t.
\triangleright If $t \leq \frac{d-1}{2}$ decoding is always unique.

Bounded decoding

- Maximum likelihood decoding is often hard to achieve.
- We restrict to bounded decoding up to the distance t :
\triangleright find any code word at distance less or equal to t.
\triangleright If $t \leq \frac{d-1}{2}$ decoding is always unique.

δ is the covering radius. Bounded decoding up to δ is not unique.

Decoding

\diamond Error exhaustive search: choose e of small weight, calculate $c^{\prime}-e$ and check if it is in the code.
\diamond Code word exhaustive search: calculate $c^{\prime}-m \mathcal{G}$ for all possible m and check its weight.
\diamond Information Set Decoding: choose k coordinates of c^{\prime} and reconstruct $c^{\prime \prime}=\left(c^{\prime} \mathcal{G}^{-1}\right) \mathcal{G}$ for these coordinates. Check the weight of $c^{\prime}-c^{\prime \prime}$.
$\triangleright c^{\prime \prime}=c$ if there is no error among the k coordinates.
\triangleright check $\binom{n-k}{t}$ error patterns at a time.

The parity check matrix

Syndrome decoding

The parity check matrix \mathcal{H} is orthogonal to \mathcal{G} :
\triangleright it is a $(n-k) \times n$ matrix.
\triangleright the code \mathcal{C} is the kernel of \mathcal{H}.
$\triangleright c \in \mathcal{C}$ if and only if $\mathcal{H} c=0$.
$\triangleright \mathcal{S}=\mathcal{H} c^{\prime}=\mathscr{C}+\mathcal{H e}$ is the syndrome of the error.

- Syndrome decoding consists in finding a low weight linear combination of columns of \mathcal{H} summing to \mathcal{S}.
\triangleright The same methods apply: information set decoding...

Part II

Some famous linear codes

The repetition code

- Each bit is simply reapeated d times:
$\triangleright 00100$ is coded 000000111000000.
- This code is a $[d, 1, d]$ code.
\triangleright it is MDS!
- Transmission rate is too small.
- Only usefull for very high noise level in a memoryless channel.

The Hamming code

- It is a binary $\left[2^{\ell}-1,2^{\ell}-1-\ell, 3\right]$ code. Its parity check matrix contains all the different ℓ bit columns.
For $\ell=3$ it looks like:

$$
\mathcal{H}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- The minimal distance d is 3 .
\triangleright No code words of weight 1 or 2 .
- Syndrome decoding can correct exactly one error.
- These are perfect codes: any word can be decoded.

Reed-Solomon codes
 [Reed-Solomon 1960]

Evaluation codes over \mathbb{F}_{q} (usually $\mathbb{F}_{2^{m}}$).
\triangleright The support \mathcal{L} of the code is a list of n elements of \mathbb{F}_{q}.
\triangleright The RS code of support \mathcal{L} and dimension k contains the evaluations (on \mathcal{L}) of all polynomials of degree $<k$.

For $\mathcal{L}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and a message $m=\left(m_{0}, \ldots, m_{k-1}\right)$:
\triangleright we define $P(X)=\sum_{i=0}^{k-1} m_{i} X^{i}$,
\triangleright we get the code word $c=\left(P\left(\alpha_{1}\right), \ldots, P\left(\alpha_{n}\right)\right)$.

- If P_{1} and P_{2} coincide on k points of \mathcal{L} they are equal.
\triangleright The minimal distance of a RS code is $d=n-k+1$.
\triangleright RS codes are always MDS!
- Decoding can be done very efficiently:
\triangleright uniquely up to $t=\frac{n-k}{2}$ (Berlekamp-Massey).
\triangleright list decoding up to $t=n-\sqrt{n k}$ (Sudan).
\triangle These codes are very convenient, but n has to be smaller or equal to q.
- Using a binary transmission, RS codes will work better correcting burst errors.

What about binary codes?

The Gilbert-Varshamov bound

Gilbert-Varshamov lower bound:
$\mathrm{A}[n, k, d]$ code over \mathbb{F}_{q} exists if:

$$
\sum_{i=0}^{d-2}\binom{n-1}{i}(q-1)^{i}<q^{n-k}
$$

$-\ln \mathbb{F}_{2}$ it gives: $\sum_{i=0}^{d-2}\binom{n-1}{i}<2^{n-k}$.
\triangleright Simplifying things a lot you get $n^{d} \lesssim 2^{n-k}$ and:

$$
d \lesssim \frac{n-k}{\log _{2} n}
$$

Goppa codes
 [V.D. Goppa 1970]

Goppa codes are codes on \mathbb{F}_{p} build from codes on $\mathbb{F}_{p^{m}}$.
\triangleright choose a support $\mathcal{L} \subset \mathbb{F}_{p^{m}}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and a primitive polynomial g of degree t.
\triangleright build a parity check matrix \mathcal{H} of size $t \times n$ in $\mathbb{F}_{p^{m}}$.
\triangleright extend \mathcal{H} to a $m t \times n$ parity check matrix on \mathbb{F}_{p}.

- The code $\Gamma(\mathcal{L}, g)$ has a minimal distance $\geq t+1$.
- When $p=2, \Gamma\left(\mathcal{L}, g^{2}\right)=\Gamma(\mathcal{L}, g)$ and has a minimal distance of $2 t+1$.
\triangleright Decode t errors uniquely (Berlekamp-Massey).

Random codes

A random code is defined by a random $k \times n$ generator matrix \mathcal{G} of rank k.

- Random codes are good codes!
\triangleright In average the minimal distance meets the GV bound.
- Decoding in a random linear code is a NP-complete problem.
- Finding the minimal distance of a random linear code is a NP-complete problem.

Part III

The McEliece public key
 cryptosystem
 [McEliece 1978]

The basic idea

\diamond Generate a code and its generator matrix \mathcal{G}.
\triangleright This is the private key.
\diamond Scramble \mathcal{G} to obtain \mathcal{G}^{\prime} which looks like random.
\triangleright This is the public key.
\diamond Encode a message m by computing:

$$
c^{\prime}=m \mathcal{G}^{\prime}+e \quad \text { with } e \text { a random error }
$$

\diamond Only the person knowing the underlying structure in \mathcal{G}^{\prime} can decode and recover m.

Using binary Goppa codes

- A Goppa parity check matrix has a structure in $\mathbb{F}_{2^{m}}$.
\triangleright Once projected on \mathbb{F}_{2} this structure is spread over different lines.
- Take a Goppa code $\Gamma(\mathcal{L}, g)$, its generator matrix \mathcal{G}, a permutation \mathcal{P} and an invertible matrix \mathcal{Q}.
\triangleright Compute $\mathcal{G}^{\prime}=\mathcal{Q} \times \mathcal{G} \times \mathcal{P}$
- Distinguishing \mathcal{G}^{\prime} from a random binary matrix is believed to be a hard problem.

Key generation

\diamond Choose some parameters n, t, m
\triangleright make sure $n \leq 2^{m}$ and $2 m t \leq n$
\diamond Choose a subset $\mathcal{L} \subset \mathbb{F}_{2^{m}}$ of size n and a primitive polynomial g of degree t on $\mathbb{F}_{2^{m}}$.
\diamond Build $\Gamma(\mathcal{L}, g)$ and a generator matrix \mathcal{G}
\diamond Choose random matrices \mathcal{P} and \mathcal{Q}.
\diamond Compute $\mathcal{G}^{\prime}=\mathcal{Q} \times \mathcal{G} \times \mathcal{P}$
$-\mathcal{G}^{\prime}$ is the public key, $(\mathcal{L}, g, \mathcal{P}, \mathcal{Q})$ are the private key.

Encryption

 Using the public key\diamond Split the message in blocks of length $k=n-2 m t$
\diamond Encrypt each block b_{i} independently

- Compute $c_{i}=b_{i} \times \mathcal{G}^{\prime}$.
- Choose a random error e of weight t.
- Compute $c_{i}^{\prime}=c_{i}+e$.
\diamond Send the encrypted message $\left(c_{0}^{\prime}\left\|c_{1}^{\prime}\right\| \ldots\right)$.
The encrypted message is longer than the original message by a ratio $\frac{1}{r}=\frac{n}{k}$.

Decryption

\diamond For each received block c_{i}^{\prime}

- Compute $c_{i}^{\prime} \mathcal{P}^{-1}=\left(m_{i} \mathcal{Q}\right) \mathcal{G} \times \mathbb{P} \mathbb{P}+e \mathcal{P}^{-1}$.
- $e \mathcal{P}^{-1}$ is of weight t and $\left(m_{i} \mathcal{Q}\right) \mathcal{G} \in \Gamma(\mathcal{L}, g)$. \triangleright Using \mathcal{L} and g, decode and recover $m_{i} \mathcal{Q}$.
- Compute $\left(m_{i} \mathcal{Q}\right) \mathcal{Q}^{-1}$ to obtain m_{i}.
\diamond Rebuild the original message $\left(m_{0}\left\|m_{1}\right\| \ldots\right)$.

Theoretical security

Relying on hard problems

A public key cryptosystem always relies on two problems:
\diamond Recovering the private key from the public key.
\triangleright For RSA: factorization of $n=p q$.
\diamond Decrypting without knowing the private key.
\triangleright For RSA: $e^{\text {th }}$ root extraction modulo n.

- For McEliece the problems are:
\triangleright Distinguishing \mathcal{G}^{\prime} from a random matrix.
\triangleright Decoding in a random code (NP-complete).

Practical security

Complexity of the best attacks

- Structural attacks: recovering $\Gamma(\mathcal{L}, g)$ from \mathcal{G}^{\prime}.
\triangleright Testing code equivalence is hard in theory, but easy in practice (support splitting algorithm [Sendrier 2000]).
\triangleright Test the equivalence between \mathcal{G}^{\prime} and all Goppa codes.

$$
\text { Complexity: } \mathcal{O}\left(m t 2^{m(t-2)}\right)
$$

- Decoding attacks: decode considering \mathcal{G}^{\prime} as random.
\triangleright Many information set decoding algorithms.
\triangleright The best one is by A. Canteaut and F. Chabaud.

$$
\text { Complexity: } \mathcal{O}\left(2^{m t\left(\frac{1}{2}+o(1)\right)}\right)
$$

The re-encryption problem

Sending twice the same message block b with the same key is dangerous:
\triangleright If one sends $c_{0}=b \mathcal{G}^{\prime}+e_{0}$ and $c_{1}=b \mathcal{G}^{\prime}+e_{1}$,
\triangleright the sum $c_{0}+c_{1}=e_{0}+e_{1}$ is of weight $2 t<n-k$.
\triangleright One can get k coordinates with no errors and decode.
^ Using a random e can be dangerous
\triangleright Maybe $e=$ hash (b) can be more secure.
\triangleright Or add some randomness inside the k bits of message.

The Niederreiter variant
 [Niederreiter 1986]

- Consists in putting the information in the error instead of the code word.
\triangleright Send a syndrome of this error.
- The public key is a scrambled parity check matrix:
$\triangleright \mathcal{H}^{\prime}=\mathcal{Q} \times \mathcal{H} \times \mathcal{P}$.
- The private key is still $(\mathcal{L}, g, \mathcal{P}, \mathcal{Q})$.

Encryption/Decryption

- Encryption:
\diamond Convert the data into e of length n and weight t.
\diamond Compute $\mathcal{S}=\mathcal{H}^{\prime} e$ (sum of t columns of \mathcal{H}^{\prime}).
$\diamond \mathcal{S}$ is the ciphertext.
- Decryption:
\diamond Compute $\mathcal{Q}^{-1} \mathcal{S}=\mathcal{Q} \mathcal{Q}(\mathcal{P e})$.
$\diamond \mathcal{P} e$ is of weight t and can be decoded.
\diamond Reconvert e into the clear text.

McEliece vs. Niederreiter

McEliece

\triangleright Transmission rate:

$$
k / n \simeq 0.82
$$

\triangleright Block size:

$$
k=1685
$$

\triangleright Encryption cost (per bit):

$$
\mathcal{O}(n)
$$

\triangleright Decryption cost:
syndrome + decoding + inversion
\triangleright Re-encryption problem:
Yes

Niederreiter

$$
\text { For }(n=2048, m=11, t=33)
$$

$$
\log _{2}\binom{n}{t} / m t \simeq 0.66
$$

$$
\log _{2}\binom{n}{t} \simeq 240
$$

$\log _{2}\binom{n}{t} \simeq \log _{2} \frac{n^{t} e^{t}}{t^{t}} \simeq t\left(m-\log _{2} t\right)$
$\mathcal{O}(t)+$ error encoding
decoding + error de-encoding

No

Constant weight encoding

- Problem: how can I transform binary data in a word of length n and weight t ?
- Exact conversion: index words with $\log _{2}\binom{n}{t}$ bit integers.
\triangleright Error e has non zero bits at positions $\left(i_{1}, \ldots, i_{t}\right)$:

$$
I_{e}=\binom{i_{1}}{1}+\binom{i_{2}}{2}+\ldots+\binom{i_{t}}{t} .
$$

- Regular words: build t words of weight 1 and length $\frac{n}{t}$.
$\triangleright e$ will have one non zero position per block of $\frac{n}{t}$.
\triangleright Only $t \log _{2} \frac{n}{t}$ bits per word.
\triangleright What about security? Is it still hard to decode?

Constant weight encoding

Using source coding techniques

Use the binary data to code the distance between the non-zero positions of e.
\triangleright A bit complicated to be explained here...

- Very fast constant weight encoding.
- Covers $\approx 99 \%$ of possible errors e.
\triangleright No security issues.
- The amount of data needed to code e is not constant.

Fast public key encryption

- When $t \ll n$ the best attacks on Niederreiter have a complexity of $\mathcal{O}\left(\operatorname{Poly}(m t) \times 2^{\frac{m t}{2}}\right)$.
\triangleright We need $m t \geq 144$.
- We can choose $m=16, t=9$ and $n=2^{16}=65536$.
\triangleright The size of \mathcal{H}^{\prime} is 144×65536 (9 Mbits).
\triangleright Encryption is the XOR of 9 columns of 144 bits.
- Using the source coding constant weight encoding it is possible to reach throughputs of $50 \mathrm{Mbits} / \mathrm{s}$ in software (10 times faster than RSA-1024 with a light e).

Part IV

Other cryptographic constructions relying on hard coding problems

McEliece digital signature

 [Courtois, Finiasz, Sendrier 2001]- Usually, any public key cryptosystem can be transformed in a signature scheme in a straightforward way. \triangleright It only requires a suitable hash function.
- For McEliece or Niederreiter this is not so easy:
\triangleright this is due to the message expansion.

Digital signature

Generic construction

- The ciphertext h is obtained by hashing:
\triangleright requires to decrypt a "random" ciphertext.
- In a Goppa code one can decode up to t errors.
\triangleright The probability $\mathcal{P}_{\leq t}$ that a random word is at distance less or equal to t from a code word is very low.
\triangleright For $(n=2048, m=11, t=33)$ we have $\mathcal{P}_{\leq t} \simeq 2^{-123}$.
- Two solutions:
\triangleright either we can perform complete decoding.
\triangleright or we need to hash into a decodable word.

McEliece signature
 The problem

$36 / 55$

McEliece signature

 Complete decoding

McEliece signature

 Complete decoding

McEliece signature

 Complete decoding

McEliece signature

 Introducing a counter

38/55

Choosing suitable parameters

- For both solutions we need about t ! tries.
\triangleright choose the smallest possible t.
- We suggest the parameters $\left(n=2^{16}, m=16, t=9\right)$.
\triangleright Signing requires $9!=362880$ decodings.
\triangleright This takes about 10 seconds on a Pentium 4 at 2Ghz.
\triangleright On FPGA it takes a fraction of second.
\triangleright Verification is very fast: hash $+9 \times 144$ bit XORs.
- In both cases signatures are about 150 bit long.

Reducing the signature length

- One can shorten a signature by omitting a few bits:
\triangleright the verifier has to test all possible values.
\triangleright Omitting ℓ bits will require 2^{ℓ} verifications.
\triangleright This doesn't affect the security of the signature!
- In our case the signature is a word of weight t :
\triangleright we can omit some positions.
\triangleright Verification can be done more efficiently than exhaustive search.
- Multiplying the verification time by 2^{27} only (about 30 seconds), we obtain signatures of 81 bits in average.

A provably secure hash function

[Augot, Finiasz, Sendrier ??]

- Hash functions are designed to be the fastest possible:
\triangleright it is impossible to perform complex operations.
\triangleright it is hard to evaluate their security.
- Some provably secure hash functions exist:
\triangleright they use public key encryption techniques,
\triangleright they are very slow.
- We wanted to build a fast provably secure function using Niederreiter like techniques.

Generic hash function construction
 [Damgård, Merkle 1989]

Security of this construction

A hash function is secure if these problems are hard:
\diamond inversion: given h, find X such that $\operatorname{Hash}(X)=h$.
\diamond second pre-image:
given Y, find X such that $\operatorname{Hash}(X)=\operatorname{Hash}(Y)$.
\diamond collision:
find X and Y such that $\operatorname{Hash}(X)=\operatorname{Hash}(Y)$.

- Security of the compression function suffices to prove the security of the whole chain.

The compression function

We take a random parity check matrix \mathcal{H} of size $r \times n$.
\triangleright The input is a word of low weight w.
\triangleright The output is its syndrome by \mathcal{H} of length r.
\bigwedge We need $r<\log _{2}\binom{n}{w}$ to compress.

- Security:
\triangleright Inversion: syndrome decoding.
\triangleright Collision: find a code word of weight $\leq 2 w$.

Implementation and parameter choice

- We use regular words for constant weight encoding. \triangleright Very fast, but less input bits (more rounds to do).
\triangleright Attacking is still a NP-complete problem.
\triangleright Wagner's generalized birthday paradox can be used to find collisions.
- Security of 2^{80} against collision can be obtained with ($n=21760, r=400, w=85$) .
\triangleright The matrix is of 8.3 Mbits .
\triangleright Throughput is around $70 \mathrm{Mbits} / \mathrm{s}$ in software.

Part V

Other applications where codes can be useful...

MDS matrices for optimal diffusion

- Block ciphers are usually built as a cascade of diffusion and confusion layers.
\triangleright Confusion consists in applying small S-boxes in parallel.
\triangleright Diffusions mixes the S-box outputs together.
- Diffusion doesn't have to add confusion, so a basic linear transformation can be enough.

MDS matrices for optimal diffusion

Say the input of the diffusion layer is $I \in\left(\mathbb{F}_{2^{m}}\right)^{p}$ (the output of p S-boxes on m bits) and its output $O \in\left(\mathbb{F}_{2^{m}}\right)^{q}$.

The diffusion layer can be a $p \times q$ matrix \mathcal{G} in $\mathbb{F}_{2^{m}}$ with:

$$
O=I \times[\mathcal{G}]
$$

- Diffusion is good if small variations on I yield large variations on O.
\triangleright The different concatenated $(I \| O)$ have to be distant from each other.

MDS matrices for optimal diffusion

- We build the following generator matrix:

- Then: $\quad I \| O=I \times \mathcal{G}^{\prime}$.
\triangleright Diffusion will be best when the code defined by \mathcal{G}^{\prime} has a large minimal distance d.
\triangleright If \mathcal{G}^{\prime} is MDS $(d=q+1)$, diffusion is optimal.
- Ciphers like FOX or AES use square diffusion matrices \mathcal{G} taken from MDS matrices \mathcal{G}^{\prime}.

MDS matrices for optimal diffusion

 Limitations of this technique- Depending on the parameters it is not always possible to build a MDS matrix:
\triangleright if $n=p+q>2^{m}$ such code certainly doesn't exist.
- Diffusion among blocks is good, but not at the bit level:
\triangleright there are $m(p+q)$ input/output bits and the minimal bit distance is also $q+1$.
- For diffusion among 4 or 8 blocks of 8 bits like in AES and FOX, these are perfect.

MDS matrices for optimal diffusion

For an optimal 4×4 matrix on $\mathbb{F}_{2^{8}}$ one needs a $[8,4,5]$ code.
\triangleright It is possible to build a $[16,8,9]$ code on $\mathbb{F}_{2^{4}}$.
\triangleright This yields an optimal 8×8 matrix on $\mathbb{F}_{2^{4}}$.
This matrix will be as efficient for block level diffusion, but will be better for sub-blocks (of size 4) diffusion.

- It is not used because it is much slower...

Threshold Secret Sharing

We want to share a secret among S users in such a way that any coalition of T users can recover it, but no coalition of $T-1$ can get any information about it.

- We build an MDS code of length $n=S+1$ and dimension $k=T$ on \mathbb{F}_{q} and make it public.
\triangleright We choose a secret $x_{1} \in \mathbb{F}_{q}$ and build a code word $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ from random x_{2}, \ldots, x_{k}.
\triangleright Each user gets a share x_{i} for $i \in[2 . . n]$.
- A coalition of $T=k$ users knows k coordinates of \boldsymbol{x} : this is an information set.
\triangleright They can recover the whole code word, including x_{1}.
- A coalition of $T-1=k-1$ users only know $k-1$ coordinates of \boldsymbol{x}.
\triangleright Whatever the value of x_{1} there exists a code word interpolating with x_{1} and their coordinates.
\triangleright They don't get any information at all.

Other examples

- Threshold problems:
\triangleright Digital fingerprinting. $\}$ Requires the use of mul-
\triangleright Traitor tracing. $\}$ tiple codes.
- Building resilient boolean functions.
- Cryptanalysis:
\triangleright Stream ciphers: finding low weight multiples of a polynomial.
\triangleright Block ciphers: finding biased combinations for linear cryptanalysis.

Part VI

Conclusion

Conclusion

\diamond Error correcting codes are used in many domains of cryptography: design as well as cryptanalysis.
\diamond Some cryptographic schemes rely on codes:
\triangleright very fast for public key constructions,
\triangleright they usually use a lot of memory.
\diamond Codes might be a solution for some devices with small computational power...
[1] Matthieu Finiasz. Nouvelles constructions utilisant des codes correcteurs d'erreurs en cryptographie à clef publique. PhD thesis, INRIA - École Polytechnique, 2004. [pdf]

More difficult to read:
[2] James L. Massey. Some Applications of Coding Theory in Cryptography. [pdf]
[3] Designs, Codes and Cryptography, Journal, Springer (rather look at recent issues) [link]

