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1 Introduction

In the late 70’s the McEliece cryptosystem was invented and the syndrome
decoding problem was proven to be NP-complete. The proof of NP-com-
pleteness shows that among some instances (those which can be derived
from a 3D mapping problem), some are difficult to solve. The fact that no
attack has yet been found on the McEliece cryptosystem tends to show that
for standard parameters (like those used in instances of the cryptosystem),
finding an attack is not easy. However, other code based cryptographic
constructions rely on the hardness of syndrome decoding, some of them using
non-standard parameters. Through the review of a few of these alternate
constructions I will introduce some techniques used to solve the problem of
syndrome decoding.

2 The Problem of Syndrome Decoding

The problem of syndrome decoding is probably the most famous hard prob-
lem of coding theory. It is basically a re-writing of the general problem of
decoding in terms of syndrome: given a linear code (defined by its parity
check matrix) and a random vector, compute the syndrome of this vector
and try to find an error pattern of low weight having the same syndrome.
More formally it can be written as:

Syndrome Decoding: (SD)

Input: a binary n-k×n matrix H, an n-k bit vector S and a weight w.
Output: an n bit vector e of Hamming weight ≤ w such that H· e = S.

This problem was proven to be NP-complete in 1978 [2] but of course,
depending on the input, some instances can be solved in polynomial time.
For instance, when w is larger than n

2 , solving SD becomes easy, as comput-
ing a pseudo-inverse H−1 of H and computing H−1 · S will return a valid
solution with large probability. However, for smaller values of w, when a sin-
gle solution exists, finding it becomes much harder. For instance, assuming
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H and S are perfectly random, a solution exists if:
(

n

w

)
≥ 2n−k. (1)

When w is close to the value defined by this bound, the problem of SD is
expected to be hard.

The McEliece and Niederreiter Cryptosystems

In the cryptosystems of McEliece [7] and Niederreiter [8], illegitimate de-
cryption is possible if an instance of SD can be solved. The input of this
instance is a scrambled Goppa code parity check matrix of size mt× 2m, a
syndrome of length mt and the target weight is t. In general, for such pa-
rameters, no solution exists as

(
2m

t

)
< 2mt, but for instances taken from the

McEliece (or Niederreiter) cryptosystems, one knows that a solution exists
and that it is unique. Most algorithms designed to solve SD are focused on
this type of parameters, but will also work well for any parameters close to
the bound given by equation (1).

In this case, the best known algorithms are based on information set
decoding and consist in finding a set of k columns of H such that a solution
e to the problem of SD is all zero on these k positions. Computing a pseudo-
inverseH−1 of the remaining n−k columns ofH makes it possible to invert S
and obtain the solution e. The first algorithm to use this technique was due
to Lee and Brickell [6] and then improved by Stern [9]. The latest refinement
is due to Canteaut and Chabaud [3] and greatly improves the polynomial
part of the complexity of the algorithm. However, this complexity remains
exponential of the form O

(
Poly (n)

(
n

n−k

)w)
.

Typical parameters are m = 11 and t = 30, and thus n = 211, n − k =
330, and w = 30, leading to an attack complexity just above 280.

3 McEliece-Based Signatures

In 2001, Courtois, Finiasz and Sendrier [4] presented the first code-based
signature scheme to rely on the problem of SD. In this construction a counter
is appended to the message to sign before hashing it into a syndrome. The
signer then tries to decode the syndrome and increments the counter until
a decodable syndrome is found. The signature then consists of the counter
and the error pattern e corresponding to the syndrome.

As in the McEliece cryptosystem, the matrix is a scrambled Goppa code
matrix, but here the value of t has to be very small: the average number
of decoding attempts before obtaining a decodable syndrome is t!. Typical
parameters are m = 16 and t = 9, and thus n = 216, n − k = 144 and
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w = 9, once again leading to an attack complexity just above 280 using the
Canteaut-Chabaud algorithm.

However, these parameters have been much less studied than previous
ones: can some attacks take advantage of the very small value of t? More-
over, in this construction the attacker does not have a single instance of
SD to solve, but has to solve one among many: each value of the counter
corresponds to a different instance of SD involving the same matrix. The
attacker can now try to solve multiple instances of SD in parallel, some
of which might be easier than others. This does not seem to improve the
complexity of the existing attacks, but might be a weakness against new
attacks.

4 Fast Syndrome Based Hash Function

Relying on a variation of the SD problem, a family of fast syndrome based
cryptographic hash functions [1] was proposed. In this construction a binary
matrix H is used to build the compression function of a Merkle-Damg̊ard
hash function. The input (chaining or initial vector and message block)
is converted into a low weight word using a one to one mapping and the
output is the product of this word by H. For efficiency reasons, instead of
converting the input into any low weight word, it is converted in a regular
word, that is, the word is split in w block of n

w bits and each block has a
Hamming weight of 1.

Inverting or finding collisions on the compression function can be reduced
to solving an instance of a problem very close to SD, but using regular
words, which is also proven to be NP-complete. However, as we need the
compression function to compress, it is clear that when trying to invert it
or to find collisions many solutions exist, and finding a single one is enough
to break the construction. In this case the best algorithm is no longer based
on information set decoding but uses the generalized birthday algorithm of
Wagner [10].

This generalized birthday algorithm improves the standard birthday
paradox by only looking for specific solutions and discarding other solu-
tions. Therefore, it does not apply to the standard McEliece parameters of
SD as a single solution exists, but is suitable for values of w yielding many
solutions. It applies for any values of w such that:

(
n
w
4

)
≥ 2

n−k
3 .

The larger w, the more efficient the algorithm will be.
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5 The Multiple of Low Weight Problem

In stream cipher analysis and in the trapdoor stream cipher construction of
Finiasz and Vaudenay [5], a key problem is that of finding a multiple of low
weight of a given polynomial on F2.

Multiple of Low Weight Problem:

Input: a polynomial P of degree dP on F2, a weight w and a degree d.
Output: a polynomial K of degree ≤ d and weight ≤ w, multiple of P .

This problem can be translated in terms of SD by simply computing the
matrix H which columns are defined by Hi = Xi mod P (X), for i ∈ [1; d].
Then, finding a multiple of P of weight ≤ w simply consists in solving an
instance of SD with input H, S = (1, 0, . . . , 0) and weight w − 1.

The best known techniques for solving the multiple of low weight problem
use algorithms designed for SD but it might be possible to improve them
based on the specific structure of the matrix H. Also, for cryptanalysis, d
and w can be chosen by the adversary: a larger d will require to capture
more output bits of the stream cipher, a larger w will also require more
output bits and will increase the complexity of the attack. Each algorithm
will thus lead to different optimal parameters for the attack and the best
attack will depend on the way the multiple polynomial K is used afterwards.

6 Conclusion

Algorithms based on information set decoding techniques seem to perform
best for most instances of syndrome decoding derived from the cryptosys-
tems of McEliece and Niederreiter. However, other cryptographic construc-
tions lead to completely different inputs for which deciding which is the best
algorithm is not always obvious. New algorithms do not have to target the
cryptosystems of McEliece and Niederreiter, but can also target these newer
constructions which might offer more suitable inputs.
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