## Syndrome Decoding in the Non-Standard Cases

## Matthieu Finiasz

## Outline

IThe Problem of Syndrome Decoding

The Cryptosystems of McEliece and Niederreiter

III McEliece-Based Signatures
IV Provably Secure Syndrome-Based Hash Functions
V The Multiple of Low Weight Problem

## Part I

The Problem of Syndrome Decoding

## What Does Decoding Mean?

- A code $\mathcal{C}$ can be defined by a $k \times n$ generator matrix $\mathcal{G}$
$\triangleright$ a message $m$ is encoded into a codeword $c$, adding some noise $e$ gives a word $c^{\prime}=c \oplus e$.

- Decoding consists in finding the closest codeword to $c^{\prime}$.


## Parity Check Matrix and Syndromes

- A parity check matrix $\mathcal{H}$ of the code $\mathcal{C}$ is such that:

$$
c \in \mathcal{C} \quad \text { iff } \quad \mathcal{H} \cdot c=0
$$

$\triangleright$ Using $\mathcal{H}$ one can make decoding independent of $c$ :

$$
\mathcal{H} \cdot c^{\prime}=\mathcal{H} \cdot(c \oplus e)=\mathcal{H} \cdot e=\mathcal{S} .
$$

$\rightarrow \mathcal{S}$ is the syndrome of $c^{\prime}$ (or of $e$ ).


- Find the word of syndrome $\mathcal{S}$ of lowest weight.


## The Problem of Syndrome Decoding

## Syndrome Decoding: (SD)

Input: an $n-k \times n$ binary matrix $\mathcal{H}$, an $n-k$ bit vector $\mathcal{S}$ and a weight $w$.
Output: an $n$ bit vector $e$ of Hamming weight $\leq w$ such that $\mathcal{H} \cdot e=\mathcal{S}$.

- It is a sort of "bounded" decoding: maximum-likelihood decoding is not in NP.
- NP-complete [Berlekamp - McEliece - van Tilborg 1978] $\rightarrow$ some instances are hard.


## Known Techniques for Solving SD

- Birthday techniques:
- standard with 1 list
- memory saving with 4 lists [Joux 2002]
- generalized birthday with $2^{a}$ lists [Wagner 2002]
- Decoding techniques:
- information set decoding [Canteaut - Chabaud 1998]
- iterative decoding [Fossorier - Kobara - Imai 2003]
- Lattice-based techniques?


## Part II

The Cryptosystems of McEliece and Niederreiter

## The McEliece Cryptosystem

 Algorithms- The public key is a scrambled Goppa code generator matrix $\mathcal{G}^{\prime}=\mathcal{Q} \times \mathcal{G} \times \mathcal{P}$. $(\mathcal{G}, \mathcal{P}, \mathcal{Q})$ is the private key.
Encryption: $E_{\mathcal{G}^{\prime}}(m)$
Pick $e$ of weight $\leq t$.
Compute $c^{\prime}=E_{\mathcal{G}^{\prime}}(m)=m \times \mathcal{G}^{\prime} \oplus e$.

Decryption: $D_{(\mathcal{G}, \mathcal{P}, \mathcal{Q})}\left(c^{\prime}\right)$
Compute $c^{\prime} \times \mathcal{P}^{-1}=m \times \mathcal{Q} \times \mathcal{G} \oplus e^{\prime}$.
Decode to remove $e^{\prime}$ and recover $m \times \mathcal{Q}$, and multiply by $\mathcal{Q}^{-1}$ to get $m$.

## The Niederreiter Cryptosystem

 Algorithms- Similar to McEliece, but the message is coded in the error $e$ instead of the codeword.
$\triangleright$ The public key is $\mathcal{H}^{\prime}=\mathcal{P} \times \mathcal{H} \times \mathcal{Q}$ where $\mathcal{H}$ is a parity check matrix.
$\triangleright$ The message is coded into a word $e$ of given weight.
$\triangleright$ The ciphertext is the syndrome $\mathcal{S}=\mathcal{H}^{\prime} \times e$.
- Both systems have equivalent security
$\rightarrow$ decryption requires to solve an instance of SD.


## Usual Parameters

- The original McEliece parameters are $n=1024, k=524$ and $t=50 \rightarrow$ not secure enough.
- "Better" parameters are $n=2048, k=1718, t=33$.
- The corresponding instances of SD are very specific:
$\triangleright$ there is always a single solution,
$\triangleright$ parameters correspond to Goppa codes: $\frac{n-k}{w}=\log n$, $\rightarrow w$ is a little below the Gilbert-Varshamov bound.

Most research was focused on this type of parameters, they are believed to be among the hard instances of SD.

## Information Set Decoding (ISD)

- Find $k$ positions containing no non-zero positions of $e$. $\triangleright$ This is called an information set.
$\rightarrow$ A Gaussian elimination on the $n-k$ other gives $e$.

- Probability of success $=\frac{\binom{n-w}{k}}{\binom{n}{k}}=\frac{\binom{n-k}{w}}{\binom{n}{w}} \simeq\left(\frac{n-k}{n}\right)^{w}$.
$\rightarrow$ Complexity $=\mathcal{O}\left(\mathcal{P o l y}(n)\left(\frac{n}{n-k}\right)^{w}\right)$.


## Birthday Techniques

 Complexity Comparison- There is a single solution
$\triangleright$ generalized birthday does not apply
$\triangleright$ simply list words of weight $\frac{w}{2}$ and look for the collision
$\triangleright$ complexity is of order $\mathcal{O}\left(n^{\frac{w}{2}}\right)$.
- If $n-k>\sqrt{n}$, birthdays are less efficient than ISD $\rightarrow$ useful only for codes correcting very few errors.


## Syndrome Decoding in the Standard Case

- "Standard case" refers to the kind of instances of SD derived from McEliece or Niederreiter cryptosystems:
$\triangleright$ a single solution exists
$\triangleright$ close to the Gilbert-Varshamov bound.
- These are the cases that have been the most studied $\triangleright$ the best algorithm is quite complex
$\triangleright$ less research was done for other parameters
$\rightarrow$ generic algorithms are used.


## Part III

McEliece-Based Signatures

## The Problem of Code-Based Signatures

 [Courtois - Finiasz - Sendrier 2001]- One needs to decrypt a "random" ciphertext
$\triangleright$ some (most) syndromes/words can't be decoded.
$\triangleright$ some (most) messages can't be signed!
- A simple solution exists:
$\triangleright$ get the highest possible probability of success
$\rightarrow$ increase the density of decodable syndromes.
$\triangleright$ hash a lot of "equivalent" documents
$\rightarrow$ append a counter, for example.
$\triangle$ The counter is part of the signature.


## Signature Algorithm: $\operatorname{Sign}(\mathrm{D})$

1. Initialize the counter $i=0$
2. Hash D and $i$ into a syndrome: $\mathcal{S}_{i}=\operatorname{Hash}(\mathrm{D} \| i)$
3. Try to decode $\mathcal{S}_{i}$ into a word $e_{i}$
$\rightarrow$ if it fails $i++$ and go back to 2
4. Return $\operatorname{Sign}(\mathrm{D})=\left(i, e_{i}\right)$.

- The average number of attempts is:

$$
\mathcal{N}_{\text {attempts }}=\frac{\mathcal{N}_{\mathcal{S}}}{\mathcal{N}_{e}}=\frac{2^{n-k}}{\binom{n}{t}} \simeq t!
$$

## Reaching Non-Standard Parameters

- For efficiency, we need codes correcting very few errors
$\triangleright$ fewer errors also gives shorter signatures!
$\triangleright$ we proposed $n=2^{16}, n-k=144$ and $t=9$.
- Near the limit where birthday techniques become more efficient than ISD ( $n-k$ is very small):

$$
\left(\frac{n}{n-k}\right)^{t} \approx 2^{79.5} \quad \text { and } \quad n^{\left\lceil\frac{w}{2}\right\rceil}=2^{80}
$$

- Can another algorithm be more efficient yet?


## A Problem a Little Different from SD

- Forging a signature does not simply consist in solving one instance of SD:
$\triangleright$ there are many instances sharing the same matrix $\triangleright$ among these some give a solution $\triangleright$ a large majority has no solution.
- An attacker needs to solve "one of many" instances
$\triangleright$ is this easier (attacks can be parallelized)?
$\triangleright$ is this harder (most instances are unusable)?
$\triangleright$ how can we improve birthday techniques?


# Part IV <br> Provably Secure Syndrome-Based Hash Functions 

## Main Idea

 [Augot - Finiasz - Sendrier 2005]- Design a compression function for which inversion and collision search requires to solve an instance of SD $\triangleright$ take a large random binary matrix, convert the input into a low weight word and output its syndrome.



## Constraints on the Parameters

- It has to compress
$\triangleright$ we have to choose a $w$ such that $\binom{n}{w}>2^{n-k}$,
$\triangleright$ there are many solutions to SD for inversion/collision.
- It has to be fast
$\triangleright$ one to one conversion to constant weight word is slow $\rightarrow$ use regular words.



## Security

- SD with regular word is still NP-complete
$\triangleright$ collision search or inversion requires to solve an instance of some new problems.
- In practice
$\triangleright$ the best attacks use Wagner's generalized birthday
secure parameters are for example:

$$
n=21760, \quad n-k=400 \quad \text { and } \quad w=85 .
$$

- Parameters $n$ and $n-k$ are similar to signature parameters, but $w$ is huge $\rightarrow$ far from Goppa codes.


## Compared to Standard SD

- Quite a few differences compared to attacks on McEliece:
$\triangleright$ there are many solutions
$\triangleright$ a truly random binary matrix is used
$\triangleright$ is this harder in average than a scrambled Goppa?
$\triangleright$ though still NP-complete the problems are not SD
$\triangleright$ instances can be split in subparts
$\triangleright$ ISD attacks can surely be improved
$\triangleright$ it has been studied only very little


## Part V

## The Multiple of Low Weight Problem

## A Key Problem of Correlation Attacks

- Correlation attacks approximate a stream-cipher by two LFSRs and some noise

- In order to recover the initialization of $\mathrm{LFSR}_{1}$ :
$\triangleright$ find a multiple $K$ of weight $w$ of LFSR $_{2}$ multiply the stream by $K \rightarrow$ suppress LFSR $_{2}$
$\triangleright$ results in a decoding problem with noise $\gamma^{w}$.


## The Multiple of Low Weight Problem

## Multiple of Low Weight Problem: (MLW)

 Input: a polynomial $P$, a degree $d$ and a weight $w$.Output: a polynomial $K$ of degree $\leq d$, weight $\leq w$ and such that $P \mid K$.

- This is a re-writing of the SD problem, with a truncated cyclic code:
$\triangleright$ compute the $d+1 \times d_{P}$ binary matrix with columns:

$$
\mathcal{H}_{i}=x^{i} \bmod P(x), \quad i \in[0, d] .
$$

$\triangleright$ look for a word of weight $\leq w$ and syndrome 0 .

## Classical Cryptanalytic Setting

- When attacking a stream cipher, the smaller $w$ and $d$, the less stream bits will be required to decode
$\triangleright$ some kind of trade-off between weight and degree,
$\triangleright$ strong threshold: a small change on $w$ and on $d$ will change from no solution to many:

$$
\mathcal{N}_{s o l} \simeq \frac{\binom{d}{w}}{2^{d_{P}}}
$$

$\triangleright$ finding several solutions is useful,
$\triangleright \operatorname{LFSR}_{2}$ will be about 100 bits long $\rightarrow d_{P}=n-k$ is small: ISD is inefficient.

- Use birthday techniques (either classical or generalized).
- Use a multiple of low weight as a trapdoor:
$\triangleright$ factor a polynomial $K$ of degree $d$ and weight $w$,
$\triangleright$ choose a factor $P$ and use it for $\operatorname{LFSR}_{2}$,
$\triangleright$ use a small $\mathrm{LFSR}_{1}$ to encode the message,
$\triangleright$ add some noise $\gamma$ and output a stream of length $\ell$.
- For key recovery $\rightarrow$ find a single "unexpected" solution.
- For decryption $\rightarrow$ find many "expected" solutions.
$\triangle d_{P}$ is much larger than before. Typical parameters are: $\ell=50000, d_{P}=6000, d_{K}=15000$ and $w=100$.


## MLW Compared to Classical SD

- The main difference is the use of a truncated cyclic code instead of a "random" matrix
$\triangleright$ this has little influence on the security: $w \rightarrow w-1$.
- Key recovery for TCHo is very similar to classical SD.
- In the other cases, there is no limit for $w$
$\triangleright$ some solutions are easy to find ( $P$ itself!)
$\rightarrow$ they are usually useless.
$\triangleright$ two types of hard-to-find solutions:
$\triangleright w$ with few solutions $\rightarrow$ ISD/birthday
$\triangleright w$ with loads of solutions $\rightarrow$ Wagner.
- The best strategy will depend on $\gamma$ and the stream size.

Conclusion

- "Standard SD instances" have been extensively studied
$\triangleright$ I believe new techniques are possible, but any progress would be a breakthrough.
$\rightarrow$ I would compare this to the factoring problem.
- "Non-standard SD instances" have been less studied
$\triangleright$ new specific techniques are bound to appear, $\rightarrow$ take advantage of specific parameters.
$\rightarrow$ take advantage of a specific setting.
$\triangleright$ parameters that are proposed are probably too tight $\rightarrow$ expect attacks with little practical impact.
$\triangleright$ will these new attacks be generalized?

