Recovering a code's length and synchronization from a noisy intercepted bitstream.

M. Cluzeau and M. Finiasz

Overview of the problem

\approx We intercept a noisy bitstream and want to recover the (encrypted) information.

Overview of the problem

- Most of the time, coding schemes are standardized
\triangleright no need for code reconstruction.
- Yet, "some people" are interested in this:
\triangleright not many public works on this topic,
\triangleright many interesting problems arise, depending on the type of code we focus on.
- Here we focus on linear block codes requiring to:
\triangleright find the block length,
\triangleright find a generator/parity check matrix,
\triangleright find an efficient decoder,
\rightarrow we do not address this problem here.

Overview of the problem

The case of linear block codes

S
 $010010110100001011101010010100101110 .$.

- The only thing we have is a noisy bitstream:
\triangleright we need to find s_{0} and n_{0} the synchronization and length of the code.
- For very short codes of small dimension various techniques can give us some hint on n,
$\ddagger \quad \triangleright$ none of them work for real life codes...
\rightarrow we have to test each choice of s and n.

In the absence of noise

- For given s and n build the matrix \mathcal{G} of "codewords"
\triangleright if $n=n_{0}$ and $s=s_{0}$ it has minimal rank k,
\triangleright if $n=n_{0}$ and $s \neq s_{0}$ it has rank $\min \left(k+\left|s-s_{0}\right|, n\right)$,
\triangleright if $n \neq n_{0}$ it has rank n.

In the absence of noise

The easy case...

- For given s and n build the matrix \mathcal{G} of "codewords"
\triangleright if $n=n_{0}$ and $s=s_{0}$ it has minimal rank k,
\triangleright if $n=n_{0}$ and $s \neq s_{0}$ it has rank $\min \left(k+\left|s-s_{0}\right|, n\right)$,
\triangleright if $n \neq n_{0}$ it has rank n.
- Very efficient to guess n_{0} and then s_{0}, \rightarrow only for very low noise levels $\tau \ll \frac{1}{n}$.
- For higher noises the rank is always $n \ldots$

In the presence of noise

 Using words of the dual- If n and s are correct, a word of the dual of the target code multiplied by \mathcal{G} should have low weight,
\triangleright suppose we have such a dual word of low weight w.

In the presence of noise

 Using words of the dual- If a word following the green distribution is found, $n=n_{0}$ \triangleright and $s-s_{0}$ is probably small.

The algorithm we propose

- We need to exhaustively search through the possible s and n.
- Successively go through the possible values of n \triangleright for each length "test" several synchronizations s \rightarrow different possible heuristics.
- Testing a pair (n, s) consists in searching for a dual word following the green distribution:
\triangleright exhaustive search of words of given weight
\triangleright using Valembois' algorithm.

Exhaustive search of given weight dual words

- We look for a dual word of length n and weight w.
- We can find all such dual words using:
\triangleright straight-forward exhaustive search
$\rightarrow O\left(n^{w}\right)$ time and $0(1)$ memory.
\triangleright the birthday algorithm
$\rightarrow O\left(n^{\frac{w}{2}}\right)$ time and $O\left(n^{\frac{w}{2}}\right)$ memory.
\triangleright the Chose-Joux-Mitton algorithm [Eurocrypt 2002]
$\rightarrow O\left(n^{\frac{w}{2}}\right)$ time and $O\left(n^{\left[\frac{w}{4}\right\rceil}\right)$ memory.
® Very efficient for codes with very low weight dual words \rightarrow typically LDPC codes.

Valembois' algorithm

\triangleright Based on the Canteaut-Chabaud decoding algorithm,
\triangleright does not focus only on low weight dual words,
\triangleright small memory requirements.

- Very efficient for low noise levels,
\rightarrow tolerates higher noise levels for very short codes.
- Codes of rate $\frac{1}{2}$:
\triangleright no low weight dual words,
\triangleright for our problem: among the difficult cases.
- Dual words found in 10000 iterations of Valembois' algorithm (less than a second).

n	0.001	0.002	0.005	0.01	0.02	0.05
32	14637	27081	42570	42913	19464	210
64	∞	∞	∞	1172189	6310	0
128	∞	∞	∞	2992	0	0
256	∞	∞	0	0	0	0

- LDPC codes of rate $\frac{1}{2}$ and weight 6 parity checks, \triangleright find words for lengths up to 10000 with 2GB memory.
- For an LDPC of length 1000 in 50 iterations (~ 2 min.)

τ	words found	expected words per iteration	expected total words found
0.01	478	41	492
0.02	251	7.5	266
0.03	84	1.5	70
0.04	15	0.33	16
0.05	6	0.08	3.9
0.06	1	0.02	1.0

Conclusion

- We can find the length/synchronization of a code by using reconstruction techniques,
\triangleright easier for codes with low weight dual words \rightarrow LDPC
\triangleright not very satisfying for random codes.
- For an unknown code, both techniques should be tried \triangleright for very low noise levels, Valembois' algorithm is faster, even for long LDPC codes.
- For other kind of codes:
\triangleright convolutional codes
[Côte,Sendrier - ISIT09]
\triangleright turbocodes \rightarrow we are working on it...

