Selected Topics on Security and Cryptography 2005

Codes in Cryptography

Matthieu Finiasz

- Some famous linear codes
- **III** The McEliece public key cryptosystem
- **IV** Other cryptographic constructions relying on hard coding problems

Other applications where codes can be useful...

Outline

Part I

Introduction to linear error-correcting codes

110 What are error-correcting codes?

They make possible the correction of errors when communicating over a noisy channel.

- Add redundancy to the transmitted information.
- ▷ Correct errors when the received data is corrupted.

Stronger than a simple CRC or checksum: these can only detect errors.

♦ DVD, CD: reduce the effect of dust and scratches

cell-phones: improve communication quality

- Mars Pathfinder: save energy when sending pictures to Earth.
 - For a same final error probability, it is cheaper to emit longer with less power

♦ cryptography...

The most widely used kind of error-correcting codes, tend to be replaced by convolutional codes...

What are linear codes?

- Error-correcting codes for which the redundancy depends linearly of the information.
- \blacktriangleright Can be defined by a generator matrix \mathcal{G} :

$$c = m \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- The generator matrix G may not be given in systematic form, but is always of maximal rank.
- The code C is the vectorial subspace of dimension k defined by G
 there is not a unique generator matrix.
- The length n of the code is the length of a code word.
 the matrix G is of size k × n.

► The ratio $r = \frac{k}{n}$ is the transmission rate of the code.

- The transmitter sends c = mG, but the receiver will get c' = c + e.
 - \triangleright Decoding consists in recovering c from c'.
- Most often, we want maximum likelihood decoding:
 find the code word which had the best probability of giving the received word.
 - ▷ This will depend on the channel/noise.

101 (The binary symmetric channel

The Hamming weight of a word c is it's number of non-zero coordinates.

▷ Most probable errors are those of lower weight.

Decoding c' consists in finding the closest (for the Hamming distance) code word.

- The minimal distance d of a code is the minimum of the Hamming distance between two code words.
 It is also the smallest possible weight for a non-zero code word.
- ▶ For any code d ≤ n − k + 1.
 ▷ If d = n − k + 1 the code is called Maximum Distance Separable (MDS).
- ► We note [n, k, d] a code of length n, dimension k and minimal distance d.

Minimal distance

Maximum likelihood decoding is often hard to achieve.

▶ We restrict to bounded decoding up to the distance t:
 ▶ find any code word at distance less or equal to t.
 ▶ If t ≤ d-1/2 decoding is always unique.

Maximum likelihood decoding is often hard to achieve.

▶ We restrict to bounded decoding up to the distance t:
 ▶ find any code word at distance less or equal to t.
 ▶ If t ≤ d-1/2 decoding is always unique.

 δ is the covering radius. \triangle Bounded decoding up to δ is not unique.

- ♦ Error exhaustive search: choose e of small weight, calculate c' e and check if it is in the code.
- ♦ Code word exhaustive search: calculate c' mG for all possible m and check its weight.
- ♦ Information Set Decoding: choose k coordinates of c'and reconstruct $c'' = (c'\mathcal{G}^{-1})\mathcal{G}$ for these coordinates. Check the weight of c' - c''.
 - ▷ c'' = c if there is no error among the k coordinates. ▷ check $\binom{n-k}{t}$ error patterns at a time.

The parity check matrix \mathcal{H} is orthogonal to \mathcal{G} :

- \triangleright it is a $(n-k) \times n$ matrix.
- \triangleright the code C is the kernel of H.
 - $\triangleright c \in \mathcal{C}$ if and only if $\mathcal{H}c = 0$.

 $\triangleright S = \mathcal{H}c' = \mathcal{H}c + \mathcal{H}e$ is the syndrome of the error.

 Syndrome decoding consists in finding a low weight linear combination of columns of H summing to S.
 The same methods apply: information set decoding...

Part II

Some famous linear codes

Each bit is simply reapeated d times: 00100 is coded 000 000 111 000 000. This code is a [d, 1, d] code. it is MDS!

- Transmission rate is too small.
- Only usefull for very high noise level in a memoryless channel.

The repetition code

It is a binary [2^ℓ − 1, 2^ℓ − 1 − ℓ, 3] code. Its parity check matrix contains all the different ℓ bit columns.
 For ℓ = 3 it looks like:

The Hamming code

- \blacktriangleright The minimal distance d is 3.
 - ▷ No code words of weight 1 or 2.
- Syndrome decoding can correct exactly one error.
- These are perfect codes: any word can be decoded.

- Evaluation codes over \mathbb{F}_q (usually \mathbb{F}_{2^m}).
- \triangleright The support \mathcal{L} of the code is a list of n elements of \mathbb{F}_q .
- ▷ The RS code of support \mathcal{L} and dimension k contains the evaluations (on \mathcal{L}) of all polynomials of degree < k.

For
$$\mathcal{L} = (\alpha_1, ..., \alpha_n)$$
, and a message $m = (m_0, ..., m_{k-1})$:
 \triangleright we define $P(X) = \sum_{i=0}^{k-1} m_i X^i$,

▷ we get the code word $c = (P(\alpha_1), ..., P(\alpha_n))$.

- If P₁ and P₂ coincide on k points of L they are equal.
 ▷ The minimal distance of a RS code is d = n k + 1.
 ▷ RS codes are always MDS!
- ▶ Decoding can be done very efficiently:
 ▶ uniquely up to t = n-k/2 (Berlekamp-Massey).
 ▶ list decoding up to t = n √nk (Sudan).

 \triangle These codes are very convenient, but n has to be smaller or equal to q.

Using a binary transmission, RS codes will work better correcting burst errors.

What about binary codes? The Gilbert-Varshamov bound

Gilbert-Varshamov lower bound: A [n, k, d] code over \mathbb{F}_q exists if:

$$\sum_{i=0}^{d-2} \binom{n-1}{i} (q-1)^i < q^{n-k}.$$

In
$$\mathbb{F}_2$$
 it gives: $\sum_{i=0}^{d-2} \binom{n-1}{i} < 2^{n-k}$.

▷ Simplifying things a lot you get $n^d \leq 2^{n-k}$ and:

$$d \lesssim \frac{n-k}{\log_2 n}.$$

Goppa codes are codes on \mathbb{F}_p build from codes on \mathbb{F}_{p^m} .

- ▷ choose a support $\mathcal{L} \subset \mathbb{F}_{p^m} = (\alpha_1, ..., \alpha_n)$, and a primitive polynomial g of degree t.
- \triangleright build a parity check matrix \mathcal{H} of size $t \times n$ in \mathbb{F}_{p^m} .
- \triangleright extend \mathcal{H} to a $mt \times n$ parity check matrix on \mathbb{F}_p .
- ► The code $\Gamma(\mathcal{L}, g)$ has a minimal distance $\geq t + 1$.
- When p = 2, $\Gamma(\mathcal{L}, g^2) = \Gamma(\mathcal{L}, g)$ and has a minimal distance of 2t + 1.

▷ Decode *t* errors uniquely (Berlekamp-Massey).

A random code is defined by a random $k \times n$ generator matrix \mathcal{G} of rank k.

Random codes are good codes!

▷ In average the minimal distance meets the GV bound.

- Decoding in a random linear code is a NP-complete problem.
- Finding the minimal distance of a random linear code is a NP-complete problem.

Part III

The McEliece public key cryptosystem [McEliece 1978]

- ♦ Generate a code and its generator matrix G.
 ▶ This is the private key.
- ♦ Scramble G to obtain G' which looks like random.
 ▶ This is the public key.

♦ Encode a message m by computing: c' = mG' + e with e a random error.

 \diamond Only the person knowing the underlying structure in \mathcal{G}' can decode and recover m.

Using binary Goppa codes

A Goppa parity check matrix has a structure in F₂m.
 Once projected on F₂ this structure is spread over different lines.

- ► Take a Goppa code Γ(L, g), its generator matrix G, a permutation P and an invertible matrix Q.
 ▷ Compute G' = Q × G × P
- ▶ Distinguishing G' from a random binary matrix is believed to be a hard problem.

- ♦ Choose some parameters n, t, m▶ make sure $n \leq 2^m$ and $2mt \leq n$
- \diamond Choose a subset $\mathcal{L} \subset \mathbb{F}_{2^m}$ of size n and a primitive polynomial g of degree t on \mathbb{F}_{2^m} .
- \diamond Build $\Gamma(\mathcal{L},g)$ and a generator matrix $\mathcal G$
- \diamond Choose random matrices $\mathcal P$ and $\mathcal Q.$
- \diamond Compute $\mathcal{G}' = \mathcal{Q} \times \mathcal{G} \times \mathcal{P}$
- $\blacktriangleright G'$ is the public key, $(\mathcal{L}, g, \mathcal{P}, \mathcal{Q})$ are the private key.

1101(Encryption Using the public key

 \diamond Split the message in blocks of length k=n-2mt

 \diamond Encrypt each block b_i independently

- Compute $c_i = b_i \times \mathcal{G}'$.
- Choose a random error e of weight t.
- Compute $c'_i = c_i + e$.
- ♦ Send the encrypted message $(c'_0||c'_1||...)$.

► The encrypted message is longer than the original message by a ratio $\frac{1}{r} = \frac{n}{k}$.

 \diamond For each received block c'_i

- Compute $c'_i \mathcal{P}^{-1} = (m_i \mathcal{Q})\mathcal{G} \times \mathcal{P}^{-1} + e\mathcal{P}^{-1}$.
- eP⁻¹ is of weight t and (m_iQ)G ∈ Γ(L, g).
 ▷ Using L and g, decode and recover m_iQ.
 Compute (m_iQ)Q⁻¹ to obtain m_i.
- ♦ Rebuild the original message $(m_0||m_1||...)$.

Theoretical security Relying on hard problems

A public key cryptosystem always relies on two problems:

- ◇ Recovering the private key from the public key.
 - ▷ For RSA: factorization of n = pq.
- ◊ Decrypting without knowing the private key.
 ▷ For RSA: eth root extraction modulo n.
- For McEliece the problems are:
 - \triangleright Distinguishing \mathcal{G}' from a random matrix.
 - Decoding in a random code (NP-complete).

Practical security Complexity of the best attacks

Structural attacks: recovering $\Gamma(\mathcal{L}, g)$ from \mathcal{G}' .

Testing code equivalence is hard in theory, but easy in practice (*support splitting algorithm* [Sendrier 2000]).
 Test the equivalence between G' and all Goppa codes.

Complexity: $\mathcal{O}\left(mt2^{m(t-2)}\right)$

Decoding attacks: decode considering G' as random.
 Many information set decoding algorithms.
 The best one is by A. Canteaut and F. Chabaud.
 Complexity: O(2^{mt(¹/₂+o(1))})

Sending twice the same message block b with the same key is dangerous:

- ▷ If one sends $c_0 = b\mathcal{G}' + e_0$ and $c_1 = b\mathcal{G}' + e_1$,
- ▷ the sum $c_0 + c_1 = e_0 + e_1$ is of weight 2t < n k.

 \triangleright One can get k coordinates with no errors and decode.

 $\mathbf{\Lambda}$ Using a random e can be dangerous

- ▷ Maybe $e = \mathsf{hash}(b)$ can be more secure.
- \triangleright Or add some randomness inside the k bits of message.

The Niederreiter variant [Niederreiter 1986]

Consists in putting the information in the error instead of the code word.

▷ Send a syndrome of this error.

► The public key is a scrambled parity check matrix: ▷ $\mathcal{H}' = \mathcal{Q} \times \mathcal{H} \times \mathcal{P}.$

► The private key is still $(\mathcal{L}, g, \mathcal{P}, \mathcal{Q})$.

1101 Encryption/Decryption

Encryption:

 \diamond Convert the data into e of length n and weight t.

- ♦ Compute S = H'e (sum of *t* columns of H').
- $\diamond \, \mathcal{S}$ is the ciphertext.

Decryption:

- $\diamond \text{ Compute } \mathcal{Q}^{-1}\mathcal{S} = \mathcal{Q}^{-1}\mathcal{Q}\mathcal{H}(\mathcal{P}e).$
- $\diamond \mathcal{P}e$ is of weight t and can be decoded.
- \diamond Reconvert e into the clear text.

McEliece vs. Niederreiter Which is better?

McEliece	Niederreiter
Transmission rate:	For $(n = 2048, m = 11, t = 33)$
$k/n\simeq 0.82$	$\log_2 \binom{n}{t}/mt \simeq 0.66$
Block size:	
k = 1685	$\log_2 \binom{n}{t} \simeq 240$
Encryption cost (per bit):	$\log_2 \binom{n}{t} \simeq \log_2 \frac{n^t e^t}{t^t} \simeq t(m - \log_2 t)$
$\mathcal{O}\left(n ight)$	$\mathcal{O}\left(t ight)+$ error encoding
Decryption cost:	
syndrome + decoding + inversion	decoding + error de-encoding
Re-encryption problem:	
Yes	No
	29/55

 \frown 1

Constant weight encoding Preparing Niederreiter input

Problem: how can I transform binary data in a word of length n and weight t?

- ► Exact conversion: index words with $\log_2 {n \choose t}$ bit integers. ► Error *e* has non zero bits at positions $(i_1, ..., i_t)$: $I_e = {i_1 \choose 1} + {i_2 \choose 2} + ... + {i_t \choose t}$.
- ▶ Regular words: build t words of weight 1 and length n/t.
 ▶ e will have one non zero position per block of n/t.
 ▶ Only t log₂ n/t bits per word.
 - ▷ What about security? Is it still hard to decode?

Use the binary data to code the distance between the non-zero positions of e.

▷ A bit complicated to be explained here...

Very fast constant weight encoding.

► Covers $\approx 99\%$ of possible errors e.

▷ No security issues.

The amount of data needed to code e is not constant.

Fast public key encryption Tweaking Niederreiter's parameters

When t ≪ n the best attacks on Niederreiter have a complexity of O (Poly(mt) × 2^{mt/2}).
 ▷ We need mt ≥ 144.

- ▶ We can choose m = 16, t = 9 and n = 2¹⁶ = 65536.
 ▷ The size of H' is 144 × 65536 (9 Mbits).
 ▷ Encryption is the XOR of 9 columns of 144 bits.
- ▶ Using the source coding constant weight encoding it is possible to reach throughputs of 50Mbits/s in software (10 times faster than RSA-1024 with a light *e*).

Part IV

Other cryptographic constructions relying on hard coding problems

 Usually, any public key cryptosystem can be transformed in a signature scheme in a straightforward way.
 It only requires a suitable hash function.

For McEliece or Niederreiter this is not so easy:
 this is due to the message expansion.

34/55

- ► The ciphertext *h* is obtained by hashing:
 - requires to decrypt a "random" ciphertext.
- \blacktriangleright In a Goppa code one can decode up to t errors.
 - ▷ The probability $\mathcal{P}_{\leq t}$ that a random word is at distance less or equal to t from a code word is very low.

▷ For
$$(n = 2048, m = 11, t = 33)$$
 we have $\mathcal{P}_{\leq t} \simeq 2^{-123}$.

Two solutions:

either we can perform complete decoding.

▷ or we need to hash into a decodable word.

11001

McEliece signature Complete decoding

37/55

McEliece signature Complete decoding

McEliece signature Complete decoding

37/55

McEliece signature

Introducing a counter

1001

Choosing suitable parameters

For both solutions we need about t! tries.
 choose the smallest possible t.

We suggest the parameters (n = 2¹⁶, m = 16, t = 9).
Signing requires 9! = 362880 decodings.
This takes about 10 seconds on a Pentium 4 at 2Ghz.
On FPGA it takes a fraction of second.
Verification is very fast: hash + 9 × 144 bit XORs.
In both cases signatures are about 150 bit long.

Reducing the signature length

One can shorten a signature by omitting a few bits:
 ▷ the verifier has to test all possible values.
 ▷ Omitting ℓ bits will require 2^ℓ verifications.
 ▷ This doesn't affect the security of the signature!

- ► In our case the signature is a word of weight t:
 - ▷ we can omit some positions.
 - Verification can be done more efficiently than exhaustive search.
- Multiplying the verification time by 2²⁷ only (about 30 seconds), we obtain signatures of 81 bits in average.

101A provably secure hash function [Augot, Finiasz, Sendrier ??]

- Hash functions are designed to be the fastest possible:
 it is impossible to perform complex operations.
 it is hard to evaluate their security.
- Some provably secure hash functions exist:
 they use public key encryption techniques,
 they are very slow.
- We wanted to build a fast provably secure function using Niederreiter like techniques.

Security of this construction

A hash function is secure if these problems are hard:

 \diamond inversion: given h, find X such that Hash(X) = h.

◇ second pre-image: given Y, find X such that Hash(X) = Hash(Y).
◇ collision:

find X and Y such that Hash(X) = Hash(Y).

Security of the compression function suffices to prove the security of the whole chain.

We take a random parity check matrix \mathcal{H} of size $r \times n$.

- \triangleright The input is a word of low weight w.
- \triangleright The output is its syndrome by \mathcal{H} of length r.
- \wedge We need $r < \log_2 \binom{n}{w}$ to compress.

Security:

- Inversion: syndrome decoding.
- \triangleright Collision: find a code word of weight $\leq 2w$.

Umplementation and parameter choice

► We use regular words for constant weight encoding.

- ▷ Very fast, but less input bits (more rounds to do).
- > Attacking is still a NP-complete problem.
- Wagner's generalized birthday paradox can be used to find collisions.
- Security of 2^{80} against collision can be obtained with (n = 21760, r = 400, w = 85).
 - ▶ The matrix is of 8.3Mbits.
 - ▷ Throughput is around 70Mbits/s in software.

Part V

Other applications where codes can be useful...

11MDS matrices for optimal diffusion

- Block ciphers are usually built as a cascade of diffusion and confusion layers.
- Confusion consists in applying small S-boxes in parallel.
- Diffusions mixes the S-box outputs together.
- Diffusion doesn't have to add confusion, so a basic linear transformation can be enough.

1005 Matrices for optimal diffusion Using linear diffusion

Say the input of the diffusion layer is $I \in (\mathbb{F}_{2^m})^p$ (the output of p S-boxes on m bits) and its output $O \in (\mathbb{F}_{2^m})^q$.

The diffusion layer can be a $p \times q$ matrix \mathcal{G} in \mathbb{F}_{2^m} with:

$$O = I \times \left[\begin{array}{c} \mathcal{G} \end{array} \right].$$

Diffusion is good if small variations on I yield large variations on O.

The different concatenated (I||O) have to be distant from each other.

47/55

MDS matrices for optimal diffusion

We build the following generator matrix:

Then:
$$I||O = I \times G'.$$

- Diffusion will be best when the code defined by G' has a large minimal distance d.
- ▷ If \mathcal{G}' is MDS (d = q + 1), diffusion is optimal.
- Ciphers like FOX or AES use square diffusion matrices *G* taken from MDS matrices *G*'.

1000 Matrices for optimal diffusion Limitations of this technique

Depending on the parameters it is not always possible to build a MDS matrix:

▷ if $n = p + q > 2^m$ such code certainly doesn't exist.

- Diffusion among blocks is good, but not at the bit level:
 there are m(p+q) input/output bits and the minimal bit distance is also q + 1.
- For diffusion among 4 or 8 blocks of 8 bits like in AES and FOX, these are perfect.

1000 Matrices for optimal diffusion Improving sub-block diffusion

For an optimal 4×4 matrix on \mathbb{F}_{2^8} one needs a [8,4,5] code.

▶ It is possible to build a [16, 8, 9] code on F₂₄.
 ▶ This yields an optimal 8×8 matrix on F₂₄.
 This matrix will be as efficient for block level diffusion, but will be better for sub-blocks (of size 4) diffusion.

It is not used because it is much slower...

1101(Threshold Secret Sharing

We want to share a secret among S users in such a way that any coalition of T users can recover it, but no coalition of T-1 can get any information about it.

- We build an MDS code of length n = S + 1 and dimension k = T on \mathbb{F}_q and make it public.
- ▷ We choose a secret $x_1 \in \mathbb{F}_q$ and build a code word $\boldsymbol{x} = (x_1, ..., x_n)$ from random $x_2, ..., x_k$.
- \triangleright Each user gets a share x_i for $i \in [2..n]$.

- A coalition of T = k users knows k coordinates of x: this is an information set.
 - \triangleright They can recover the whole code word, including x_1 .
- A coalition of T 1 = k 1 users only know k 1 coordinates of x.
 - \triangleright Whatever the value of x_1 there exists a code word interpolating with x_1 and their coordinates.
 - They don't get any information at all.

- Threshold problems:
 - Digital fingerprinting.
 Traitor tracing.
 Requires the use of multiple codes.
- Building resilient boolean functions.
- Cryptanalysis:
 - Stream ciphers: finding low weight multiples of a polynomial.
 - Block ciphers: finding biased combinations for linear cryptanalysis.

Part VI

Conclusion

- Error correcting codes are used in many domains of cryptography: design as well as cryptanalysis.
- Some cryptographic schemes rely on codes:
 very fast for public key constructions,
 they usually use a lot of memory.
- Codes might be a solution for some devices with small computational power...

 [1] Matthieu Finiasz. Nouvelles constructions utilisant des codes correcteurs d'erreurs en cryptographie à clef publique. PhD thesis, INRIA - École Polytechnique, 2004. [pdf]

More difficult to read:

- [2] James L. Massey. Some Applications of Coding Theory in Cryptography. [pdf]
- [3] Designs, Codes and Cryptography, *Journal*, Springer (rather look at recent issues) [link]

