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Abstract. Inspired by fast correlation attacks on stream ciphers, we
present a stream cipher-like construction for a public-key cryptosystem
whose security relies on two problems: finding a low-weight multiple of a
given polynomial and a Hidden Correlation problem. We obtain a weakly
secure public-key cryptosystem we call TCHo (as for Trapdoor Cipher,
Hardware Oriented). Using the Fujisaki-Okamoto construction, we can
build an hybrid cryptosystem, TCHon-FO, resistant against adaptive cho-
sen ciphertext attacks.

1 Introduction

Many of nowadays cryptosystems rely on the problem of factoring numbers.
With the RSA [24] cryptosystem, the key recovery problem is equivalent to
factoring a modulus into prime numbers. The message recovery problem is an
ad-hoc problem, assumed to be hard, but potentially easier than factoring. To
setup the cryptosystem we first generate secret prime numbers and then multiply
them together to get the public key. Although the hardness of the factoring
problem is an important open problem, it is known to be easy by using quantum
computers [26].

With polynomials, the factoring problem is essentially easy. However, the
problem of finding a multiple with low degree and weight is presumably hard.
This problem occurs in correlation attacks on stream ciphers, and no polynomial
time algorithm exists to solve it. Therefore, we can setup a new trapdoor system
by first generating a secret low-weight polynomial and then looking for a suitable
factor to produce a public key. We thus derive a new cryptosystem consisting
simply of the XOR of two LFSRs with a random noise source. One LFSR is
used to encode the data, the other contains the trapdoor. It is only used to
hide the data, and the noise source provides non-linearity. The ciphertext is
the result of this XOR. The key recovery problem is equivalent to finding a
low-weight multiple of a given polynomial. The message recovery problem is an
ad-hoc problem, potentially easier but still (assumed to be) hard: the Hidden
Correlation (HC) problem. It further may remain a hard problem with quantum
computers.

We think that analyzing this cryptosystem would be important in any case
because this would either provide us with a secure post-quantum cryptosystem
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(if not an efficient pre-quantum one), or with new improvements for existing
correlation attacks against stream ciphers. We aim at making the first step in
this direction.

In this paper we review existing algorithms for finding low-weight multiples of
a given polynomial and for the decoding of a noisy LFSR. This provides heuristics
to select parameters for TCHo, a one-way public-key encryption scheme. It can
encrypt small blocks of up to 30 bits into ciphertexts of a few thousand bits.
TCHon encrypts n such blocks independently. The stream-cipher-like structure
of our construction makes it most suitable for hardware implementation: an
ASIC of a few thousand gates (equipped with a randomness generator) at 4MHz
should be able to encrypt a block in less than 4ms.

We believe TCHo could also fit on a passive RFID tag. Providing public-key
encryption to RFID tags leads to new opportunities to solve privacy/security
issues in RFID protocols. Current protocols with readers connected to a single
server [1, 23] are based on symmetric cryptography and either compromise pri-
vacy or induce an important overhead complexity on the reader side. Public-key
cryptography is the simplest (and most reliable) solution to solve these issues,
however, no public-key encryption primitive can fit on an RFID tag. TCHo could
possibly be the first construction to achieve this.

We have implemented the TCHo construction in C++ using NTL [27]. Key
generation is pretty slow (about 4 minutes) as it requires to factorize polynomials
with huge degrees. Encryption takes a fraction of a second in software, but this
time is not significant for hardware implementation: LFSRs are not well suited
for use with a CPU. Finally, our decryption implementation takes a few seconds.

Previous work. Quite a lot of work has been done trying to attack various stream
ciphers like constructions. The first attacks were the (fast) correlation attack,
invented by Siegenthaler [28] and improved by Meier and Staffelbach [20]. The
main idea is to isolate one linear feedback shift-registers (LFSR) inside a stream
cipher and approximate the rest of the construction by another large LFSR with
some noise, then try to recover the initialization of the first LFSR and get a part
of the key. Many improvements and applications to specific constructions have
been made [4, 5, 13–15, 18, 21]. This work was inspired by a preliminary attack
on Bluetooth E0 [17, 19]. Some of the most efficient techniques are compared in
Section 2.2.

A key problem in most of these techniques is the possibility to find low-weight
multiples of a given polynomial. The best techniques rely either on exhaustive
search or on decoding techniques [3, 4, 22, 30]. Section 2.1 of this article is devoted
to this problem.

More recently, algebraic attacks have been applied to break some construc-
tions [6–8, 10, 11]. These attack can be very efficient but, even if some bounds
have been proven [7, 9], predicting their efficiency is quite a difficult problem.
Throughout this article we will neglect this category of attacks as they are not
well suited for large randomized constructions like ours.

The concept of trapdoor in a stream cipher was already brought up by
Camion, Mihaljevic and Imai [2]. They showed that using specific retroaction
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polynomials in LFSRs, some bits of the output stream could depend on only
some bits of the initialization, making it possible to speed up the recovery pro-
cess for constructions which otherwise seemed perfectly sound. This can be well
suited to kleptographic attack but it seems hard to build a public-key cryptosys-
tem this way.

In Section 2, we define new computational problems and provide heuristics
to solve them. This suggests some parameters ranges in which they can be rea-
sonably assumed to be hard on average. Then we define a raw encryption scheme
in Section 3 and prove that it is one-way under chosen plaintext attacks.

2 New Computational Problems

In this section, we formalize some computational problems which will be used
and review existing algorithms to solve them. We focus on exact complexities
as opposed to asymptotic ones. For this, we use two constants ceasy and chard

to indicate that a complexity below 2ceasy operations is essentially easy in prac-
tice and efficient, and that a complexity over 2chard is intractable in practice. In
practice, we can take ceasy = 30 and chard = 80.

Throughout this paper, we will define the bias of a source as bias(S) = P (S =
0)− P (S = 1). This bias is hence taken between −1 and 1 and is null when the
source is unbiased. In our system, we will only consider positive biases, that is,
sources which produce more 0’s than 1’s.

2.1 The Low-Weight Polynomial Multiple Problem

As opposed to integers, factoring polynomials is essentially easy. But when it
comes to finding low-weight polynomial multiples, the problem becomes harder
(at least, it is not known to be easy). Here, we will only focus on polynomials
over F2.

Problem 1 (Low-Weight Polynomial Multiple). We consider the following prob-
lem on average over the random selection of an instance P , issued by a given
instance generator Gen. We say that the problem is hard for Gen if solving it
requires more than 2chard complexity on average. We consider two kinds of gen-
erator. Let Gen1 be a generator which selects a random primitive polynomial
P of degree dP . Let Gen2 be a generator which selects a random polynomial K
of degree dK and weight w until it has a primitive factor P , produced as the
output, whose degree dP is in a given interval [dmin, dmax].

Parameters: a weight w, two degrees dP < dK

Instance: a binary polynomial P of degree dP

Problem: find a multiple of P with degree at most dK and weight at
most w

The Gen1 generator simulates which P we can meet when we do stream cipher
cryptanalysis. The Gen2 generator simulates which P we can meet when we
construct a public-key cryptosystem.
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Note that if P is irreducible, if x has order n ≤ dK in the group (F2[x]/P (x))∗,
and if w ≥ 2, then K = xn + 1 solves the problem. Taking P primitive ensures
that the order n = 2dP − 1 is maximal. Also, for values of w greater than the
Hamming weight of P , then P itself solves the problem. However, for dK and w
small, the problem is believed to be hard. There are several strategies to solve
it. Heuristically, if P is generated by Gen1, the average number of solutions with
nonzero constant term is

Nsol = 2−dP

w−1∑

i=0

(
dK

i

)
≈ 2−dP

(
dK

w − 1

)
. (1)

When using Gen2, the average number of solutions becomes 1 +Nsol.

Strategy 1 – The birthday paradox. This strategy consists in building two
lists of polynomials which are sums respectively of 0 or 1 and of a polynomial
with weight w−1

2 and null constant term, all reduced modulo P . Once this is
done, one simply looks for collisions. The lists have a size of L =

(
dK

(w−1)/2

)

and the complexity is O (L(log(L) + dP )) . This strategy is always faster
than exhaustive search, but requires a lot of memory.

Strategy 2 – Wagner’s generalized birthday paradox. When the number
of solutions becomes large enough (of order O (

2dP /3
)
), techniques based on

Wagner’s generalized birthday paradox [30] can become more efficient. This
algorithm is not fit for finding all possible polynomials (or the hidden one
from Gen2) but can find one solution among many. If there exists a ≥ 2
such that

(
dK

(w−1)/2a

) ≥ 2dP /(a+1), then one solution can be found with a
complexity O (

2a2dP /(a+1)
)
.

For instance, when dK ≥ 2dP /(1+log2(w−1)), we can use a = log2(w − 1) and
find a multiple within O ((w − 1)dK). Clearly, such a low complexity cannot
be reached for any w ≤ dP when dK ≤ 2dP /(1+log2(dP−1)).

Strategy 3 – Syndrome decoding. Solving the problem can be done using a
syndrome decoding algorithm. Compute the matrix of all the xi mod P (x)
for i from 1 to dK and then find a low-weight word in the preimages of 1 of
this matrix. When a single solution exists, this has a cost of:

O
(
Poly (dK)

(
dK

dP

)w−1
)

, (2)

where Poly (dK) is a polynomial of degree 2 or 3 in dK (see [16] for example).
We neglect this polynomial part as improved algorithm like [3] can compen-
sate it. This complexity holds when there is a unique multiple polynomial
of degree dK and weight ≤ w. When there are more solutions this cost is
approximately divided by Nsol.

Strategy 4 – Exhaustive search. When looking for multiples of degree just
above dP , an exhaustive search on Q such that K = P × Q can be faster.
The complexity of finding all multiples is O (Poly (dK) 2dK−dP

)
.
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The best algorithm for finding low-weight multiples depends on both the
parameters and our objective (whether we want to find a single, many, or all
solutions). When a single solution exists, the best choice is Strategy 3. This
leads us to the following assumption

Assumption 2 (Low-Weight Polynomial Multiple). When w log2
dK

dP
≥

chard and
(

dK

w−1

) ≤ 2dP , the low-weight polynomial multiple problem is hard on
average for Gen1. When w log2

dK

dmin
≥ chard and

(
dK

w−1

) ≤ 2dmin , the low-weight
polynomial multiple problem is hard on average for Gen2.

2.2 The Noisy LFSR Decoding Problem

A binary linear code of length ` is a vector subspace of {0, 1}`. Elements are
codewords. We consider the problem of decoding noisy strings, i.e. decoding the
XOR of a codeword together with the output of a random source Sγ with bias
γ. This source represents the error produced by a binary symmetric channel. In
what follows we concentrate on codes which consist of all possible `-bit strings
which can be output from an LFSR LP with a fixed retroaction polynomial P
of degree dP , i.e. sequences Z = (z1, . . . , z`) such that (zt, . . . , zt+dP

) •P = 0 for
t = 1, . . . , ` − dP (where • denotes a scalar product, which means we consider
P as a binary (dP + 1)-tuple). We formalize the decoding problem of the noisy
LFSR channel as follows.

Problem 3 (Noisy LFSR Decoding). We consider the following problem on av-
erage over the random selection of P , X, and the biased noise. We say that the
problem is hard if getting a single bit of X (that is, decoding X with probability
higher than 21−dP ) requires over 2chard complexity on average.

Parameters: a length `, a polynomial P of degree dP , a bias γ
Noisy LFSR channel: given a uniformly distributed random seed X

of length dP , generate Y , the XOR of the output of length ` of LP

initialized with X and a random noise generated by Sγ

Problem: given Y , recover X

When γ is so close to 1 that errors are unlikely (e.g. 1−γ ¿ `−1), the problem
can easily be solved with high probability of success by Gaussian elimination.
When γ is so small that we cannot even distinguish Sγ from an unbiased source
(e.g. γ ¿ `−

1
2 ), the problem is impossible to solve with relevant probability of

success. In what follows we may assume that the channel transmits less data
than its capacity1 C(γ) = 1 +

(
1
2 + γ

2

)
log2

(
1
2 + γ

2

)
+

(
1
2 − γ

2

)
log2

(
1
2 − γ

2

)
, i.e.

dP

` ≤ C(γ). Thus, with unbounded computational power, decoding is possible.
However, this is not always the case in only O (2chard) operations.

Three main classes of algorithms exist to solve this problem: those based on
information set decoding, those trying to perform maximum likelihood (noted
ML hereafter) decoding, and those based on iterative decoding techniques. Note

1 When γ is small, we have C(γ) ≈ γ2

2 log 2
(with less than 1% error for γ ≤ 1

4
).
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that by simply guessing the noise weight, the problem reduces to a permuted
kernel problem [25].

Information Set Decoding consists in picking dP bits at random among the
` output bits and perform a Gaussian elimination on the corresponding columns
of the generator matrix of the LFSR. Decoding succeeds if there are no error
among the selected bits, namely with probability

(
1
2 + γ

2

)dP . By iterating this
simple algorithm enough time to get the correct decoding we can decode within
a complexity roughly

(
1
2 + γ

2

)−dP (improved decoding algorithms like [3] make
it possible to neglect the cost of the Gaussian elimination). When the bias γ is
too small, namely for γ ≤ 21−chard/dP − 1, this requires over 2chard iterations.

The converse approach consisting in trying to guess the error bits could seem
interesting when the level of noise is low (γ close to 1), but it is never more
efficient than Information Set Decoding.

Maximum Likelihood decoding consists in trying to find the most likely
X, given the `-bit output stream we have. As the source Sγ is memoryless with
a positive bias, the maximum likelihood corresponds to the X generating the
closest (in terms of Hamming distance) codeword to Y .

This gives us a basic ML decoding algorithm: try all the possible initializa-
tions for LP and sort them according to their distance to Y . This is however very
costly (about O (

2dP `
)
) and can be slightly improved to O (

2dP dP

)
by using a

Walsh transform as done in [19]. This method is successful if the solution is on
top of the list. This is the case only if we try to transmit less data than the

channel capacity. For dP ≤ ceasy and 1
4 ≥ γ ≥

√
dP

` 2 log 2 (the 1
4 is here to en-

sure that the approximation is valid), we can thus efficiently solve the problem.
On the contrary, decoding can be impossible for two different reasons: either the
noise is too high (that is, the bias is too small) and we sent more data than
the channel capacity (for instance, if γ ≤ 1.18 `−

1
2 , the channel cannot transmit

more than one bit of information, which means Y cannot contain more than
one bit of information on X), or the cost of the maximum likelihood decoding
algorithm is too high.

First case – If we send more data than the capacity of the channel we will not be
able to recover X completely, but we can still get some information on it. This
would not be sufficient to solve a decoding problem, but this is already enough
to threaten a cryptographic construction.

The difference between the distance of Y to any incorrect codeword and the
distance to the correct one can be approximated to a normal law of expected
value −γ `

2 and variance `
2 so the expected rank of the correct X in the maximum

likelihood list is approximately 1 + (2dP − 1)ϕ
(−γ

2

√
`
)

where

ϕ(x) =
1√
2π

∫ x

−∞
e−

t2
2 dt.

The amount of information one can get on X depends directly on this rank.
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Second case – If the complexity of the ML decoding algorithm is too high, we
can try too improve it. More subtle algorithms exist to recover the initialization
of LP : they cannot decode as much noise as the basic algorithm but can have a
significantly lower complexity. The basic idea is that instead of decoding in the
full code it is possible to decode only in a subcode and then extend the decoding
to the rest of the code. For example, one could write the generator matrix of the
code defined by P and only consider columns ending with dP −k zeros: this way
one would have to decode in a code of dimension k (instead of dP ) but with less
bits, that is a length `.2−(dP−k) on average. When γ is small, the right X tops
the ML list if k

`.2−(dP−k) ≤ γ2

2 log 2 . In general, it takes time 2kϕ
(
−γ

2

√
`2−(dP−k)

)

to find the right k bits of X.
This improvement makes it possible to recover the initialization of an LFSR

at a lower cost, provided enough output bits are available. This approach can
still be improved: if too few output bits are available, we can compute new ones
from those we have. If we write all the output bits which are the XOR of d

different bits, starting from ` bits we can obtain
(

`
d

) ' `d

d! bits instead of `, but
with a noise of bias γd instead of γ. This means that, for any value of d (the
size of the combinations we consider) and k (the dimension of the subcode we
obtain) we can decode if:

kd!
`d · 2−(dP−k)

≤ γ2d

2 log 2
. (3)

In general, even if the previous bound is not reached, the correct X has rank:

2kϕ

(
−γd

2

√
`d

d! 2
−(dP−k)

)
.

The complexity of the decoding is then the sum of the three following steps:

– Computing the combinations: O
(

`d

d! × k
)

– Decoding (with a Walsh Transform): O (
k2k

)
.

– Finding the right codeword in the ML list: O
(

2kϕ

(
−γd

2

√
`d

d! 2
−(dP−k)

))

If one cannot pay more than O (chard2chard) complexity, we must have k ≤ chard

and d roughly less than chard
log 2
log ` so that `d

d! ≤ 2chard . The rank in the ML list is

2kϕ(−t) where t ≤ γd

2 2chard− dP
2 . For dP ≥ 2chard we have t ≤ 1

2 . So the rank is
higher than 2kϕ(− 1

2 ) ≥ 0.3 · 2k. So, this algorithm yields less than one bit of
information of X.

Iterative decoding techniques are less efficient in terms of error correction,
but can be applied to longer LFSRs. The idea is to find low-weight multiples of
P which form some parity check equations, and use them to decode as in a Low
Density Parity Check (LDPC) code.
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As stated in [4], iterative decoding using parity check equations of weight
d ≥ 4 (that is multiples of P of weight d), succeeds if it is possible to find
enough of these parity check equations for the iterative process to converge.
Decoding is thus possible if:

` ≥ 2αd(γ)+
dP
d−1 with αd(γ) = 1

d−1 log2

[
(d− 1)! 1

C(γd−2)

]
. (4)

From this, we can see that whatever the parameters of the system, there
exists a d which makes iterative decoding possible. This means that for the
smallest d satisfying this equation, there should be about just enough parity
check equations: finding them requires to find nearly all multiples of P of weight
d and degree less than `. Among the techniques described in Section 2.1, the
Strategy 1 based on the birthday paradox is the most efficient. It has a cost:

Cparity =
(

`− 1⌈
d−1
2

⌉
)

⇔ log2 (Cparity) ' d−1
2 log2 `− log2

(
d−1
2 !

)
. (5)

The cost for the decoding is then negligible compared to this cost. This means
that if one cannot pay more than 2chard to decode, one can only decode if 2chard ≥
Cparity. Mixing Equations (4) and (5) we see that one can decode only if:

chard ≥ 1
2

[
log2(d− 1)!− log2 C(γd−2) + dP

]− log2

(
d−1
2 !

)
.

Roughly, we get the same constraint: if dP ≥ 2chard, decoding is not possible.

Property 4 (Noisy LFSR Decoding). The noisy LFSR decoding problem
can efficiently be solved when dP ≤ ceasy and 1

4 ≥ γ ≥
√

dP
` 2 log 2. For γ ≤

1.18 `−
1
2 , Y contains less than 1 bit of information of X, that is, the mutual

information between X and Y is smaller than 1.

Assumption 5 (Noisy LFSR Decoding). The noisy LFSR decoding is hard
on average when P is generated by Gen1 (as specified in Problem 1) and when
dP ≥ 2chard and γ ≤ 21−chard/dP − 1. When dmin ≥ 2chard, γ ≤ 21−chard/dmin − 1, P
is generated by Gen2, and w and dK are such that the Low-Weight Polynomial
Multiple is hard, the noisy LFSR decoding is hard as well.

2.3 The Hidden Correlation Problem

We combine the previous problems into Hidden Correlation (HC) problem.

Problem 6 (Hidden Correlation).

Parameters: a length `, two relatively prime2 polynomials P and Q of
degree dP and dQ respectively, a bias γ

2 When P and Q have a common factor, the decoding problem is ambiguous so we
exclude those cases. As we will see later, we will always choose distinct primitive
polynomials P and Q so they never have a common factor.
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HC channel: given a uniformly distributed random seed X of length
dQ, generate Y , the XOR of the output of length ` of LQ initialized
with X, the output of LP initialized at random, and a random noise
generated by Sγ (both random sources being independent)

Problem: given Y , recover X

As for the noisy LFSR decoding problem, we say that the problem is hard
if no algorithm that outputs the correct X with probability higher than 21−chard

and average complexity less than 2chard exists.
This problem is meant to be used given an oracle that solves the noisy LFSR

decoding problem with parameters (`′, Q, γ′) where `′ = `− dK for some degree
dK and γ′ = γw for some weight w. There are three main strategies to solve it:

1. consider LP ⊕ LQ as a single LFSR LP×Q, recover its initializations and
deduce the initializations of both LP and LQ from it, thus recovering X.
Achieving this requires to be able to solve the noisy LFSR decoding problem
with parameters (`, P ×Q, γ).

2. suppress the output of LP in Y and decode X with a shorter output and
a higher noise level. One should first find a polynomial K, multiple of P of
degree dK and weight w (note that choosing K = P is also possible). Then
multiply Y by K to suppress the influence of LP and try to solve the noisy
LFSR decoding problem with parameters (`− dK , Q, γw).
As discussed in Section 2.1, the problem of finding K can be hard. The key
idea of our construction is that this K can be a trapdoor.

3. suppress the output of LQ in Y and recover the initialization of LP (with
a shorter output and a higher noise level). Once this is done, recovering X
consists in decoding in LQ ⊕ Sγ only, with the full output ` and the same
bias γ: the oracle can do this. We can use the same method as above and
find a multiple K of Q. In the end, we need to solve the noisy LFSR problem
with parameters (`− dK , P, γw).

By taking P random of degree dP ≥ 2chard and γ ≤ 21−chard/dP −1 we know from
Assumption 5 that the decoding problem for LP ⊕Sγ is intractable. This renders
strategies 1 and 3 impossible.

To build a public-key cryptosystem on this problem, we need to find param-
eters which render strategy 2 computationally infeasible, and at the same time
let us have a trapdoor polynomial K making it possible to solve it. We do this
by proving an upper bound on the information one can get on X using strategy
2 in the favorable case where we can compute all multiples of low weight (except
the hidden one), and bounded by the maximum number of iterations (2chard) we
can manage. The number of possibles multiples of weight w and degree dK ≤ `
(except the hidden K) is given by equation (1).

For each multiple K ′ of P of weight i it is possible to suppress the influence of
LP and recover a little bit of information on X. This information Ii is bounded
by Ii ≤ `C(γi).

By ignoring the cost of finding a multiple of weight i we upper bound the
cost of recovering the Ii bits of information by O (`i), the cost of computing
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Y ′ = Y •K ′. Then an adversary can use all possible multiples of a given weight,
as long as there are less than 1

`i2
chard such multiples. For large values of i, when

there are more multiples of P , he is limited to exactly 1
`i2

chard multiples. The
total information one can get is at most:

I =
∞∑

i=2

`C(γi)min

( (
`
i

)

2dP
,
2chard

`i

)
.

We can consider that this attack is not a threat if I ≤ 1 (which means that after
using about 2chard polynomials, an adversary gets less than 1 bit of information on
X). This bound is not tight since we neglected the cost of finding the multiples.

Assumption 7 (Hidden Correlation Problem). When dP ≥ 2chard, γ ≤
21−chard/dP − 1, and I ≤ 1, the Hidden Correlation problem is hard on average
when P is generated by Gen1 as specified in Problem 1. When dmin ≥ 2chard,
γ ≤ 21−chard/dmin − 1, I ≤ 1 (with dP replaced by dmin), P is generated by Gen2,
and w and dK are such that the Low-Weight Polynomial Multiple is hard, the
hidden correlation problem is hard as well.

3 TCHo Encryption

3.1 Specifications

This construction depends on a number of domain parameters. These are:

– a bias γ ∈ [0, 1] (we only consider positive biases here),
– two integers dmin and dmax bounding the degree of P : dP ∈ [dmin, dmax].
– two integers dQ and dK : the degrees of polynomials Q and K,
– a primitive polynomial Q of degree dQ

– an integer w corresponding to the weight of the polynomial K,
– an integer ` which is the length of the produced stream.

As we will see later in Table 1, suitable parameters might look like:

γ = 0.98, dP ∈ [6 000, 6 600], dQ = 20, dK = 11 560, w = 99, ` = 13 080.

Key generation. The public key is a primitive polynomial P . The private key is
a low-weight multiple K of P .

To generate such a key pair one will first pick a random binary polynomial K
coprime with Q of given weight w and degree dK . Then one factors this polyno-
mial and checks if it has a primitive factor of suitable degree dP ∈ [dmin, dmax].
If such a factor exists one uses it as the public key P and a key pair was found,
otherwise one picks another random polynomial K, factors it, etc. The complex-
ity of this step is detailed in Appendix A. With the above parameters, this takes
a little more than 4 minutes using NTL [27] on a 1.5GHz Pentium 4.
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R1
-

X -

R2
-

LQ - ⊕
6

Sγ

- Y

?

LP

Fig. 1. Encryption.

Encryption. The core of the system is a stream-cipher-like construction, built
as the XOR of two LFSRs LP and LQ (with respective retroaction polynomials
P and Q) and a biased random source Sγ where 0 ≤ γ ≤ 1 represents the bias
of this source.

The word X of dQ bits to be encrypted is used to initialize LQ. LP is ran-
domly initialized with a string R1. R2 denotes the random coins for Sγ . We
assume that R1 and R2 are independent. The ciphertext is the binary stream
Y of length ` equal to the XOR of the streams generated by LP , LQ and Sγ

(see Fig. 1). We denote Y = TCHoP (X; R) for R = (R1, R2). The cost of an
encryption is O ((dP + dQ + εγ)× `), where εγ represents the cost of generating
one random bit with bias γ. A dedicated hardware of O (dP + dQ + εγ) gates
(typically, a few thousand gates) runs in time O (`) (typically, a few thousand
clock cycles).

Decryption. To decrypt, one first uses the private key K to suppress the influence
of LP . For i = 1, . . . , `−dK , compute Y ′

i = (Yi, Yi+1, . . . , Yi+dK
)•K. This results

in a new cipher Y ′ of length `− dK equal to the XOR of a stream generated by
LQ and a source of bias γw. The complexity is O (dK · `).

From Property 4 we know that if ` − dK ≥ 2dQ log 2
γ2w (and γw ≤ 1

4 ) we can
recover the initialization of LQ (thus X) using an ML decoding algorithm. Us-
ing a Walsh transform, this decryption costs O (

dQ 2dQ
)

operations. Finally, X

is recovered by solving a linear equation in time O (
d3

K

)
. Overall decryption

complexity is thus O (
dK` + dQ2dQ + d3

K

)
. Decoding is feasible for dQ ≤ ceasy.

However, that decryption is non-deterministic: there is a probability that Sγ gen-
erates too much noise and that decryption returns an incorrect result. Bounds
on this failure rate are hard to estimate as the linear code corresponding to a
truncated LFSR is not as easy to study as for a full length LFSR. However,
during all our tests, no decodings ever failed or returned the wrong plaintext.
The bound used in Section 3.2 for parameter selection, taken from information
theory, seems to be sufficient to have a negligible decryption failure rate.

Encrypting larger blocks. To encrypt n blocks X1, . . . , Xn we define TCHon, the
concatenation of n independent instances of TCHo (thus able to encrypt n · ceasy
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Table 1. Some suitable parameters for TCHo.

chard dQ dP γ w dK ` I key gen. cost3

80 20 500− 600 0.4 6 6 200 000 8 000 000 2−1.7 ∼ 256.5

1 000− 1 100 0.74 13 78 350 148 000 2−1.9 ∼ 242.5

3 000− 3 500 0.93 35 17 100 21 600 2−17 ∼ 236.5

6 000− 6 600 0.98 99 11 560 13 080 2−1.1 ∼ 236

6 000− 6 060 0.98 99 10 620 12 140 2−4 ∼ 239

30 1 000− 1 500 0.7 11 232 000 339 000 2−7 ∼ 244.5

6 000− 6 600 0.979 93 12 150 14 150 2−2.1 ∼ 236

90 20 7 000− 7 700 0.98 105 13 950 15 900 2−2.1 ∼ 236.5

30 7 000− 7 700 0.98 99 14 460 16 750 2−0.1 ∼ 236.5

128 20 10 000− 11 000 0.977 108 25 050 29 300 2−5.8 ∼ 238.5

30 10 000− 11 000 0.977 102 26 300 31 100 2−2.9 ∼ 238.5

bits of data), by using independent random coins R1, . . . , Rn:

TCHon
P (X1, . . . , Xn;R1, . . . , Rn) =

[
Y1, . . . , Yn

]
, where Yi = TCHoP (Xi; Ri).

3.2 Parameters Selection

We review here all the constraints on the system parameters in order for a legiti-
mate decryption to be possible and for an attack by a computationally bounded
adversary (bounded by O (2chard) operations) to be impossible. As constraints
need to be satisfied for any dP ∈ [dmin, dmax], in the following equations, dP was
replaced either by dmin or by dmax depending on the type of inequality.

– legitimate decryption is possible if: `−dK ≥ 2dQ log 2
γ2w , γw ≤ 1

4 , and dQ ≤ ceasy

(see Section 2.3).
– recovering K is impossible if the conditions of Assumption 2 are verified,

that is: w log2
dK

dmax
> chard and

(
dK

w−1

) ≤ 2dmin .
– without K, decryption is equivalent to solving an instance of the HC prob-

lem. From Assumption 7 we know this is impossible if:

dmin ≥ 2chard, γ ≤ 21− chard
dmin − 1, and I =

∞∑

i=2

`C(γi)min

( (
`
i

)

2dmin
,
2chard

`i

)
≤ 1.

We are looking for parameters which satisfy all the inequalities stated above. One
should first choose dQ ≤ ceasy and dmin ≥ 2chard, and deduce the largest possible
γ = 21−chard/dmin − 1. Then find a w for which ` = (` − dK) + dK ≥ 2dQ log 2

γ2w +

dmax2
chard

w is small enough and deduce the minimum dK and `. Once parameters
are obtained one can just check whether I ≤ 1 or not and maybe reduce γ
accordingly. Table 1 gives a few sets of parameters satisfying these inequalities.
3 This is the cost of generating a key when using an algorithm based on linear algebra.

See Appendix A for details.
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As one can notice, no small value of dP appear in the tables. This is mainly
because parameters which would otherwise be suitable for all the constraints
always lead to a value of I too large. This however is not a problem as the
optimal values (in terms of encryption/decryption complexity and transmission
rate) seem to appear for larger values of dP .

3.3 Security

Key recovery. The key generation algorithm we use corresponds exactly to
the Gen2 generator of Assumption 2. If the conditions of this assumption are
respected, the key recovery problem is exactly the problem of solving a hard
instance of the low-weight polynomial multiple problem. For suitable parameters,
key recovery should thus be computationally impossible.

Message recovery requires to solve the hidden correlation problem. Solving
this problem is hard in general, thus with suitable parameters the encryption can
be seen as a one-way function. In order to use the Fujisaki-Okamoto construction
we need to prove that this encryption is (t, ε)-secure in the sense of One-Way
Encryption (OWE) and Γ -uniform (see Appendix B for definitions).

Theorem 8. Under Assumptions 2, 5, and 7, TCHo is (2chard , 2

2dQ
)-OWE-CPA-

secure.

Proof. We have chosen parameters such that, for any value of P and K, an
adversary spending less than O (2chard) time always gets less than 1 bit of infor-
mation on the plaintext X using a chosen plaintext attack (CPA). Therefore, he
always has a probability lower than 2

2dQ
of guessing the correct X. ut

Theorem 9. The TCHo encryption scheme is
(

1
2 + γ

2

)`-uniform.

Proof. We need to upper bound the probability (on the random coins R1 and R2

introduced in Section 3.1) that a given plaintext is mapped to a given ciphertext.
As we only consider positive biases, for a given initialization of LP the most likely
ciphertexts correspond to the random coins R2 giving Sγ = 0. This happens with
probability

(
1
2 + γ

2

)`. When taking the average on the possible initializations of
LP (on all the possible random coins R1) this probability can only decrease. ut

Semantic Security. Deciding whether Y encrypts X under TCHoP or is ran-
dom is equivalent to deciding whether a binary string is an output form a noisy
LFSR channel with parameters `, P, γ or is random. This may be a hard problem
as well. This question may deserve further work.

Malleability. Obviously, from Y = TCHoP

(
X; (R1, R2)

)
, an adversary can

forge a new ciphertext Y ′ = TCHoP

(
X ⊕ δ; (R1⊕ ρ,R2)

)
without even knowing

X, R1 or R2. Hence, raw TCHo is clearly not OWE-CCA-secure, just like the
raw RSA cryptosystem.
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Extension to TCHon. Let TCHon
P (X1, . . . , Xn; R1, . . . , Rn) =

[
Y1, . . . , Yn

]
.

An adversary A knows Y1, . . . , Yn and P and wants to recover X1, . . . , Xn. We
know that spending less than 2chard time, Yi cannot give A more than 1 bit
of information on Xi. The other Yj cannot help as A can generate as many
couples (Xj , Yj) as he wants by himself (he knows P and nothing else is required
for encryption) and this will not give him any information on Xi. As the Xi

are independent, if A tries to guess the values of X1, . . . Xn simultaneously he
will not have a better probability of success than if he tries to guess them one
after the other: his probability of success will be less or equal to

(
2

2dQ

)n

. The

concatenation TCHon is thus (2chard , 2n

2dQn )-OWE-CPA-secure.
Concerning Γ -uniformity, the results also extend well for TCHon. For the

concatenation we have:

Γ (X1, . . . , Xn, Y1, . . . , Yn) = Pr [h←R COINS : ∀i, Yi = Epk(Xi; h)] .

As before, the best probability will be obtained if Sγ = 0 for each of the n

independent encryptions. This happens with probability
(

1
2 + γ

2

)`n and thus

TCHon is
(

1
2 + γ

2

)`n-uniform. We deduce that we can build, in the random
oracle model, an IND-CCA secure hybrid cryptosystem TCHon-FO based on
TCHon and an FG-secure symmetric encryption, by using the Fujisaki-Okamoto
construction [12].

4 Conclusion

We presented the first public-key cryptosystem which resembles a stream cipher.
Stream ciphers are usually very efficient when it comes to low-cost hardware
implementation, so implementation may be quite competitive on these platforms.
Software implementations are pretty fast as well. One issue with our construction
might be the need for a huge amount of random coins, but hardware entropy
accumulators may supply them efficiently. The main drawback is currently the
overhead size and the decryption complexity. Although quite reasonable, future
work will decrease it. One option would consist in replacing LQ by a better
binary code. As suggested by Willi Meier, repetition codes seem to offer a very
good decryption complexity and can be available for higher dimensions.

TCHo is currently a prototype. Our concept might still have to be improved
before becoming a real product, but TCHo is definitely a first step in a new
direction for public-key cryptography. We encourage analysis of TCHo since it
will either demonstrate its security or lead to improvements on stream cipher
attacks.
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A Key Generation

Average number of trials. The cost of a key generation depends directly on
the number of trials required before finding a suitable key pair. Here we try
to evaluate the probability that a random low-weight binary polynomial has a
primitive factor of degree dP .
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It is known that, asymptotically, the number of irreducible binary polynomi-
als of degree d is equivalent to 2d

d . If we call P one of these irreducible polyno-
mials, a random binary polynomial K of degree dK > d is divisible by P (and
has P in his factorization) if K ≡ 0 mod P . The probability this happens is
2−d. Taking into account this probability and the number of irreducible polyno-
mials, we obtain the probability that K has an irreducible factor of degree d is
approximately 1

d . Given that P is irreducible, the probability that it is primi-
tive is the probability that the logarithm of x in (F2[x]/P (x))∗ is coprime with
2d−1. The probability that two random numbers are coprime relates to Buffon’s
needle problem and is 6

π2 . Given that 2d− 1 is odd for sure, the probability that
P is primitive given that it is irreducible can be heuristically approximated to
8

π2 ≈ 81%.
This is true asymptotically for random polynomials. In our case we only

consider polynomials K of low weight. For this particular case we have no proof
that the same result still holds4. However, experimental statistics tend to prove
that this approximation is still very accurate for low-weight polynomials. The
average number of trials is thus approximately π2

8 dP .

Factoring algorithm. Concerning the algorithm to be used for the factorization,
the choice is very wide. The straightforward method would be to use a generic
factoring algorithm like Berlekamp’s or Cantor-Zassenhaus (see Chapter 14 of
[29] for more details on polynomial factorization). However, when dealing with
high degree polynomials, methods based on linear algebra tend to use a lot of
memory and degrees above 216 are too high for standard computers. Moreover, in
our case, a complete factorization is not required: it is enough to check whether
our polynomial has an irreducible factor of degree dP , and this can be done quite
efficiently.

The polynomial X2d

+X is the product of all binary irreducible polynomials
whose degrees divide d. Checking if K has a factor of degree dP reduces to the
computation of gcd(X2dP +X,K). If this gcd has a degree less than dP one can
be sure that K has no suitable factors, otherwise one simply needs to factor this
“low degree” polynomial using whatever algorithm.

Computing this gcd is much faster than a complete factorization for high
degree K and a small dP . The computation of X2dP + X mod K using suc-
cessive squarings can however be quite long when dP increases, thus, the best
solution depends on the system parameters. Using Berlekamp’s factoring algo-
rithm the complexity of the factoring is O (

dK
2.4

)
(where 2.4 is the cost for

linear algebra) and using the gcd-based algorithm it is O (
dP dK

2
)
. Taking into

account the number of iterations for a key generation we obtain O (
dP dK

2.4
)

and O (
dP

2 dK
2
)
. Cantor-Zassenhaus gives O (

dP d2
K log dK log log dK

)
, which is

the best complexity, but with a very large constant term.
4 In our construction we only considers polynomials K with a non null constant term,

which are therefore not divisible by X. If one chooses them with an odd weight they
will never be divisible by X + 1 and will never have an irreducible factor of degree
1. Some similar properties might also hold for other degrees!
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Using degree ranges. The number of attempts required for the key genera-
tion to find a polynomial with degree dP ∈ [dmin, dmax] is divided by δ =
dmax − dmin + 1. If we use a general factoring algorithm, this directly divides
the key generation complexity by δ but if we use the gcd method, the time
used to compute X2dP + X mod K does not change and we have to com-
pute δ gcds. In both cases this improves the key generation complexity, but
for large values of δ, the gcd method becomes very slow. Using Berlekamp’s
algorithm the complexity becomes O (

1
δ dP dK

2.4
)
, with Cantor-Zassenhaus it

is O (
1
δ dP dK

2 log dK log log dK

)
, and for the gcd-based technique it becomes

O (
dP

δ (dP + δ)dK
2
)
.

For small values of δ the best choice is the gcd-based technique, but for larger
δ generic factoring algorithms are faster. If dK is large, Cantor-Zassenhaus is the
best algorithm.

Primitivity testing. In general, checking whether an arbitrary polynomial is
primitive is hard. However, we only need here to probabilistically filter out ran-
dom polynomials which are not primitive. This is essentially easy. A probabilistic
method for finding a generator of Z∗p can be adapted to checking whether a poly-
nomial is primitive. One simply need to find all divisors pi of 2dP − 1 smaller
than a given λ, and check if the order of X in

(
GF (2)[X]/P (X)

)∗ divides 2dP −1
pi

.
If this is the case for none of the pi, P is primitive with probability 1− λ−1.

So, with complexity O
(
Poly (dP )

√
λ
)

it is possible to reduce the risk that

his algorithm accepts a non-primitive polynomial to O (
λ−1

)
. It is thus possi-

ble to reach error rates as low as 2−40 with a cost negligible compared to the
factorization step.

B Definitions

We report here definitions taken from the article by Fujisaki and Okamoto [12].

Definition 10 (Asymmetric Encryption). An asymmetric encryption sche-
me Π is a triple of algorithms K, E and D, associated with two finite sets,
COINS(k) (a set of random coins) and MSPC(k) (a message space), for k ∈ N.

– K, the key generation algorithm, is a probabilistic algorithm which on input
1k (k ∈ N) outputs a pair of keys, (pk, sk)← K(1k).

– E, the encryption algorithm, is a probabilistic algorithm that takes a key pk,
an message x ∈ MSPC and a string r ←R COINS(k), where ←R represents a
random affectation, and produces a ciphertext y = Epk(x; r).

– D, the decryption algorithm, is a deterministic algorithm that takes a key sk
and a ciphertext y and returns a message x← Dsk(y).

It is required that, for any k ∈ N, if (pk, sk)← K(1k), x ∈ MSPC, and y ← Epk(x),
then Dsk(y) = x.
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Definition 11 (OWE). Let Π = (K, E ,D, COINS, MSPC) be an asymmetric en-
cryption scheme. Let A be an adversary knowing y and pk and trying to recover
x. We say that Π is (t, ε)-OWE-secure if, for any A running in at most time t
and for any x ∈ MSPC:

Pr
[
(pk, sk)← K(1k); y ← Epk(x) : A(pk, y) = Dsk(y)

] ≤ ε.

In other words, the probability among all the possible key pairs for A of recovering
x from its encrypted value is bounded by ε.

Definition 12 (Γ -uniformity). Let Π = (K, E ,D, COINS, MSPC) be
an asymmetric encryption scheme. For given (pk, sk) ← K(1k), x ∈ MSPC and
y ∈ {0, 1}∗, define

Γ (x, y) = Pr [h←R COINS : y = Epk(x;h)] .

We say that Π is Γ -uniform, if, for any (pk, sk) ← K(1k), any x ∈ MSPC and
any y ∈ {0, 1}∗, Γ (x, y) ≤ Γ .

Definition 13 (Find-Guess-security). Let Π = (E ,D, KSPC, MSPC) be a sym-
metric encryption scheme where KSPC is the key space and MSPC is the message
space. Let A be an adversary. We say Π is (t, ε)-FG-secure if, for any A running
in at most time t:

∣∣∣2 · Pr
[
a←R KSPC; (x0, x1)← A; b←R {0, 1};

y = Ea(xb) : A(x0, x1, y) = b
]
− 1

∣∣∣ ≤ ε.

This means that an adversary choosing x0 and x1 cannot decide which of them
corresponds to a given ciphertext y = Ea(xb) with probability more than 1

2 + ε
2 .

Definition 14 (IND-CCA-security). Let Π = (K, E ,D, COINS, MSPC) be an
asymmetric encryption scheme and let A be an adversary having access to a
decryption oracle Dsk. We say that Π is (t, qD, ε)-IND-CCA-secure if for any
A running in at most time t and asking at most qD queries to the decryption
oracle:

∣∣∣2 · Pr
[
(pk, sk)← K(1k); (x0, x1)← ADsk ; b←R {0, 1};

y = Epk(xb) : ADsk(x0, x1, y) = b
]
− 1

∣∣∣ ≤ ε.

This means that an adversary choosing x0 and x1 cannot decide which of them
corresponds to a given ciphertext y = Epk(xb) with probability more than 1

2 + ε
2 . In

the random oracle model, Esk might also use some random oracles for encryption.
We then get a similar definition of IND-CCA security by bounding the number
of queries to these random oracles.


