
ECRYPT Hash Workshop 2007

Improved Fast Syndrome Based
Cryptographic Hash Functions

Matthieu Finiasz, Philippe Gaborit,

and Nicolas Sendrier



The Original FSB Hash Function
[Augot, Finiasz, Sendrier - Mycrypt 05]

I Based on the Merkle-Damg̊ard construction

. requires a collision resistant compression function.

I Provably secure:

. collision search on the compression function requires

to solve an instance of an NP-complete problem,

. inversion too.

I These problems have been well studied

. similar to those of the McEliece cryptosystem.



The Original FSB Hash Function
The compression function

The core of the function is a binary r × n matrix H.

. the input (data + chaining) is converted into a binary

vector of weight w and length n.

. this vector is multiplied by H to obtain r bits of output.

H

1 11 111

o
u
tp

u
t

input



The Original FSB Hash Function
The compression function

The core of the function is a binary r × n matrix H.

. the input (data + chaining) is converted into a binary

vector of weight w and length n.

. this vector is multiplied by H to obtain r bits of output.

I Constant weight encoding uses regular words

1 1 1 110 0 0 00 0 0 0 0 0 0 0 0 00

. much faster than optimal encoding.



The Original FSB Hash Function
Theoretical security

I Inversion:

. find a vector of weight w with given image

_ exactly Syndrome Decoding.

I Collision search:

. find a vector of weight ≤ 2w with null image

_ again Syndrome Decoding.

I With regular words, both of these problems are still

NP-complete. [Augot, Finiasz, Sendrier - Mycrypt 05]



The Original FSB Hash Function
Practical security

I The best attack uses Wagner’s generalized birthday

technique [Crypto 2002].

I We look for 2w columns of H, XORing to 0.

. Birthday technique:

_ build 2 lists of XORs of w columns.

_ complexity: O (
2

r
2
)
.

. Wagner’s generalized birthday technique:

_ build 2a lists of XORs of w
2a−1 columns.

_ complexity: O
(
2

r
a+1

)
.



Wagner’s Generalized Birthday Technique

a=3

L
1

L
2

L
3

L
4

L
8

L
1

0
L

2

0
L

4

0

L
1

00
L

2

00

»1 collision

I Li are lists of 2
r
4 elements

. each element is the XOR of w
4 columns.



Wagner’s Generalized Birthday Technique

a=3

L
1

L
2

L
3

L
4

L
8

»1 collision

L
1

0
L

2

0
L

4

0

L
1

00
L

2

00

0

I L′i are lists of 2
r
4 elements

. each element is the XOR of w
2 columns.

. each element starts with r
4 zeroes.



Wagner’s Generalized Birthday Technique

a=3

L
1

L
2

L
3

L
4

L
8

L
1

0
L

2

0
L

4

0

L
1

00
L

2

00

0

»1 collision

I L′′i are lists of 2
r
4 elements

. each element is the XOR of w columns.

. each element starts with r
2 zeroes.



The Original FSB Hash Function
Parameter selection

I Efficient parameters always allow to choose a = 4 in

Wagner’s technique,

. for a security of 280 we need r = 400.

I The choice of w and n is flexible:

. tradeoff between the matrix size and the hash speed.

Example parameters:

r = 400, w = 85, n = 256× w = 21760.

_ speed: 70Mbits/s, matrix size: 1MB.



The Original FSB Hash Function
Conclusions and drawbacks

I The original FSB construction is:

. practical,

. quite fast,

. provably collision resistant.

I However it suffers from a few drawbacks:

. the output size is too large,

. the block size is quite large,

. the matrix is large,

_ does not fit in a CPU cache.



Improvements to the
Original FSB



Addition of a Final Transform

I For a security against collision of 2λ operations, one

expects a hash of 2λ bits:

. requires to add a final compression round.

I Used in many other constructions.

. If the final compression is collision resistant, then the

combination is also collision resistant.

. What about provable security?

_Must the last round be provably collision resistant?

. Use the same construction with other parameters?



Addition of a Final Transform

I Suppose we used a linear transform L from r to r′ bits:

. compute H′ = L×H and use Wagner’s attack on H′.

_ The complexity of decreases to 2
r′

a+1.

If the final transform is non-linear this won’t be possible.

I We propose to use another hash function like Whirlpool:

. it is designed to be as much as possible non-linear,

. we loose provable security,

. chances are that attacks on Whirlpool won’t affect

our construction.



Use of a Quasi-cyclic Matrix
Basic idea

I The matrix H is too large:

. store a small amount of data and generate H from it,

. must fit in the CPU cache

_ generation is done at runtime.

I Use a quasi-cyclic (QC) matrix:

H

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0



Use of a Quasi-cyclic Matrix
Basic idea

I The matrix H is too large:

. store a small amount of data and generate H from it,

. must fit in the CPU cache

_ generation is done at runtime.

I Use a quasi-cyclic (QC) matrix:

. storing the first line is enough,

. other lines are blockwise cyclic shifts,

. cyclic shifts can be efficient

_ no need to rebuild H completely before hashing.



Use of a Quasi-cyclic Matrix
Theoretical/Practical security

I Syndrome Decoding of a QC matrix is NP-complete

. not proven for regular words.

I QC codes have been extensively studied:

. no known efficient decoding algorithm,

. any attack would yield such a decoding algorithm.

I For some specific sizes the outputs are proven to be

uniformly distributed.

I From a practical point of view:

. no clue how to improve Wagner’s birthday technique.



Implementation

standard FSB new improved variant

secu. r w n n
w size of H time cyc./byte size of H time cyc./byte

64 512 512 131 072 256 8 388 608 28.8s 390.6 16 384 6.6s 89.3

512 450 230 400 512 14 745 600 43.1s 587.9 28 800 12.1s 165.1

1 024 217 225 256 232 – – 4 194 304 25.0s 339.8

80 512 170 43 520 256 2 785 280 37.7s 517.0 5 440 20.5s 281.1
512 144 73 728 512 4 718 592 42.6s 581.6 9 216 17.6s 239.8

128 1 024 1 024 262 144 256 33 554 432 48.6s 669.6 32 768 8.9s 121.0
1 024 904 462 848 512 59 244 544 72.4s 989.9 57 856 27.2s 371.2

1 024 816 835 584 1 024 106 954 752 53.4s 727.6 104 448 11.8s 162.6

64 MD5 best known implementations from 3.7

80 SHA-1 [Nakajima, Matsui - Eucrocrypt 2002] 8.3

128 SHA-256 20.6

I Our implementation is not optimised:

. we obtain a speed of 180Mibts/s with 128 bits security.



Conclusion

We propose a new variant of the FSB hash function:

¥ no large matrix to handle,

¥ standard output size,

¥ twice as fast as the original construction,

¥ not completely proven to be collision resistant:

– use of regular words,

– use of the final compression transform.


