Security Bounds for the Design of
Code-Based Cryptosystems

M. Finiasz and N. Sendrier

€4

ENaTA %I 1N RIA

Parislech

The Syndrome Decoding Problem

< T >

Syndrome Decoding (SD)
Does e € {0,1}" of weight < w such that ex H = S exist?

~ > NP-complete problem.
[Berlekamp, McEliece, van Tilborg - 1978]

slide 1/2

The Syndrome Decoding Problem

< T >

Computational Syndrome Decoding (CSD)
Find e € {0,1}" of weight < w such that exH = S.

~ > The security of most code-based cryptosystems relies on
the difficulty of solving this problem.

slide 1/2

Our Point of View

» Depending on parameters (n, 7, w), what is the difficulty
of solving CSD?

> we are looking for a lower bound:
—> any attack on the system costs at least this.

» T here are three families of attacks to look at:

> we describe an idealized version of each attack,
—> trying to take into account improvements to come.

> we propose a lower bound for each of them (or an
approximation of a lower bound).

slide 2/22

Birthday Algorithm

slide 3/22

Birthday Algorithm

Basic algorithm

> Build a list/hash table of XORs of 5 columns of /-

> look for 2 equals elements in this set
—> each such pair gives a solution to the CSD instance.

» The size L of the list to build is:
> if () > 2" then L = 22,
> else, if the problem has a single solution, L = (%)

» In both cases, the complexity is O(L log L) with regards
to time or memory.

Birthday Algorithm

Basic algorithm

» T he basic technique has 2 drawbacks:
> one manipulates r-bit long XORs,

w
w

2) times.

> in the second case, the solution is found %(

» We thus improve/idealize the algorithm accordingly:

> introduce a “window" of size /
—> does not improve the asymptotic complexity,

> store a list of smaller size.

slide 4/22

Birthday Algorithm

Detailed algorithm

» W, et W5 are subsets of the words of weight %

input: Hy e {0,1}7*", s € {0,1}"

repeat (MAIN LOOP)
P < random n X n permutation matrix
H «— HyP
for all e W
i+ he(eH?T) (BA 1)
write(e, 1) // store e at index i of a structure
for all e, € Wo
i ho(s+esH?) (BA 2)
S «— read(?) // extract the elements stored at index ¢
for alle; €S
if €1HT:S—|—62HT (BA 3)

return (e; + ey) Pt (SUCCESS)

slide 5/22

Birthday Algorithm

Effective cost

» \We make two assumptions:
> for all pairs of words (ej,es), the sum e; 4 ey is
uniformly distributed,
> if Ky is the cost of a complete test, the total cost is:
¢-4(BA 1)+ /¢-4(BA 2) 4+ K- §(BA 3).
» Then, the cost of solving an instance of CSD is lower
bounded by:

WEpa(n, 7, w) = 2L log(K (L) with L=min (/(7),2/2).

—> L is the size of W7 and, in average, of 5.

slide 6/22

Birthday Algorithm

Effective cost

» \We make two assumptions:
> for all pairs of words (ej,es), the sum e; 4 ey is
e o]
> if Ky is the cost of a complete test, the total cost is:
¢-4(BA 1)+ /¢-4(BA 2) 4+ K- §(BA 3).
» Then, the cost of solving an instance of CSD is lower
bounded by:

WFEga(n, r, w) = vV2L1og(KoL) with L=min (/(2).27/2).

—> the attacker might choose better sets Wy and Ws.

slide 6/22

Information Set

Decoding (I1SD)

Information Set Decoding

Basic idea

» The idea is to look for an information set:
—> a set of £ positions containing no errors.

» For CSD, this is equivalent to finding a set of r columns
of H containing the w positions of a solution.

e
T 11 [T 1
X S’
Al |
r H’ = |
!] e k > E

slide 7/22

Information Set Decoding

Stern’s algorithm

» Each Gaussian elimination tests (,;) solution candidates,

> we want to increase this number.

» We introduce two parameters £ and p. |Stern 1989]
> equality on a window of size ¢ — birthday algorithm.
—w-P : P
L1 1 | I I
X S’
A 1 [|
r H’ — |
1 .. B
?
0 /
' I ol

slide 8/22

Information Set Decoding

Detailed algorithm

> W, and W, are words of weight & and length k + ¢.
input: Hj € {O, 1}r><n’ So € {O, 1}T

repeat (MAIN LOOP)
P < random n X n permutation matrix
(H',U) <« PGElim(HyP) // partial Gaussian elimination
S < SoUT
for all e e Wy
i« he(eH'T) (1sD 1)
write(e, 7) // store e at index ¢ of a structure
for all e, € Wo
i he(s+eaH'™) (1SD 2)
S «— read(?) // extract the elements stored at index ¢
for alle; €S
if wt(s+ (e1 +ex)H?') =w —p (1SD 3)

return (P, e; + e9) (SUCCESS)

slide 9/22

Cost Estimation

» Again, we make two assumptions:

> for all pairs of words (ej,es), the sum e; 4 ey is
uniformly distributed,

> if K, Is the cost of an ISD 3 test, the total cost is:
¢-4(1sp 1) + £ - (1D 2) + Ky, - §(1SD 3).

» For a CSD instance with a single solution:

WFisp(n, r,w) ~ min)

p Mamp)V ()

with /=log (Kw_p (g))

» With A =1 — e !, success probability of the “birthday”.

slide 10/22

Cost Estimation

When multiple solutions exist

» When (Z) > 2", we distinguish between 2 cases:
> either ISD 3 has less than a solution: (wi)(];) < 2"
—> a similar formula applies,

WFisp(n, 7, w) & min—22—— with (=log (Ky—p\/(5)):

P Muz)V ()

—> a single iteration is enough, using smaller lists,

> or ISD 3 has several solutions: (wr)(Z]j) > 27

WFisp(n, r,w) ~ min-2 QT/; with ¢=log (K _p—22).
p (fz;:p) (w—p)

» Not always very tight, especially for intermediate cases...

slide 11/22

Generalized Birthday

Algorithm (GBA)

Generalized Birthday Algorithm

Basic idea

» We first look at a modified problem with f : N — {0,1}"
—> Find z, ..., x2a_1 € N such that @, f(z;) = 0.

> We no longer have a length constraint n and w Is a
power of 2.

> There is an infinite number of solutions.

» With the standard birthday algorithm:
> pick a list W, of XORs of 2971 vectors f(x;),

> same for W5 and then look for collisions,
—»> the list size has to be 27/2.

> we do not benefit from the infinite number of solu-
tions...

slide 12/22

Generalized Birthday Algorithm

Basic idea

» Lists W} and W5 are built so as to help collisions:
elements are not chosen at random.

> Start with 29 lists Ly, ...Lsa_1 each containing Datl
vectors f(x;),

> pairwise merge lists Ly; and Lojy1 to obtain 2¢7 lists
L’ of XORs of 2 f(z;). Keep only elements starting
with —— zeros.

ot PR : _r :
—> the L; still contain 2e+T elements in average.

> similarly merge again until 2 lists of XORs of 2¢7!

: . 1 .
vectors starting with % Zeros remain.

» We end up with a single solution in average, and all
manipulated lists are of size 2a+T,

slide 13/22

Application to CSD

Addition of constraints

» If w is not a power of 2:
> choose different size lists —> difficult to analyse,

> we only consider lists of XORs of 7 elements.

» When the length constraint n Is added:

> the starting lists may be too small,
—> use a smaller a and higher weight starting elements.

> all lists contain the same elements,
—> less distinct elements in the merged lists.

> We build the lists L’ so that they only contain unique
elements, bringing us back to the general case.

slide 14/22

Application to CSD

Addition of constraints

> We select 2! distinct a-bit vectors s; such that:
€3E) S5 — 0
> in the L lists we keep the XORs of weight 2= having
s; as their first a bits,

—> the (w/;_l) possible vectors are distributed among
the 247! |ists.

> we then use GBA normally on vectors of length r — a.
» \We obtain the following constraint on a:

]_ T™T—Q
(o)
2\ 3@

> The complexity of the attack is then %Q%.

slide 15/22

Using a non integer value for a

An idealized, but realistic, algorithm

250 7 250 1 250 4

200 1 200 1 200 1

1501 150 150 1

100 1 _— 100 1 100 +

50 50 1 50 1

40 80 120 160 200 40 80 120 160 200 40 80 120 160 200

() (b) ()

» Integer values for a give a complexity curve like (a),
> zeroing a few bits in the lists L; we obtain (b).

» Almost the same as a using non-integer values (c)
—> this is what should be used in our bound.

slide 16/22

Bound on GBA applied to CSD

» Our complexity considers an idealized algorithm:
> XORs of non-integer numbers of vectors,

> non-integer number of lists,
—> impossible to achieve better with GBA.

» For any parameter set (n,r,w) of CSD we have:

_ r—a —
WFGBA(’TL, T, ’lU) > % 27 a with a such that 2%(2%):2raa.

20,

slide 17/22

Application to some

Existing Cryptosystems

AN

slide 18/2

Code-Based Encryption

[McEliece 1978] and [Niederreiter 1986]

» \We have to solve instances of CSD with a single “unex-
pected” solution,

> below the Gilbert-Varshamov bound.
> GBA can not be applied (a < 1 in the formula).

» Our bound on ISD gives a good approximation:

(m,w) | optimal p | optimal ¢ | binary work factor
(10,50) | 4 22 2599
(11,32) 6 33 2808
(2’41) 10 54 2128.5

» In the (10,50) case, Canteaut-Chabaud costs 294“ and
Bernstein-Lange-Peters 29

McEliece-based Signature

[Courtois-Finiasz-Sendrier 2001]

» Parameters similar to those of encryption:
> only one instance out of w! has a solution,

> unlimited number of target syndromes,

—> for GBA, we can use a syndrome list in addition.
[Bleichenbacher]

» \We use an unbalanced GBA: 3 small lists of XORs of
columns of H, one large list of syndromes.

> XORs of |3], w—[F]| — |5] and [§] columns,

> we can't us any idealization (the gap is too large),
—> still we can give practical complexities.

slide 19/22

McEliece-based Signature

[Courtois-Finiasz-Sendrier 2001]

» The time and memory complexities are respectively

O(7 log7T) and O(Mlog M).
It 2,,: > 27;“ :
(w—wy3)) — \/(Lw/3J)

T = al and M = (w_tw/gJ)

(w— [ZU/SJ) (Lw?}?)j) |

T =M= \/
Lw/3J

otherwise:

slide 20/22

McEliece-based Signature

[Courtois-Finiasz-Sendrier 2001]

» The time and memory complexities are respectively

O(7 log7T) and O(Mlog M).

w =38 w =9 w=10 | w=11 w =12
m = 15 251.0/251.0 260.2/243.3 263.1/255.9 267.2/267.2 281.5/254.9
m = 16 254.1/254.1 263.3/246.5 266.2/260.0 271.3/271.3 285.6/259.0
m =17 257.2/257.2 266.4/249.6 269.3/264.2 275.4/275.4 289.7/263.1
m = 18 260.3/260.3 269.5/252.7 272.4/268.2 279.5/279.5 293.7/267.2
m
m
m
m

— 19 263.3/263.3 272.5/255.7 275.4/272.3 283.6/283.6 297.8/271.3
— 920 266.4/266.4 275.6/258.8 278.5/276.4 287.6/287.6 2101.9/275.4
— 21 269.5/269.5 278.7/261.9 281.5/280.5 291.7/291.7 2105.9/279.5
— 929 272.6/272.6 281.7/265.0 284.6/284.6 295.8/295.8 2110.0/283.6

slide 20/22

Code-Based Hashing

FSB

» We attack a compression function:

> necessarily many solutions for inversion or collision
search.

» Standard case for the application of GBA:

> we directly use our formula with 2w for collisions, and
w for inversion.

» More problematic case for ISD:

> we are between the zones of application of our two
formulas...

slide 21/22

Code-Based Hashing

FSB

» Bounds on the complexity of GBA against FSB:

n r w | inversion | collision

:58160 5 X% 218 640 20 2156.6 2118.7
:58224 7 >< 218 896 __12 2216'0 2163'4
FSBos 921 1024 | 1928 9245.6 9185.7
FSBagy | 23 x 2161 1472 | 184 | 27002 208.8
FSBs1o | 31 x 21011984 | 248 | 24821 93993

& P These are only bounds using an idealized algorithm. This
does not give any attack.

slide 21/2

Conclusion

» We described idealized version of known attacks against

CSD:

> these idealized versions have a complexity easier to
analyse, allowing us to derive “simple” bounds

> achieving better complexities than these bounds nec-
essarily requires to change the algorithms.
—> generalized birthday inside ISD?

» |t is also interesting to note that existing algorithms have
practical complexities very close to our bounds:

> these algorithms are already almost optimal.

slide 22/22

