Recovering a code's length and synchronization from a noisy intercepted bitstream.

M. Cluzeau and M. Finiasz

Overview of the problem

► We intercept a noisy bitstream and want to recover the (encrypted) information.

Overview of the problem

- Most of the time, coding schemes are standardized
 no need for code reconstruction.
- > Yet, "some people" are interested in this:
 - ▷ not many public works on this topic,
 - many interesting problems arise, depending on the type of code we focus on.
- Here we focus on linear block codes requiring to:
 - ▷ find the block length,
 - ▷ find a generator/parity check matrix,
 - ▷ find an efficient decoder,
 - → we do not address this problem here.

Overview of the problem The case of linear block codes

s n 01001011010000101110101001010010101110...

The only thing we have is a noisy bitstream:
 we need to find s₀ and n₀ the synchronization and length of the code.

- For very short codes of small dimension various techniques can give us some hint on n,
 none of them work for real life codes...
 - \rightarrow we have to test each choice of s and n.

In the absence of noise The easy case...

For given s and n build the matrix G of "codewords"
▷ if n = n₀ and s = s₀ it has minimal rank k,
▷ if n = n₀ and s ≠ s₀ it has rank min(k + |s - s₀|, n),
▷ if n ≠ n₀ it has rank n.

In the absence of noise The easy case...

For given s and n build the matrix G of "codewords"
▷ if n = n₀ and s = s₀ it has minimal rank k,
▷ if n = n₀ and s ≠ s₀ it has rank min(k + |s - s₀|, n),
▷ if n ≠ n₀ it has rank n.

Very efficient to guess n₀ and then s₀,
 → only for very low noise levels τ ≪ ¹/_n.

► For higher noises the rank is always *n*...

In the presence of noise Using words of the dual

► If n and s are correct, a word of the dual of the target code multiplied by G should have low weight,

 \triangleright suppose we have such a dual word of low weight w.

In the presence of noise Using words of the dual

▶ If a word following the green distribution is found, n = n₀
 ▷ and s - s₀ is probably small.

The algorithm we propose

We need to exhaustively search through the possible s and n.

Successively go through the possible values of n
 for each length "test" several synchronizations s
 different possible heuristics.

- Testing a pair (n, s) consists in searching for a dual word following the green distribution:
 - exhaustive search of words of given weight
 using Valembois' algorithm.

Exhaustive search of given weight dual words

 \blacktriangleright We look for a dual word of length n and weight w.

We can find all such dual words using:
 straight-forward exhaustive search
 O(n^w) time and 0(1) memory.
 the birthday algorithm

page 7/11

- $\rightarrow O(n^{\frac{w}{2}})$ time and $O(n^{\frac{w}{2}})$ memory.
- ▷ the Chose-Joux-Mitton algorithm [Eurocrypt 2002] → $O(n^{\frac{w}{2}})$ time and $O(n^{\lceil \frac{w}{4} \rceil})$ memory.

Valembois' algorithm

- Based on the Canteaut-Chabaud decoding algorithm,
- does not focus only on low weight dual words,
- ▷ small memory requirements.

Very efficient for low noise levels,

→ tolerates higher noise levels for very short codes.

Practical results Random linear codes

Codes of rate $\frac{1}{2}$:

- ▷ no low weight dual words,
- ▷ for our problem: among the difficult cases.

Dual words found in 10000 iterations of Valembois' algorithm (less than a second).

n^{τ}	0.001	0.002	0.005	0.01	0.02	0.05
32	14637	27081	42570	42913	19464	210
64	∞	∞	∞	1172189	6310	0
128	∞	∞	∞	2992	0	0
256	∞	∞	0	0	0	0

Practical results LDPC codes

LDPC codes of rate ¹/₂ and weight 6 parity checks, find words for lengths up to 10000 with 2GB memory.

For an LDPC of length 1000 in 50 iterations ($\sim 2 \text{ min.}$)

au	words	expected words	expected total			
	found	per iteration	words found			
0.01	478	41	492			
0.02	251	7.5	266			
0.03	84	1.5	70			
0.04	15	0.33	16			
0.05	6	0.08	3.9			
0.06	1	0.02	1.0			

- We can find the length/synchronization of a code by using reconstruction techniques,
 - easier for codes with low weight dual words --> LDPC
 not very satisfying for random codes.
- For an unknown code, both techniques should be tried
 for very low noise levels, Valembois' algorithm is faster, even for long LDPC codes.
- For other kind of codes:
 - convolutional codes
 [Côte,Sendrier ISIT09]
 - ▷ turbocodes → we are working on it...