Syndrome Based Collision Resistant Hashing

Matthieu Finiasz

- Description of the FSB Hash Function
- Classic Attacks
- Recent Attacks
- Proposed Improvements and Parameters

Description of the FSB Hash Function

High Overview

- FSB is based on the Merkle-Damgård construction
 we only need to define a compression function.
- For security reasons, the internal state has to be larger than the output:
 - \triangleright we add a final compression function.
- The compression function relies on a binary matrix H
 the output is the XOR of columns of H,
 - security is related to the Syndrome Decoding problem.

Compression Function

- The compression function has several parameters: $r \times n$, the size of matrix \mathcal{H} ,
 - $\triangleright w$, the number of columns to XOR.
- The compression function takes s input bits and outputs an r-bit syndrome.
- the s bits are converted to a binary word of weight w and length n using a constant weight encoder.
- this binary word is multiplied by H to obtain the output syndrome.

The value of s depends on the encoder choice.

Compression Function

Compression Function Security considerations

This compression function seems very simple. Why should it be secure?

 \blacktriangleright If \mathcal{H} is seen as the parity check matrix of a binary code : \triangleright Inversion requires to find a word of low weight having a given syndrome → exactly the Syndrome Decoding (SD) problem. ▷ Collision requires to find a word of twice this low weight with null syndrome \rightarrow again, the SD problem.

FSB Specification

- ► To completely specify FSB, we need to define:
 - \triangleright the structure of \mathcal{H} ,
 - ▷ the constant weight encoder,
 - the final compression function
 not the scope of this presentation,
 - \triangleright the parameters n,w and r
 - → will depend on the target security.

The Original FSB [Augot-Finiasz-Sendrier - Mycrypt 2005]

In this original version the choices are as follows.

➤ H is a random binary matrix
 → FSB has a large description.

The constant weight encoder uses regular words
 we assumed that no attack can take advantage of this.

Quasi-Cyclic FSB

[Finiasz-Gaborit-Sendrier - Ecrypt Hash Workshop 2007]

This new version uses a structured \mathcal{H} .

 $\blacktriangleright \mathcal{H}$ is Quasi-Cyclic.

▷ its first line describes it completely.

Regular words are still used.

Classical Attacks

Collision Search

Finding a collision on FSB requires to:
 find two words of weight w with identical syndrome,

 \triangleright find a word of weight $\leq 2w$ with null syndrome.

Two main algorithms solve this coding theory problem:
 Decoding algorithm: using the Canteaut-Chabaud algorithm (or the Bernstein-Lange-Peters variant),
 efficient for a single solution

- Birthday paradox: using Wagner's generalized birthday technique.
 - → efficient for a large number of solutions.

Collision Search Wagner's algorithm

- This attack has a cost of $2^{\frac{r}{a+1}}$ where the maximum possible *a* depends on the parameters of FSB.
- This will be the reference attack for FSB
 parameters will be chosen so that no other attack performs better.
- If s > r (that is, the compression function compresses):
 a = 3 is always possible,
 - > a security of $2^{\frac{r}{2}}$ against collision is impossible. > \rightarrow This is why we need a final compression function.

Choice of the Constant Weight Encoder

The choice of the encoder is a tradeoff between:
 the bit efficiency: the number of input bits s,
 the speed efficiency: the cost of this encoder.

Two extreme solutions:

▷ one to one encoder: all words of weight w are mapped → largest possible $s = \log_2 {n \choose w}$.

▷ regular encoder: uses regular words

 $\rightarrow s = w \times \log_2 \frac{n}{w}$, but no computation are required.

Larger s requires less compression rounds, but regular words are still, by far, the fastest solution.

Choice of the Constant Weight Encoder

- Concerning security:
 - ▷ Could regular words be a weakness?
 - No, a collision on regular words is also a collision for the one to one encoder.
 - → the one to one encoder is the weakest encoder.
- Can another encoder be more secure?
 - ▷ Probably, but we have no proof...

We now evaluate security considering the one to one encoder, but use regular words in practice.

Recent Attacks

Linearization Attack [Saarinen - Indocrypt 2007]

This attack works for large values of w, say w = ^r/₂
▷ we look for a null XOR of 2w columns of r bits,
▷ one chooses 2w pairs of columns h⁰_i and h¹_i.
▷ let H' the matrix with columns h'_i = h¹_i - h⁰_i.
→ a collision is a vector B such that:

$$\mathcal{H}' \times B = \sum h_i^0.$$

For $w \ge \frac{r}{2}$, collisions are found in polynomial time. \triangleright for $\frac{r}{4} \le w \le \frac{r}{2}$ a variation of this attack still applies.

All proposed parameters must verify $w < \frac{r}{4}$.

Quasi-Cyclic Divisibility [Fouque-Leurent - CT-RSA 2008]

- This attack only applies when H is quasi-cyclic and when the block size r is divisible by some p.
- One chooses inputs to obtain p−repeating syndromes:
 ^{2w}/_p columns are chosen freely,
 for each column, p − 1 other columns with the same index mod ^r/_p are chosen in the same block.

Quasi-Cyclic Divisibility [Fouque-Leurent - CT-RSA 2008]

- This attack only applies when H is quasi-cyclic and when the block size r is divisible by some p.
- One chooses inputs to obtain *p*−repeating syndromes:
 ≥ ^{2w}/_p columns are chosen freely,
 ▷ for each column, *p* − 1 other columns with the same index mod ^r/_p are chosen in the same block.
- Now Wagner's attack can apply to 2w' = ^{2w}/_p and r' = ^r/_p.
 → this improves the complexity of the attack a lot.

If a quasi-cyclic matrix is to be used, r must be prime.

IV Weakness [Fouque-Leurent - CT-RSA 2008]

Originally, the IV bits and message bits are not mixed: *r* bits are used to compute a syndrome, *s* - *r* another, and both are XORed.

- ▷ If a collision is found using only the s r last input bits, it is IV-independent.
- This makes using FSB impossible for some applications.

The input should be "mixed" so that each position depends on both the IV and the message.

Proposed Improvements and Parameters

Using a Truncated Quasi-Cyclic Matrix

- Quasi-cyclic matrices are necessary, and r being a power of 2 helps implementation
 - ▷ we need to avoid quasi-cyclic divisibility attacks.
- We could use a quasi-cyclic matrix of cyclicity p and truncate it to r lines.

Using a Truncated Quasi-Cyclic Matrix

- Quasi-cyclic matrices are necessary, and r being a power of 2 helps implementation
 we need to avoid quasi-cyclic divisibility attacks.
- We could use a quasi-cyclic matrix of cyclicity p and truncate it to r lines.
- We use p prime such that 2 is a generator of GF(p).
 ▷ such quasi-cyclic codes have good properties,
 ▷ p close to r to keep these properties.
 (r, p) ∈ {(512, 523), (768, 773), (1024, 1061)...}

Input Bits Interleaving

To address the IV weakness, input bits have to be mixed:

- ▷ a simple interleaving should be enough,
- \triangleright each position is defined by $\log_2 \frac{n}{w}$ bits

 $\rightarrow \frac{r}{s}\log_2\frac{n}{w}$ from the IV, $\frac{s-r}{s}\log_2\frac{n}{w}$ from the message

 Depending on the value of r, w and n this interleaving might have to be irregular to obtain integers
 interleaving should not slow down hashing a lot.

Previously Proposed Parameters

Original version:

- \triangleright Short Hash: security of $2^{72.2}$ as the gain from regular words is no longer taken into account,
- \triangleright Fast Hash: security of $2^{59.9}$ due to linearization attacks,
- \triangleright Intermediate Hash: security still above 2^{80} .

- Quasi-Cyclic version:
 - \triangleright all parameters used powers of 2 for r
 - → all broken with the divisibility attack...

Proposed Parameters 80-bit Security

- We select r = 512, thus $\log_2 {n \choose w} \le 1688$ to be secure.
- ▶ w = 128 is the maximum to avoid linearization attacks which gives $n = 2^{18}$.

The truncated quasi-cyclic matrix uses p = 523,
 Each of the w positions is coded with 11 bits
 4 from the IV, 7 from the message.

 \blacktriangleright Matrix \mathcal{H} has a description of ~ 32 kB.

Proposed Parameters 128-bit Security

We select r = 768, thus $\log_2 {n \choose w} \le 2048$ to be secure.

▶ w = 192 is the maximum to avoid linearization attacks, we choose $n = 3 \times 2^{14}$.

▷ The truncated quasi-cyclic matrix uses p = 773,
 ▷ Each of the w positions is coded with 8 bits
 → 4 from the IV, 4 from the message.

► Matrix \mathcal{H} has a description of ~ 6 kB.

Conclusion

- Taking into account all newly proposed attacks we were able to:
 - ▷ precisely evaluate which parameters remain secure,
 - ▷ propose new optimizations of FSB,
 - ▷ propose new/improved parameters.
- Some work remains:
 - precisely evaluate the requirements for the final compression function,
 - select a (provably) secure final compression function.