ECRYPT Hash Workshop 2007

Improved Fast Syndrome Based Cryptographic Hash Functions

Matthieu Finiasz, Philippe Gaborit, and Nicolas Sendrier

The Original FSB Hash Function [Augot, Finiasz, Sendrier - Mycrypt 05]

Based on the Merkle-Damgård construction
 requires a collision resistant compression function.

Provably secure:

 collision search on the compression function requires to solve an instance of an NP-complete problem,
 inversion too.

These problems have been well studied similar to those of the McEliece cryptosystem.

The core of the function is a binary $r \times n$ matrix \mathcal{H} .

 \triangleright the input (data + chaining) is converted into a binary vector of weight w and length n.

 \triangleright this vector is multiplied by \mathcal{H} to obtain r bits of output.

The core of the function is a binary $r \times n$ matrix \mathcal{H} .

- \triangleright the input (data + chaining) is converted into a binary vector of weight w and length n.
- \triangleright this vector is multiplied by \mathcal{H} to obtain r bits of output.

Constant weight encoding uses regular words

 10-0
 0-010-0
 0-01
 0-010-0
 010-0

▷ much faster than optimal encoding.

The Original FSB Hash Function Theoretical security

Inversion:

find a vector of weight w with given image
 exactly Syndrome Decoding.

Collision search:

▷ find a vector of weight ≤ 2w with null image
 → again Syndrome Decoding.

With regular words, both of these problems are still NP-complete. [Augot, Finiasz, Sendrier - Mycrypt 05] The best attack uses Wagner's generalized birthday technique [Crypto 2002].

▶ We look for 2w columns of H, XORing to 0.
 ▷ Birthday technique:
 → build 2 lists of XORs of w columns.
 → complexity: O(2^r/₂).

▶ Wagner's generalized birthday technique:
 → build 2^a lists of XORs of ^w/_{2^{a-1}} columns.
 → complexity: O(2^{^r/_{a+1}}).

Wagner's Generalized Birthday Technique

► L_i are lists of 2^r/₄ elements
 ▷ each element is the XOR of w/4 columns.

Wagner's Generalized Birthday Technique

L'_i are lists of 2^r/₄ elements
 each element is the XOR of w/2 columns.
 each element starts with r/4 zeroes.

Wagner's Generalized Birthday Technique

L_i" are lists of 2^r/₄ elements
 each element is the XOR of w columns.
 each element starts with ^r/₂ zeroes.

Efficient parameters always allow to choose a = 4 in Wagner's technique,

▷ for a security of 2^{80} we need r = 400.

The choice of w and n is flexible:
 tradeoff between the matrix size and the hash speed.

Example parameters:

 $r = 400, w = 85, n = 256 \times w = 21760.$

→ speed: 70Mbits/s, matrix size: 1MB.

The Original FSB Hash Function Conclusions and drawbacks

- The original FSB construction is:
 - \triangleright practical,
 - ▷ quite fast,
 - ▷ provably collision resistant.

However it suffers from a few drawbacks:
 the output size is too large,
 the block size is quite large,
 the matrix is large,
 does not fit in a CPU cache.

Improvements to the Original FSB

For a security against collision of 2^{λ} operations, one expects a hash of 2λ bits:

▷ requires to add a final compression round.

Used in many other constructions.

If the final compression is collision resistant, then the combination is also collision resistant.

▷ What about provable security?

→ Must the last round be provably collision resistant?

▷ Use the same construction with other parameters?

Suppose we used a linear transform L from r to r' bits:
 ▷ compute H' = L × H and use Wagner's attack on H'.
 → The complexity of decreases to 2^{r'/a+1}.

If the final transform is non-linear this won't be possible.
We propose to use another hash function like Whirlpool:
it is designed to be as much as possible non-linear,
we loose provable security,
chances are that attacks on Whirlpool won't affect our construction.

Use of a Quasi-cyclic Matrix Basic idea

The matrix H is too large:
 store a small amount of data and generate H from it,
 must fit in the CPU cache
 generation is done at runtime.

► Use a quasi-cyclic (QC) matrix:

Use of a Quasi-cyclic Matrix Basic idea

 \blacktriangleright The matrix \mathcal{H} is too large: \triangleright store a small amount of data and generate \mathcal{H} from it, \triangleright must fit in the CPU cache → generation is done at runtime. ► Use a quasi-cyclic (QC) matrix: \triangleright storing the first line is enough, ▷ other lines are blockwise cyclic shifts, cyclic shifts can be efficient \rightarrow no need to rebuild \mathcal{H} completely before hashing.

- Syndrome Decoding of a QC matrix is NP-complete
 not proven for regular words.
- QC codes have been extensively studied:
 no known efficient decoding algorithm,
 any attack would yield such a decoding algorithm.
 For some specific sizes the outputs are proven to be uniformly distributed.
- From a practical point of view:
 no clue how to improve Wagner's birthday technique.

Implementation

					standard FSB			new improved variant		
secu.	r	w	n	$\frac{n}{w}$	size of ${\cal H}$	time	cyc./byte	size of ${\cal H}$	time	cyc./byte
64	512	512	131 072	256	8 388 608	28.8s	390.6	16 384	6.6s	89.3
	512	450	230 400	512	14 745 600	43.1s	587.9	28 800	12.1s	165.1
	1 0 2 4	2^{17}	2^{25}	256	2^{32}	—	-	4 194 304	25.0s	339.8
80	512	170	43 520	256	2 785 280	37.7s	517.0	5 440	20.5s	281.1
	512	144	73728	512	4 718 592	42.6s	581.6	9216	17.6s	239.8
128	1024	1 0 2 4	262 144	256	33 554 432	48.6s	669.6	32 768	8.9 s	121.0
	1 0 2 4	904	462 848	512	59 244 544	72.4s	989.9	57 856	27.2s	371.2
	1 0 2 4	816	835 584	1 0 2 4	106 954 752	53.4s	727.6	104 448	11.8s	162.6
64	MD5				best known implementations from					3.7
80	SHA-1				[Nakajima, Matsui - Eucrocrypt 2002]					8.3
128	SHA-256									20.6

Our implementation is not optimised:

▷ we obtain a speed of 180Mibts/s with 128 bits security.

Conclusion

We propose a new variant of the FSB hash function:

- no large matrix to handle,
- standard output size,
- twice as fast as the original construction,

not completely proven to be collision resistant:
 use of regular words,

- use of the final compression transform.