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Part I

The Problem of
Syndrome Decoding



What Does Decoding Mean?

I A code C can be defined by a k × n generator matrix G
. a message m is encoded into a codeword c, adding

some noise e gives a word c′ = c⊕ e.

I Decoding consists in finding the closest codeword to c′.



Parity Check Matrix and Syndromes

I A parity check matrix H of the code C is such that:

c ∈ C iff H · c = 0.

. Using H one can make decoding independent of c:

H · c′ = H · (c⊕ e) = H · c⊕H · e = S.

_ S is the syndrome of c′ (or of e).

I Find the word of syndrome S of lowest weight.



The Problem of Syndrome Decoding

Syndrome Decoding: (SD)

Input: an n − k × n binary matrix H, an n − k bit

vector S and a weight w.

Output: an n bit vector e of Hamming weight ≤ w

such that H · e = S.

I It is a sort of “bounded” decoding: maximum-likelihood

decoding is not in NP.

I NP-complete [Berlekamp - McEliece - van Tilborg 1978]

_ some instances are hard.



Known Techniques for Solving SD

• Birthday techniques:

• standard with 1 list
• memory saving with 4 lists [Joux 2002]
• generalized birthday with 2a lists [Wagner 2002]

• Decoding techniques:

• information set decoding [Canteaut - Chabaud 1998]
• iterative decoding [Fossorier - Kobara - Imai 2003]

• Lattice-based techniques?



Part II

The Cryptosystems of
McEliece

and Niederreiter



The McEliece Cryptosystem
Algorithms

I The public key is a scrambled Goppa code generator

matrix G ′ = Q× G × P. (G,P,Q) is the private key.

Encryption: EG′(m)

Pick e of weight ≤ t.

Compute c′ = EG′(m) = m× G ′ ⊕ e.

Decryption: D(G,P,Q)(c′)

Compute c′ × P−1 = m×Q× G ⊕ e′.
Decode to remove e′ and recover m×Q, and multiply

by Q−1 to get m.



The Niederreiter Cryptosystem
Algorithms

I Similar to McEliece, but the message is coded in the

error e instead of the codeword.

. The public key is H′ = P×H×Q where H is a parity

check matrix.

. The message is coded into a word e of given weight.

. The ciphertext is the syndrome S = H′ × e.

I Both systems have equivalent security

_ decryption requires to solve an instance of SD.



Usual Parameters

I The original McEliece parameters are n = 1024, k = 524
and t = 50 _ not secure enough.

I “Better” parameters are n = 2048, k = 1718, t = 33.

I The corresponding instances of SD are very specific:

. there is always a single solution,

. parameters correspond to Goppa codes: n−k
w = log n,

_ w is a little below the Gilbert-Varshamov bound.

Most research was focused on this type of parameters,

they are believed to be among the hard instances of SD.



Information Set Decoding (ISD)

I Find k positions containing no non-zero positions of e.

. This is called an information set.

_ A Gaussian elimination on the n− k other gives e.

I Probability of success = (n−w
k )

(n
k)

= (n−k
w )
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w) ' (

n−k
n

)w
.

_ Complexity = O (Poly (n)
(

n
n−k

)w)
.



Birthday Techniques
Complexity Comparison

I There is a single solution

. generalized birthday does not apply

. simply list words of weight w
2 and look for the collision

. complexity is of order O (
n

w
2
)
.

I If n− k >
√

n, birthdays are less efficient than ISD

_ useful only for codes correcting very few errors.



Syndrome Decoding in the Standard Case
Summary

I “Standard case” refers to the kind of instances of SD

derived from McEliece or Niederreiter cryptosystems:

. a single solution exists

. close to the Gilbert-Varshamov bound.

I These are the cases that have been the most studied

. the best algorithm is quite complex

. less research was done for other parameters

_ generic algorithms are used.



Part III

McEliece-Based
Signatures



The Problem of Code-Based Signatures
[Courtois - Finiasz - Sendrier 2001]

I One needs to decrypt a “random” ciphertext

. some (most) syndromes/words can’t be decoded.

. some (most) messages can’t be signed!

I A simple solution exists:

. get the highest possible probability of success

_ increase the density of decodable syndromes.

. hash a lot of “equivalent” documents

_ append a counter, for example.

! The counter is part of the signature.



The Signature Algorithm

Signature Algorithm: Sign(D)

1. Initialize the counter i = 0
2. Hash D and i into a syndrome: S i = Hash(D||i)
3. Try to decode S i into a word ei

_ if it fails i++ and go back to 2

4. Return Sign(D) = (i, ei).

I The average number of attempts is:

Nattempts =
NS
Ne

=
2n−k

(
n
t

) ' t!



Reaching Non-Standard Parameters

I For efficiency, we need codes correcting very few errors

. fewer errors also gives shorter signatures!

. we proposed n = 216, n− k = 144 and t = 9.

I Near the limit where birthday techniques become more

efficient than ISD (n− k is very small):

(
n

n− k

)t

≈ 279.5 and ndw
2e = 280

I Can another algorithm be more efficient yet?



A Problem a Little Different from SD

I Forging a signature does not simply consist in solving

one instance of SD:

. there are many instances sharing the same matrix

. among these some give a solution

. a large majority has no solution.

I An attacker needs to solve “one of many” instances

. is this easier (attacks can be parallelized)?

. is this harder (most instances are unusable)?

. how can we improve birthday techniques?



Part IV

Provably Secure
Syndrome-Based
Hash Functions



Main Idea
[Augot - Finiasz - Sendrier 2005]

I Design a compression function for which inversion and

collision search requires to solve an instance of SD

. take a large random binary matrix, convert the input

into a low weight word and output its syndrome.



Constraints on the Parameters

I It has to compress

. we have to choose a w such that
(

n
w

)
> 2n−k,

. there are many solutions to SD for inversion/collision.

I It has to be fast

. one to one conversion to constant weight word is slow

_ use regular words.



Security

I SD with regular word is still NP-complete

. collision search or inversion requires to solve an in-

stance of some new problems.

I In practice

. the best attacks use Wagner’s generalized birthday

. secure parameters are for example:

n = 21760, n− k = 400 and w = 85.

I Parameters n and n− k are similar to signature param-

eters, but w is huge _ far from Goppa codes.



Compared to Standard SD

I Quite a few differences compared to attacks on McEliece:

. there are many solutions

. a truly random binary matrix is used

. is this harder in average than a scrambled Goppa?

. though still NP-complete the problems are not SD

. instances can be split in subparts

. ISD attacks can surely be improved

. it has been studied only very little



Part V

The Multiple of Low
Weight Problem



A Key Problem of Correlation Attacks

I Correlation attacks approximate a stream-cipher by two

LFSRs and some noise

I In order to recover the initialization of LFSR1:

. find a multiple K of weight w of LFSR2

. multiply the stream by K _ suppress LFSR2

. results in a decoding problem with noise γw.



The Multiple of Low Weight Problem

Multiple of Low Weight Problem: (MLW)

Input: a polynomial P , a degree d and a weight w.

Output: a polynomial K of degree ≤ d, weight ≤ w

and such that P |K.

I This is a re-writing of the SD problem, with a truncated

cyclic code:

. compute the d + 1× dP binary matrix with columns:

Hi = xi mod P (x), i ∈ [0, d].
. look for a word of weight ≤ w and syndrome 0.



Classical Cryptanalytic Setting

I When attacking a stream cipher, the smaller w and d,

the less stream bits will be required to decode

. some kind of trade-off between weight and degree,

. strong threshold: a small change on w and on d will

change from no solution to many:

Nsol '
(

d
w

)

2dP
,

. finding several solutions is useful,

. LFSR2 will be about 100 bits long

_ dP = n− k is small: ISD is inefficient.

I Use birthday techniques (either classical or generalized).



TCHo: the Trapdoor Stream Cipher
[Finiasz - Vaudenay 2006]

I Use a multiple of low weight as a trapdoor:

. factor a polynomial K of degree d and weight w,

. choose a factor P and use it for LFSR2,

. use a small LFSR1 to encode the message,

. add some noise γ and output a stream of length `.

I For key recovery _ find a single “unexpected” solution.

I For decryption _ find many “expected” solutions.

! dP is much larger than before. Typical parameters are:

` = 50000, dP = 6000, dK = 15000 and w = 100.



MLW Compared to Classical SD

I The main difference is the use of a truncated cyclic code

instead of a “random” matrix

. this has little influence on the security: w _ w − 1.

I Key recovery for TCHo is very similar to classical SD.

I In the other cases, there is no limit for w

. some solutions are easy to find (P itself!)

_ they are usually useless.

. two types of hard-to-find solutions:

. w with few solutions _ ISD/birthday

. w with loads of solutions _ Wagner.

I The best strategy will depend on γ and the stream size.



Conclusion



I “Standard SD instances” have been extensively studied

. I believe new techniques are possible, but any progress

would be a breakthrough.

_ I would compare this to the factoring problem.

I “Non-standard SD instances” have been less studied

. new specific techniques are bound to appear,

_ take advantage of specific parameters.

_ take advantage of a specific setting.

. parameters that are proposed are probably too tight

_ expect attacks with little practical impact.

. will these new attacks be generalized?


