Security Bounds for the Design of Code-Based Cryptosystems

M. Finiasz and N. Sendrier

The Syndrome Decoding Problem

Syndrome Decoding (SD)

Does $e \in\{0,1\}^{n}$ of weight $\leq w$ such that $e \times H=\mathcal{S}$ exist?
\triangleright NP-complete problem.
[Berlekamp, McEliece, van Tilborg - 1978]

The Syndrome Decoding Problem

Computational Syndrome Decoding (CSD)
Find $e \in\{0,1\}^{n}$ of weight $\leq w$ such that $e \times H=\mathcal{S}$.
The security of most code-based cryptosystems relies on the difficulty of solving this problem.

Our Point of View

- Depending on parameters (n, r, w), what is the difficulty of solving CSD?
\triangleright we are looking for a lower bound:
\rightarrow any attack on the system costs at least this.
- There are three families of attacks to look at:
\triangleright we describe an idealized version of each attack, \rightarrow trying to take into account improvements to come.
\triangleright we propose a lower bound for each of them (or an approximation of a lower bound).

Birthday Algorithm

Birthday Algorithm

Basic algorithm

- Build a list/hash table of XORs of $\frac{w}{2}$ columns of H :
\triangleright look for 2 equals elements in this set
\rightarrow each such pair gives a solution to the CSD instance.
- The size L of the list to build is:
\triangleright if $\binom{n}{w}>2^{r}$ then $L=2^{\frac{r}{2}}$,
\triangleright else, if the problem has a single solution, $L=\binom{n}{\frac{w}{2}}$.
- In both cases, the complexity is $O(L \log L)$ with regards to time or memory.

Birthday Algorithm

Basic algorithm

- The basic technique has 2 drawbacks:
\triangleright one manipulates r-bit long XORs,
\triangleright in the second case, the solution is found $\frac{1}{2}\binom{w}{\frac{w}{2}}$ times.
- We thus improve/idealize the algorithm accordingly: \triangleright introduce a "window" of size ℓ
\rightarrow does not improve the asymptotic complexity,
\triangleright store a list of smaller size.

Birthday Algorithm

Detailed algorithm

- W_{1} et W_{2} are subsets of the words of weight $\frac{w}{2}$.
input: $H_{0} \in\{0,1\}^{r \times n}, s \in\{0,1\}^{r}$
repeat
(MAIN LOOP)
$P \leftarrow$ random $n \times n$ permutation matrix

$$
H \leftarrow H_{0} P
$$

$$
\text { for all } e \in W_{1}
$$

$$
\begin{equation*}
i \leftarrow h_{\ell}\left(e H^{T}\right) \tag{BA1}
\end{equation*}
$$

write (e, i)
// store e at index i of a structure for all $e_{2} \in W_{2}$
$i \leftarrow h_{\ell}\left(s+e_{2} H^{T}\right)$
(BA 2)
$S \leftarrow \operatorname{read}(i) \quad / /$ extract the elements stored at index i for all $e_{1} \in S$
if $e_{1} H^{T}=s+e_{2} H^{T}$ return $\left(e_{1}+e_{2}\right) P^{T}$

Birthday Algorithm

Effective cost

- We make two assumptions:
\triangleright for all pairs of words $\left(e_{1}, e_{2}\right)$, the sum $e_{1}+e_{2}$ is uniformly distributed,
\triangleright if K_{0} is the cost of a complete test, the total cost is:

$$
\ell \cdot \sharp(\mathrm{BA} 1)+\ell \cdot \sharp(\mathrm{BA} 2)+K_{0} \cdot \sharp(\mathrm{BA} 3) .
$$

- Then, the cost of solving an instance of CSD is lower bounded by:

$$
\mathrm{WF}_{\mathrm{BA}}(n, r, w)=2 L \log \left(K_{0} L\right) \text { with } L=\min \left(\sqrt{\binom{n}{w}}, 2^{r / 2}\right)
$$

$\rightarrow L$ is the size of W_{1} and, in average, of W_{2}.

Birthday Algorithm

Effective cost

- We make two assumptions:
\triangleright for all pairs of words $\left(e_{1}, e_{2}\right)$, the sum $e_{1}+e_{2}$ is uniforminted,
\triangleright if K_{0} is the cost of a complete test, the total cost is:

$$
\ell \cdot \sharp(\mathrm{BA} 1)+\ell \cdot \sharp(\mathrm{BA} 2)+K_{0} \cdot \sharp(\mathrm{BA} 3) .
$$

- Then, the cost of solving an instance of CSD is lower bounded by:
$\mathrm{WF}_{\mathrm{BA}}(n, r, w)=\sqrt{2} L \log \left(K_{0} L\right)$ with $L=\min \left(\sqrt{\binom{n}{w}, 2^{r / 2}}\right)$.
\rightarrow the attacker might choose better sets W_{1} and W_{2}.

Information Set Decoding (ISD)

Information Set Decoding

- The idea is to look for an information set: \rightarrow a set of k positions containing no errors.
- For CSD, this is equivalent to finding a set of r columns of H containing the w positions of a solution.

Information Set Decoding

Stern's algorithm

- Each Gaussian elimination tests $\binom{r}{w}$ solution candidates, \triangleright we want to increase this number.
- We introduce two parameters ℓ and p.
[Stern 1989]
\triangleright equality on a window of size $\ell \rightarrow$ birthday algorithm.

Information Set Decoding

Detailed algorithm

- W_{1} and W_{2} are words of weight $\frac{p}{2}$ and length $k+\ell$. input: $H_{0} \in\{0,1\}^{r \times n}, s_{0} \in\{0,1\}^{r}$
repeat
$P \leftarrow$ random $n \times n$ permutation matrix
$\left(H^{\prime}, U\right) \leftarrow$ PGElim $\left(H_{0} P\right) \quad / /$ partial Gaussian elimination

$$
s \leftarrow s_{0} U^{T}
$$

$$
\text { for all } e \in W_{1}
$$

$$
i \leftarrow h_{\ell}\left(e H^{\prime T}\right)
$$

(ISD 1) write (e, i)
// store e at index i of a structure for all $e_{2} \in W_{2}$
$i \leftarrow h_{\ell}\left(s+e_{2} H^{\prime T}\right)$
$S \leftarrow \operatorname{read}(i) \quad / /$ extract the elements stored at index i for all $e_{1} \in S$

$$
\begin{aligned}
& \text { if } \mathrm{wt}\left(s+\left(e_{1}+e_{2}\right) H^{T}\right)=w-p \\
& \quad \text { return }\left(P, e_{1}+e_{2}\right)
\end{aligned}
$$

Cost Estimation

- Again, we make two assumptions:
\triangleright for all pairs of words $\left(e_{1}, e_{2}\right)$, the sum $e_{1}+e_{2}$ is uniformly distributed,
\triangleright if K_{w-p} is the cost of an ISD 3 test, the total cost is:

$$
\ell \cdot \sharp(\operatorname{ISD} 1)+\ell \cdot \sharp(\operatorname{ISD} 2)+K_{w-p} \cdot \sharp(\operatorname{ISD} 3) .
$$

- For a CSD instance with a single solution:

$$
\mathrm{WF}_{\mathrm{ISD}}(n, r, w) \approx \min _{p} \frac{2 \ell\binom{n}{w}}{\lambda\binom{r-\ell}{w-p} \sqrt{\binom{k+\ell}{p}}} \text { with } \ell=\log \left(K_{w-p} \sqrt{\binom{k}{p}}\right) .
$$

- With $\lambda=1-e^{-1}$, success probability of the "birthday".

Cost Estimation

When multiple solutions exist

- When $\binom{n}{w}>2^{r}$, we distinguish between 2 cases:
\triangleright either ISD 3 has less than a solution: $\binom{r}{w-p}\binom{k}{p} \ll 2^{r}$ \rightarrow a similar formula applies,
$\mathrm{WF}_{\mathrm{ISD}}(n, r, w) \approx \min _{p} \frac{2 \ell 2^{r}}{\lambda\binom{r-\ell}{w-p} \sqrt{\binom{k+\ell}{p}}}$ with $\ell=\log \left(K_{w-p} \sqrt{\binom{k}{p}}\right)$.
\triangleright or ISD 3 has several solutions: $\binom{r}{w-p}\binom{k}{p}>2^{r}$ \rightarrow a single iteration is enough, using smaller lists,

$$
\mathrm{WF}_{\mathrm{ISD}}(n, r, w) \approx \min _{p} \frac{2 \ell 2^{r / 2}}{\sqrt{\left(\begin{array}{l}
r-\ell) \\
w-p
\end{array}\right.}} \text { with } \ell=\log \left(K_{w-p} \frac{2^{r / 2}}{\sqrt{\left(w^{r}-p\right)}}\right) .
$$

Not always very tight, especially for intermediate cases...

Generalized Birthday Algorithm (GBA)

Generalized Birthday Algorithm

Basic idea

- We first look at a modified problem with $f: \mathbb{N} \rightarrow\{0,1\}^{r}$ \rightarrow Find $x_{0}, \ldots, x_{2^{a}-1} \in \mathbb{N}$ such that $\bigoplus_{i} f\left(x_{i}\right)=0$.
\triangleright We no longer have a length constraint n and w is a power of 2 .
\triangleright There is an infinite number of solutions.
- With the standard birthday algorithm:
\triangleright pick a list W_{1} of XORs of 2^{a-1} vectors $f\left(x_{i}\right)$,
\triangleright same for W_{2} and then look for collisions, \rightarrow the list size has to be $2^{r / 2}$.
\triangleright we do not benefit from the infinite number of solutions...

Generalized Birthday Algorithm

Basic idea

- Lists W_{1} and W_{2} are built so as to help collisions: elements are not chosen at random.
\triangleright Start with 2^{a} lists $L_{0}, \ldots L_{2^{a}-1}$ each containing $2^{\frac{r}{a+1}}$ vectors $f\left(x_{i}\right)$,
\triangleright pairwise merge lists $L_{2 j}$ and $L_{2 j+1}$ to obtain 2^{a-1} lists L_{j}^{\prime} of XORs of $2 f\left(x_{i}\right)$. Keep only elements starting with $\frac{r}{a+1}$ zeros.
\rightarrow the L_{j}^{\prime} still contain $2^{\frac{r}{a+1}}$ elements in average.
\triangleright similarly merge again until 2 lists of XORs of 2^{a-1} vectors starting with $\frac{(a-1) r}{a+1}$ zeros remain.
\approx We end up with a single solution in average, and all manipulated lists are of size $2^{\frac{r}{a+1}}$.

Application to CSD

 Addition of constraints- If w is not a power of 2 :
\triangleright choose different size lists \rightarrow difficult to analyse,
\triangleright we only consider lists of XORs of $\frac{w}{2^{a}}$ elements.
- When the length constraint n is added:
\triangleright the starting lists may be too small, \rightarrow use a smaller a and higher weight starting elements.
\triangleright all lists contain the same elements, \rightarrow less distinct elements in the merged lists.
$\underset{\sim}{\approx}$ We build the lists L_{j}^{\prime} so that they only contain unique elements, bringing us back to the general case.

Application to CSD

 Addition of constraints- We select 2^{a-1} distinct a-bit vectors s_{j} such that:

$$
\bigoplus s_{j}=0
$$

\triangleright in the L_{j}^{\prime} lists we keep the XORs of weight $\frac{w}{2^{a-1}}$ having s_{j} as their first a bits,
\rightarrow the $\binom{n}{w / 2^{a-1}}$ possible vectors are distributed among the 2^{a-1} lists.
\triangleright we then use GBA normally on vectors of length $r-a$.

- We obtain the following constraint on a :

$$
\frac{1}{2^{a}}\binom{n}{\frac{2 w}{2^{a}}} \geq 2^{\frac{r-a}{a}}
$$

\triangleright The complexity of the attack is then $\frac{r-a}{a} 2^{\frac{r-a}{a}}$.

Using a non integer value for a

 An idealized, but realistic, algorithm

- Integer values for a give a complexity curve like (a),
\triangleright zeroing a few bits in the lists L_{j} we obtain (b).
- Almost the same as a using non-integer values (c)
\rightarrow this is what should be used in our bound.

Bound on GBA applied to CSD

- Our complexity considers an idealized algorithm:
\triangleright XORs of non-integer numbers of vectors,
\triangleright non-integer number of lists,
\rightarrow impossible to achieve better with GBA.
- For any parameter set (n, r, w) of CSD we have:

$$
\mathrm{WF}_{\mathrm{GBA}}(n, r, w) \geq \frac{r-a}{a} 2^{\frac{r-a}{a}} \text { with } a \text { such that } \frac{1}{2^{a}\left(\frac{n}{2^{a}}\right)=2^{\frac{r-a}{a}} ~}
$$

Application to some Existing Cryptosystems

Code-Based Encryption

 [McEliece 1978] and [Niederreiter 1986]- We have to solve instances of CSD with a single "unexpected" solution,
\triangleright below the Gilbert-Varshamov bound.
\triangleright GBA can not be applied ($a<1$ in the formula).
- Our bound on ISD gives a good approximation:

(m, w)	optimal p	optimal ℓ	binary work factor
$(10,50)$	4	22	$2^{59.9}$
$(11,32)$	6	33	$2^{86.8}$
$(12,41)$	10	54	$2^{128.5}$

\approx In the $(10,50)$ case, Canteaut-Chabaud costs $2^{64.2}$ and Bernstein-Lange-Peters $2^{60.5}$.

McEliece-based Signature

[Courtois-Finiasz-Sendrier 2001]

- Parameters similar to those of encryption:
\triangleright only one instance out of w ! has a solution,
\triangleright unlimited number of target syndromes,
\rightarrow for GBA, we can use a syndrome list in addition.
[Bleichenbacher]
- We use an unbalanced GBA: 3 small lists of XORs of columns of H, one large list of syndromes.
\triangleright XORs of $\left\lceil\frac{w}{3}\right\rceil, w-\left\lceil\frac{w}{3}\right\rceil-\left\lfloor\frac{w}{3}\right\rfloor$ and $\left\lfloor\frac{w}{3}\right\rfloor$ columns, \triangleright we can't us any idealization (the gap is too large), \rightarrow still we can give practical complexities.

McEliece-based Signature

[Courtois-Finiasz-Sendrier 2001]

- The time and memory complexities are respectively $O(\mathcal{T} \log \mathcal{T})$ and $O(\mathcal{M} \log \mathcal{M})$. If $\frac{2^{r}}{(w-\lfloor w / 3\rfloor)} \geq \sqrt{\frac{2^{n}}{(\lfloor w / 3\rfloor)}}$:

$$
\mathcal{T}=\frac{2^{r}}{\binom{n}{w-\lfloor w / 3\rfloor}} \text { and } \mathcal{M}=\frac{\binom{n}{w-\lfloor w / 3\rfloor}}{\binom{n}{\lfloor w / 3\rfloor}},
$$

otherwise:

$$
\mathcal{T}=\mathcal{M}=\sqrt{\frac{2^{r}}{\binom{n}{\lfloor w / 3\rfloor}}} .
$$

McEliece-based Signature

[Courtois-Finiasz-Sendrier 2001]

- The time and memory complexities are respectively $O(\mathcal{T} \log \mathcal{T})$ and $O(\mathcal{M} \log \mathcal{M})$.

	$w=8$	$w=9$	$w=10$	$w=11$	$w=12$
$m=15$	$2^{51.0} / 2^{51.0}$	$2^{60.2} / 2^{43.3}$	$2^{63.1} / 2^{55.9}$	$2^{67.2} / 2^{67.2}$	$2^{81.5} / 2^{54.9}$
$m=16$	$2^{54.1} / 2^{54.1}$	$2^{63.3} / 2^{46.5}$	$2^{66.2} / 2^{60.0}$	$2^{71.3} / 2^{71.3}$	$2^{85.6} / 2^{59.0}$
$m=17$	$2^{57.2} / 2^{57.2}$	$2^{66.4} / 2^{49.6}$	$2^{69.3} / 2^{64.2}$	$2^{75.4} / 2^{75.4}$	$2^{89.7} / 2^{63.1}$
$m=18$	$2^{60.3} / 2^{60.3}$	$2^{69.5} / 2^{52.7}$	$2^{72.4} / 2^{68.2}$	$2^{79.5} / 2^{79.5}$	$2^{93.7} / 2^{67.2}$
$m=19$	$2^{63.3} / 2^{63.3}$	$2^{72.5} / 2^{55.7}$	$2^{75.4} / 2^{72.3}$	$2^{83.6} / 2^{83.6}$	$2^{97.8} / 2^{71.3}$
$m=20$	$2^{66.4} / 2^{66.4}$	$2^{75.6} / 2^{58.8}$	$2^{78.5} / 2^{76.4}$	$2^{87.6} / 2^{87.6}$	$2^{101.9} / 2^{75.4}$
$m=21$	$2^{69.5} / 2^{69.5}$	$2^{78.7} / 2^{61.9}$	$2^{81.5} / 2^{80.5}$	$2^{91.7} / 2^{91.7}$	$2^{105.9} / 2^{79.5}$
$m=22$	$2^{72.6} / 2^{72.6}$	$2^{81.7} / 2^{65.0}$	$2^{84.6} / 2^{84.6}$	$2^{95.8} / 2^{95.8}$	$2^{110.0} / 2^{83.6}$

Code-Based Hashing

FSB

- We attack a compression function:
\triangleright necessarily many solutions for inversion or collision search.
- Standard case for the application of GBA:
\triangleright we directly use our formula with $2 w$ for collisions, and w for inversion.
- More problematic case for ISD:
\triangleright we are between the zones of application of our two formulas...

Code-Based Hashing FSB

- Bounds on the complexity of GBA against FSB:

	n	r	w	inversion	collision
FSB $_{160}$	5×2^{18}	640	80	$2^{156.6}$	$2^{118.7}$
FSB $_{224}$	7×2^{18}	896	112	$2^{216.0}$	$2^{163.4}$
FSB $_{256}$	2^{21}	1024	128	$2^{245.6}$	$2^{185.7}$
FSB $_{384}$	23×2^{16}	1472	184	$2^{360.2}$	$2^{268.8}$
FSB $_{512}$	31×2^{16}	1984	248	$2^{482.1}$	$2^{359.3}$

\approx These are only bounds using an idealized algorithm. This does not give any attack.

Conclusion

- We described idealized version of known attacks against CSD:
\triangleright these idealized versions have a complexity easier to analyse, allowing us to derive "simple" bounds
\triangleright achieving better complexities than these bounds necessarily requires to change the algorithms.
\rightarrow generalized birthday inside ISD?
- It is also interesting to note that existing algorithms have practical complexities very close to our bounds:
\triangleright these algorithms are already almost optimal.

