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Part I

Introduction to linear
error-correcting codes



010011

What are error-correcting codes?

I They make possible the correction of errors when com-

municating over a noisy channel.

. Add redundancy to the transmitted information.

. Correct errors when the received data is corrupted.

I Stronger than a simple CRC or checksum: these can

only detect errors.
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Where are they used?

¦ DVD, CD: reduce the effect of dust and scratches

¦ cell-phones: improve communication quality

¦ Mars Pathfinder: save energy when sending pictures

to Earth.

. for a same final error probability, it is cheaper to

emit longer with less power

¦ cryptography...
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What are linear codes?

I The most widely used kind of error-correcting codes,

. tend to be replaced by convolutional codes...

I Error-correcting codes for which the redundancy de-

pends linearly of the information.

I Can be defined by a generator matrix G:

c = m×
1

1
0

0

G
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I The generator matrix G may not be given in systematic

form, but is always of maximal rank.

I The code C is the vectorial subspace of dimension k

defined by G
. there is not a unique generator matrix.

I The length n of the code is the length of a code word.

. the matrix G is of size k × n.

I The ratio r = k
n is the transmission rate of the code.
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Decoding
What does this mean?

I The transmitter sends c = mG, but the receiver will

get c′ = c + e.

. Decoding consists in recovering c from c′.

I Most often, we want maximum likelihood decoding:

. find the code word which had the best probability of

giving the received word.

. This will depend on the channel/noise.
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The binary symmetric channel

0

1

0

1

p

p

1-p

1-p

Input Output

I The Hamming weight of a word c is it’s number of

non-zero coordinates.

. Most probable errors are those of lower weight.

I Decoding c′ consists in finding the closest (for the

Hamming distance) code word.
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Minimal distance

I The minimal distance d of a code is the minimum of

the Hamming distance between two code words.

. It is also the smallest possible weight for a non-zero

code word.

I For any code d ≤ n− k + 1.

. If d = n−k+1 the code is called Maximum Distance

Separable (MDS).

I We note [n, k, d] a code of length n, dimension k and

minimal distance d.
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Bounded decoding

I Maximum likelihood decoding is often hard to achieve.

I We restrict to bounded decoding up to the distance t:

. find any code word at distance less or equal to t.

. If t ≤ d−1
2 decoding is always unique.

t

d
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Bounded decoding

I Maximum likelihood decoding is often hard to achieve.

I We restrict to bounded decoding up to the distance t:

. find any code word at distance less or equal to t.

. If t ≤ d−1
2 decoding is always unique.

t

d ±

δ is the covering radius.
! Bounded decoding

up to δ is not unique.
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Decoding
Some methods

¦ Error exhaustive search: choose e of small weight,

calculate c′ − e and check if it is in the code.

¦ Code word exhaustive search: calculate c′ −mG for

all possible m and check its weight.

¦ Information Set Decoding: choose k coordinates of c′

and reconstruct c′′ = (c′G−1)G for these coordinates.

Check the weight of c′ − c′′.
. c′′ = c if there is no error among the k coordinates.

. check
(
n−k

t

)
error patterns at a time.
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The parity check matrix
Syndrome decoding

The parity check matrix H is orthogonal to G:

. it is a (n− k)× n matrix.

. the code C is the kernel of H.

. c ∈ C if and only if Hc = 0.

. S = Hc′ = Hc +He is the syndrome of the error.

I Syndrome decoding consists in finding a low weight

linear combination of columns of H summing to S.

. The same methods apply: information set decoding...
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Part II

Some famous linear codes
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The repetition code

I Each bit is simply reapeated d times:

. 00100 is coded 000 000 111 000 000.

I This code is a [d, 1, d] code.

. it is MDS!

I Transmission rate is too small.

I Only usefull for very high noise level in a memoryless

channel.
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The Hamming code

I It is a binary [2`−1, 2`−1− `, 3] code. Its parity check

matrix contains all the different ` bit columns.

For ` = 3 it looks like:

H =




1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1




I The minimal distance d is 3.

. No code words of weight 1 or 2.

I Syndrome decoding can correct exactly one error.

I These are perfect codes: any word can be decoded.
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Reed-Solomon codes
[Reed-Solomon 1960]

Evaluation codes over Fq (usually F2m).

. The support L of the code is a list of n elements of Fq.

. The RS code of support L and dimension k contains

the evaluations (on L) of all polynomials of degree < k.

For L = (α1, ..., αn), and a message m = (m0, ..., mk−1):

. we define P (X) =
k−1∑
i=0

miX
i,

. we get the code word c = (P (α1), ..., P (αn)).
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I If P1 and P2 coincide on k points of L they are equal.

. The minimal distance of a RS code is d = n− k + 1.

. RS codes are always MDS!

I Decoding can be done very efficiently:

. uniquely up to t = n−k
2 (Berlekamp-Massey).

. list decoding up to t = n−
√

nk (Sudan).

! These codes are very convenient, but n has to be

smaller or equal to q.

I Using a binary transmission, RS codes will work better

correcting burst errors.
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What about binary codes?
The Gilbert-Varshamov bound

Gilbert-Varshamov lower bound:
A [n, k, d] code over Fq exists if:

d−2∑

i=0

(
n− 1

i

)
(q − 1)i < qn−k.

I In F2 it gives:
d−2∑

i=0

(
n− 1

i

)
< 2n−k.

. Simplifying things a lot you get nd . 2n−k and:

d . n−k
log2 n.
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Goppa codes
[V.D. Goppa 1970]

Goppa codes are codes on Fp build from codes on Fpm.

. choose a support L ⊂ Fpm = (α1, ..., αn), and a primi-

tive polynomial g of degree t.

. build a parity check matrix H of size t× n in Fpm.

. extend H to a mt× n parity check matrix on Fp.

I The code Γ(L, g) has a minimal distance ≥ t + 1.

I When p = 2, Γ(L, g2) = Γ(L, g) and has a minimal

distance of 2t + 1.

. Decode t errors uniquely (Berlekamp-Massey).
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Random codes

A random code is defined by a random k × n generator

matrix G of rank k.

I Random codes are good codes!

. In average the minimal distance meets the GV bound.

I Decoding in a random linear code is a NP-complete

problem.

I Finding the minimal distance of a random linear code

is a NP-complete problem.
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Part III

The McEliece public key
cryptosystem
[McEliece 1978]
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The basic idea

¦ Generate a code and its generator matrix G.

. This is the private key.

¦ Scramble G to obtain G ′ which looks like random.

. This is the public key.

¦ Encode a message m by computing:

c′ = mG ′ + e with e a random error.

¦ Only the person knowing the underlying structure in

G ′ can decode and recover m.
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Using binary Goppa codes

I A Goppa parity check matrix has a structure in F2m.

. Once projected on F2 this structure is spread over

different lines.

I Take a Goppa code Γ(L, g), its generator matrix G, a

permutation P and an invertible matrix Q.

. Compute G ′ = Q× G × P

I Distinguishing G ′ from a random binary matrix is be-

lieved to be a hard problem.
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Key generation

¦ Choose some parameters n, t, m

. make sure n ≤ 2m and 2mt ≤ n

¦ Choose a subset L ⊂ F2m of size n and a primitive

polynomial g of degree t on F2m.

¦ Build Γ(L, g) and a generator matrix G
¦ Choose random matrices P and Q.

¦ Compute G ′ = Q× G × P
I G ′ is the public key, (L, g,P,Q) are the private key.
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Encryption
Using the public key

¦ Split the message in blocks of length k = n− 2mt

¦ Encrypt each block bi independently

• Compute ci = bi × G ′.
• Choose a random error e of weight t.

• Compute c′i = ci + e.

¦ Send the encrypted message (c′0||c′1||...).

I The encrypted message is longer than the original mes-

sage by a ratio 1
r = n

k.
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Decryption
Using the private key

¦ For each received block c′i

• Compute c′iP−1 = (miQ)G × PP−1 + eP−1.

• eP−1 is of weight t and (miQ)G ∈ Γ(L, g).
. Using L and g, decode and recover miQ.

• Compute (miQ)Q−1 to obtain mi.

¦ Rebuild the original message (m0||m1||...).
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Theoretical security
Relying on hard problems

A public key cryptosystem always relies on two problems:

¦ Recovering the private key from the public key.

. For RSA: factorization of n = pq.

¦ Decrypting without knowing the private key.

. For RSA: eth root extraction modulo n.

I For McEliece the problems are:

. Distinguishing G ′ from a random matrix.

. Decoding in a random code (NP-complete).
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Practical security
Complexity of the best attacks

I Structural attacks: recovering Γ(L, g) from G ′.
. Testing code equivalence is hard in theory, but easy in

practice (support splitting algorithm [Sendrier 2000]).

. Test the equivalence between G ′ and all Goppa codes.

Complexity: O
(
mt2m(t−2)

)

I Decoding attacks: decode considering G ′ as random.

. Many information set decoding algorithms.

. The best one is by A. Canteaut and F. Chabaud.

Complexity: O
(
2mt(12+o(1))

)
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The re-encryption problem

Sending twice the same message block b with the same

key is dangerous:

. If one sends c0 = bG ′ + e0 and c1 = bG ′ + e1,

. the sum c0 + c1 = e0 + e1 is of weight 2t < n− k.

. One can get k coordinates with no errors and decode.

! Using a random e can be dangerous

I . Maybe e = hash(b) can be more secure.

. Or add some randomness inside the k bits of message.
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The Niederreiter variant
[Niederreiter 1986]

I Consists in putting the information in the error instead

of the code word.

. Send a syndrome of this error.

I The public key is a scrambled parity check matrix:

. H′ = Q×H×P.

I The private key is still (L, g,P,Q).
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Encryption/Decryption

I Encryption:

¦ Convert the data into e of length n and weight t.

¦ Compute S = H′e (sum of t columns of H′).
¦ S is the ciphertext.

I Decryption:

¦ Compute Q−1S = Q−1QH(Pe).
¦ Pe is of weight t and can be decoded.

¦ Reconvert e into the clear text.
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McEliece vs. Niederreiter
Which is better?

McEliece Niederreiter

. Transmission rate: For (n = 2048,m = 11, t = 33)

k/n ' 0.82 log2
(
n
t

)
/mt ' 0.66

. Block size:

k = 1685 log2
(
n
t

) ' 240
. Encryption cost (per bit): log2

(
n
t

) ' log2
ntet

tt ' t(m− log2 t)

O (n) O (t)+ error encoding
. Decryption cost:

syndrome + decoding + inversion decoding + error de-encoding

. Re-encryption problem:

Yes No
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Constant weight encoding
Preparing Niederreiter input

I Problem: how can I transform binary data in a word of

length n and weight t?

I Exact conversion: index words with log2
(
n
t

)
bit integers.

. Error e has non zero bits at positions (i1, ..., it):

Ie =
(

i1
1

)
+

(
i2
2

)
+ ... +

(
it
t

)
.

I Regular words: build t words of weight 1 and length n
t .

. e will have one non zero position per block of n
t .

. Only t log2
n
t bits per word.

. What about security? Is it still hard to decode?
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Constant weight encoding
Using source coding techniques

Use the binary data to code the distance between the

non-zero positions of e.

. A bit complicated to be explained here...

I Very fast constant weight encoding.

I Covers ≈ 99% of possible errors e.

. No security issues.

I The amount of data needed to code e is not constant.
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Fast public key encryption
Tweaking Niederreiter’s parameters

I When t ¿ n the best attacks on Niederreiter have a

complexity of O
(
Poly(mt)× 2

mt
2

)
.

. We need mt ≥ 144.

I We can choose m = 16, t = 9 and n = 216 = 65536.

. The size of H′ is 144× 65536 (9 Mbits).

. Encryption is the XOR of 9 columns of 144 bits.

I Using the source coding constant weight encoding it is

possible to reach throughputs of 50Mbits/s in software

(10 times faster than RSA-1024 with a light e).
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Part IV

Other cryptographic constructions
relying on hard coding problems
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McEliece digital signature
[Courtois, Finiasz, Sendrier 2001]

I Usually, any public key cryptosystem can be trans-

formed in a signature scheme in a straightforward way.

. It only requires a suitable hash function.

I For McEliece or Niederreiter this is not so easy:

. this is due to the message expansion.
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Digital signature
Generic construction

D

Are and
equal?
h

h

h s s

h

h

Signed
Document

Document

Hash

Hash

Encrypt

D

Sign VerifyTransmit

1

1

2

2

Decrypt

34/55



0011010

I The ciphertext h is obtained by hashing:

. requires to decrypt a “random” ciphertext.

I In a Goppa code one can decode up to t errors.

. The probability P≤t that a random word is at distance

less or equal to t from a code word is very low.

. For (n = 2048,m = 11, t = 33) we have P≤t ' 2−123.

I Two solutions:

. either we can perform complete decoding.

. or we need to hash into a decodable word.
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McEliece signature
The problem

h
t
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McEliece signature
Complete decoding

h
t

±
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McEliece signature
Complete decoding

h
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McEliece signature
Complete decoding

h

t

± t-
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McEliece signature
Introducing a counter

h
1

h
2

h
4

h
3

h
5

t
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Choosing suitable parameters

I For both solutions we need about t! tries.

. choose the smallest possible t.

I We suggest the parameters (n = 216,m = 16, t = 9).
. Signing requires 9! = 362880 decodings.

. This takes about 10 seconds on a Pentium 4 at 2Ghz.

. On FPGA it takes a fraction of second.

. Verification is very fast: hash + 9× 144 bit XORs.

I In both cases signatures are about 150 bit long.
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Reducing the signature length

I One can shorten a signature by omitting a few bits:

. the verifier has to test all possible values.

. Omitting ` bits will require 2` verifications.

. This doesn’t affect the security of the signature!

I In our case the signature is a word of weight t:

. we can omit some positions.

. Verification can be done more efficiently than ex-

haustive search.

I Multiplying the verification time by 227 only (about 30
seconds), we obtain signatures of 81 bits in average.
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A provably secure hash function
[Augot, Finiasz, Sendrier ??]

I Hash functions are designed to be the fastest possible:

. it is impossible to perform complex operations.

. it is hard to evaluate their security.

I Some provably secure hash functions exist:

. they use public key encryption techniques,

. they are very slow.

I We wanted to build a fast provably secure function

using Niederreiter like techniques.
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Generic hash function construction
[Damg̊ard, Merkle 1989]

C
om
pr
es
si
on

D

I.V.

Hash

Padding
+ length

C
om
pr
es
si
on

Chaining
C
om
pr
es
si
on

Chaining
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Security of this construction

A hash function is secure if these problems are hard:

¦ inversion: given h, find X such that Hash(X) = h.

¦ second pre-image:

given Y , find X such that Hash(X) = Hash(Y ).

¦ collision:

find X and Y such that Hash(X) = Hash(Y ).

I Security of the compression function suffices to prove

the security of the whole chain.
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The compression function

We take a random parity check matrix H of size r × n.

I . The input is a word of low weight w.

. The output is its syndrome by H of length r.

! We need r < log2
(

n
w

)
to compress.

I Security:

. Inversion: syndrome decoding.

. Collision: find a code word of weight ≤ 2w.
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Implementation and parameter choice

I We use regular words for constant weight encoding.

. Very fast, but less input bits (more rounds to do).

. Attacking is still a NP-complete problem.

. Wagner’s generalized birthday paradox can be used

to find collisions.

I Security of 280 against collision can be obtained with

(n = 21760, r = 400, w = 85).
. The matrix is of 8.3Mbits.

. Throughput is around 70Mbits/s in software.
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Part V

Other applications where codes
can be useful...
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MDS matrices for optimal diffusion

I Block ciphers are usually built as a cascade of diffusion

and confusion layers.

. Confusion consists in applying small S-boxes in parallel.

. Diffusions mixes the S-box outputs together.

I Diffusion doesn’t have to add confusion, so a basic

linear transformation can be enough.
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MDS matrices for optimal diffusion
Using linear diffusion

Say the input of the diffusion layer is I ∈ (F2m)p (the

output of p S-boxes on m bits) and its output O ∈ (F2m)q.

The diffusion layer can be a p× q matrix G in F2m with:

O = I ×
[
G

]
.

I Diffusion is good if small variations on I yield large

variations on O.

. The different concatenated (I||O) have to be distant

from each other.
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MDS matrices for optimal diffusion

I We build the following

generator matrix: G ′ =
1

1
0

0
G

1

p q

I Then: I||O = I × G ′.
. Diffusion will be best when the code defined by G ′

has a large minimal distance d.

. If G ′ is MDS (d = q + 1), diffusion is optimal.

I Ciphers like FOX or AES use square diffusion matrices

G taken from MDS matrices G ′.
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MDS matrices for optimal diffusion
Limitations of this technique

I Depending on the parameters it is not always possible

to build a MDS matrix:

. if n = p + q > 2m such code certainly doesn’t exist.

I Diffusion among blocks is good, but not at the bit level:

. there are m(p+q) input/output bits and the minimal

bit distance is also q + 1.

I For diffusion among 4 or 8 blocks of 8 bits like in AES

and FOX, these are perfect.
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MDS matrices for optimal diffusion
Improving sub-block diffusion

For an optimal 4×4 matrix on F28 one needs a [8, 4, 5]
code.

. It is possible to build a [16, 8, 9] code on F24.

. This yields an optimal 8×8 matrix on F24.

This matrix will be as efficient for block level diffusion,

but will be better for sub-blocks (of size 4) diffusion.

I It is not used because it is much slower...
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Threshold Secret Sharing

We want to share a secret among S users in such a

way that any coalition of T users can recover it, but no

coalition of T − 1 can get any information about it.

I We build an MDS code of length n = S + 1 and

dimension k = T on Fq and make it public.

. We choose a secret x1 ∈ Fq and build a code word

x = (x1, ..., xn) from random x2, ..., xk.

. Each user gets a share xi for i ∈ [2..n].
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I A coalition of T = k users knows k coordinates of x:

this is an information set.

. They can recover the whole code word, including x1.

I A coalition of T − 1 = k − 1 users only know k − 1
coordinates of x.

. Whatever the value of x1 there exists a code word

interpolating with x1 and their coordinates.

. They don’t get any information at all.

52/55



010011

Other examples

I Threshold problems:

. Digital fingerprinting.

. Traitor tracing.

}
Requires the use of mul-

tiple codes.

I Building resilient boolean functions.

I Cryptanalysis:

. Stream ciphers: finding low weight multiples of a

polynomial.

. Block ciphers: finding biased combinations for linear

cryptanalysis.
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Part VI

Conclusion
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Conclusion

¦ Error correcting codes are used in many domains of

cryptography: design as well as cryptanalysis.

¦ Some cryptographic schemes rely on codes:

. very fast for public key constructions,

. they usually use a lot of memory.

¦ Codes might be a solution for some devices with

small computational power...
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