SHA-3 Proposal: FSB

D. Augot, M. Finiasz, P. Gaborit, S. Manuel, and N. Sendrier

High Overview of FSB

- ♦ FSB uses the Merkle-Damgård construction (chaining and padding), with a large internal state:
 → it uses a final compression function.
- the main compression function uses a one-way function from coding theory:
 - -> security reduction for inversion and collision search.

FSB's Compression Function Overview

- The compression function of FSB is made of two steps:
 - ▷ a non-linear bijective step,
 - ▷ a linear compression step.

- First the s input bits are transformed in a binary vector of length n and Hamming weight w:
 - ▷ for efficiency we use regular words.
- Then this vector is multiplied by a binary matrix H
 w « n so this is simply the XOR of w columns of H.

FSB's Compression Function In practice

▶ In practice \mathcal{H} is a truncated quasi-cyclic matrix

truncated quasi-cyclic

- ► In practice \mathcal{H} is a truncated quasi-cyclic matrix
 - $\triangleright \mathcal{H}$ is described by its first line: $\frac{n}{r}$ vectors of p bits.
 - ▷ columns of H are truncated cyclic shifts of these binary vectors.
 - which vectors to choose and how much they should be shifted depends on the input:
 - $\bullet~w$ indexes are derived from 13 or 14 input bits each,
 - \bullet 8 IV/chaining bits and 5 or 6 message bits,
 - the *i*-th index is taken in the interval $[i\frac{n}{w}, (i+1)\frac{n}{w}-1]$,
 - ${\ensuremath{\bullet}}$ the w indexes correspond to the w columns to XOR.

Practical Security Best known attacks

The best algorithms that can be used to attack FSB are:

- Generalized birthday algorithm
 - best algorithm for inversion and second preimage,
 - ▶ requires a lot of memory.
- Information set decoding
 - ▷ best algorithm for collision search,
 - \triangleright yields strong constraints on the choice of r and w.

Proposed parameters have been chosen according to these algorithms, plus a security margin.

Security Reduction

- Inverting the compression function requires to find w columns of H which XOR to a target vector.
 - ▷ this is an instance of the syndrome decoding problem,
 - this problem is NP-complete for random matrices, but also for truncated quasi-cyclic matrices,
 - \triangleright well chosen values of p and r give supposedly hard instances of the problem.
- Collisions require 2w columns of H which XOR to 0.
 also an instance of the syndrome decoding problem,
 an "easier" instance in practice.

Security Reduction

An important point is that these reductions are tight.

adversary	best attack	reduction
collision	$ISD(n,r,2w) \times 1$	CSD(n,r,2w)/1
preimage	$GBA(n,r,w) \times 1$	CSD(n,r,w)/1
second-preimage	$GBA(n-w,r,w) \times 1$	$CSD(n-w, \mathbf{r}-\mathbf{w}, w)/1$

ISD = Information set decoding

bage 6/10

- $\mathsf{GBA}=\mathsf{Generalized}\ \mathsf{birthday}\ \mathsf{algorithm}$
- CSD = Computationnal syndrome decoding.

One call to the adversary solves the CSD problem, one call to ISD/GBA is enough to build an adversary.

Final Compression Function

Few constraints apply to the final compression function.

- it must not weaken the main compression function
 any linear function is bad
 simple truncation is impossible.
- it does not require collision resistance/one-wayness
 collisions on the final compression do not directly lead to collisions on FSB
- Cryptographers and the NIST need to be convinced...
 anything too simple should be avoided.

Final Compression Function

We propose to use Whirlpool [Rijmen, Barreto 2004]:

- The r-bit output of the main compression function is input as an r-bit message to Whirlpool
 - ▷ the final output is a truncated Whirlpool hash.

This is a safe choice, not an efficiency oriented choice:
Whirlpool is highly non-linear,

▷ we are confident that it is a secure hash function,

Attacks on Whirlpool would probably not affect our construction.

The main compression functions is very simple:
 shift and XOR w times some vectors
 with precomputed shifts, only XORs are required.
 parameters of FSB are quite large
 the XORs are expensive: 250 to 500 cycles/byte.

The description of FSB is large:

▷ 2 millions bits from digits of π define the vectors
 → this is a problem for constrained environments,

using pseudo-random data could improve this but would loosen the security reduction.

Conclusion

The main interest of FSB is its compression function:
 inversion and collision search reduce to hard problems,
 it is slow, but much faster than most "similar designs,"
 it is very simple to describe/implement
 only very basic operations are used,
 the description of FSB is large as "random bits" are needed.

Security reduction to hard problems comes at a cost, but it can be practical in many contexts.