Security Bounds for the Design of Code-Based Cryptosystems

M. Finiasz and N. Sendrier

The Syndrome Decoding Problem

Syndrome Decoding (SD)

Does $e \in \{0,1\}^n$ of weight $\leq w$ such that $e \times H = S$ exist?

▷ NP-complete problem.

[Berlekamp, McEliece, van Tilborg - 1978]

The Syndrome Decoding Problem

Computational Syndrome Decoding (CSD) Find $e \in \{0,1\}^n$ of weight $\leq w$ such that $e \times H = S$.

The security of most code-based cryptosystems relies on the difficulty of solving this problem.

slide 1/22

Our Point of View

- Depending on parameters (n, r, w), what is the difficulty of solving CSD?
 - ▷ we are looking for a lower bound:
 - → any attack on the system costs at least this.

There are three families of attacks to look at:
 we describe an idealized version of each attack,
 trying to take into account improvements to come.
 we propose a lower bound for each of them (or an approximation of a lower bound).

Birthday Algorithm

Birthday Algorithm Basic algorithm

Build a list/hash table of XORs of ^w/₂ columns of *H*:
 look for 2 equals elements in this set
 each such pair gives a solution to the CSD instance.

The size L of the list to build is:
 ▷ if ⁿ_w > 2^r then L = 2^{r/2}/₂,
 ▷ else, if the problem has a single solution, L = ⁿ_{w/2}.

In both cases, the complexity is O(L log L) with regards to time or memory.

Birthday Algorithm Basic algorithm

The basic technique has 2 drawbacks:

- ▷ one manipulates *r*-bit long XORs,
- ▷ in the second case, the solution is found $\frac{1}{2} \begin{pmatrix} w \\ w \end{pmatrix}$ times.

We thus improve/idealize the algorithm accordingly:
 ▷ introduce a "window" of size ℓ
 → does not improve the asymptotic complexity,
 ▷ store a list of smaller size.

Birthday Algorithm Detailed algorithm

 $\triangleright W_1$ et W_2 are subsets of the words of weight $\frac{w}{2}$. input: $H_0 \in \{0, 1\}^{r \times n}$, $s \in \{0, 1\}^r$ (MAIN LOOP) repeat $P \leftarrow random \ n \times n$ permutation matrix $H \leftarrow H_0 P$ for all $e \in W_1$ $i \leftarrow h_{\ell}(eH^T)$ (BA 1)// store e at index i of a structure write(e, i)for all $e_2 \in W_2$ $i \leftarrow h_{\ell}(s + e_2 H^T)$ (BA 2) $S \leftarrow \operatorname{read}(i)$ // extract the elements stored at index i for all $e_1 \in S$ if $e_1 H^T = s + e_2 H^T$ (BA 3)return $(e_1 + e_2)P^T$ (SUCCESS)

slide 5/22

Birthday Algorithm Effective cost

► We make two assumptions:

- ▷ for all pairs of words (e_1, e_2) , the sum $e_1 + e_2$ is uniformly distributed,
- ▷ if K_0 is the cost of a complete test, the total cost is: $\ell \cdot \sharp(BA \ 1) + \ell \cdot \sharp(BA \ 2) + K_0 \cdot \sharp(BA \ 3).$
- Then, the cost of solving an instance of CSD is lower bounded by:

WF_{BA}
$$(n, r, w) = 2L \log(K_0 L)$$
 with $L = \min\left(\sqrt{\binom{n}{w}}, 2^{r/2}\right)$.

slide 6/22

 \rightarrow L is the size of W_1 and, in average, of W_2 .

Birthday Algorithm Effective cost

► We make two assumptions:

- ▷ for all pairs of words (e_1, e_2) , the sum $e_1 + e_2$ is uniformly distributed,
- ▷ if K_0 is the cost of a complete test, the total cost is: $\ell \cdot \sharp(BA \ 1) + \ell \cdot \sharp(BA \ 2) + K_0 \cdot \sharp(BA \ 3).$
- Then, the cost of solving an instance of CSD is lower bounded by:

WF_{BA}
$$(n, r, w) = \sqrt{2}L \log(K_0 L)$$
 with $L = \min\left(\sqrt{\binom{n}{w}}, 2^{r/2}\right)$.

slide 6/22

 \rightarrow the attacker might choose better sets W_1 and W_2 .

Information Set Decoding (ISD)

Information Set Decoding Basic idea

The idea is to look for an information set:

- \rightarrow a set of k positions containing no errors.
- For CSD, this is equivalent to finding a set of r columns of H containing the w positions of a solution.

Information Set Decoding Stern's algorithm

- Each Gaussian elimination tests (^r/_w) solution candidates,
 we want to increase this number.
- ▶ We introduce two parameters ℓ and p. [Stern 1989]
 ▶ equality on a window of size ℓ → birthday algorithm.

Information Set Decoding Detailed algorithm

 $\triangleright W_1$ and W_2 are words of weight $\frac{p}{2}$ and length $k + \ell$. input: $H_0 \in \{0, 1\}^{r \times n}$, $s_0 \in \{0, 1\}^r$ (MAIN LOOP) repeat $P \leftarrow random \ n \times n$ permutation matrix $(H', U) \leftarrow \text{PGElim}(H_0 P)$ // partial Gaussian elimination $s \leftarrow s_0 U^T$ for all $e \in W_1$ $i \leftarrow h_{\ell}(eH'^T)$ (ISD 1)write(e, i)// store e at index i of a structure for all $e_2 \in W_2$ $i \leftarrow h_\ell(s + e_2 H'^T)$ (ISD 2) $S \leftarrow \operatorname{read}(i)$ // extract the elements stored at index i for all $e_1 \in S$ if $wt(s + (e_1 + e_2)H'^T) = w - p$ (ISD 3)return $(P, e_1 + e_2)$ (SUCCESS)

slide 9/22

Cost Estimation

Again, we make two assumptions: for all pairs of words (e₁, e₂), the sum e₁ + e₂ is uniformly distributed,

▷ if K_{w-p} is the cost of an ISD 3 test, the total cost is: $\ell \cdot \sharp (\text{ISD 1}) + \ell \cdot \sharp (\text{ISD 2}) + K_{w-p} \cdot \sharp (\text{ISD 3}).$

For a CSD instance with a single solution:

WF_{ISD}
$$(n, r, w) \approx \min_{p} \frac{2\ell\binom{n}{w}}{\lambda\binom{r-\ell}{w-p}\sqrt{\binom{k+\ell}{p}}} \text{ with } \ell = \log\left(K_{w-p}\sqrt{\binom{k}{p}}\right).$$

With $\lambda = 1 - e^{-1}$, success probability of the "birthday"

Cost Estimation When multiple solutions exist

When \$\begin{pmatrix} n \\ m b \end{pmatrix} > 2^r\$, we distinguish between 2 cases:
 ▷ either ISD 3 has less than a solution: \$\begin{pmatrix} r \\ m-p \end{pmatrix} \begin{pmatrix} k \\ p \end{pmatrix} < 2^r\$
 → a similar formula applies,

WF_{ISD}
$$(n, r, w) \approx \min_{p} \frac{2\ell 2^r}{\lambda\binom{r-\ell}{w-p}\sqrt{\binom{k+\ell}{p}}} \text{ with } \ell = \log\left(K_{w-p}\sqrt{\binom{k}{p}}\right).$$

▷ or ISD 3 has several solutions: $\binom{r}{w-p}\binom{k}{p} > 2^r$ → a single iteration is enough, using smaller lists,

WF_{ISD}
$$(n, r, w) \approx \min_{p} \frac{2\ell 2^{r/2}}{\sqrt{\binom{r-\ell}{w-p}}}$$
 with $\ell = \log\left(K_{w-p} \frac{2^{r/2}}{\sqrt{\binom{r}{w-p}}}\right).$

slide 11/22

Not always very tight, especially for intermediate cases...

Generalized Birthday Algorithm (GBA)

Generalized Birthday Algorithm Basic idea

- ► We first look at a modified problem with $f : \mathbb{N} \to \{0, 1\}^r$ → Find $x_0, ..., x_{2^a-1} \in \mathbb{N}$ such that $\bigoplus_i f(x_i) = 0$.
 - We no longer have a length constraint n and w is a power of 2.
 - ▷ There is an infinite number of solutions.
- ▶ With the standard birthday algorithm:
 ▷ pick a list W₁ of XORs of 2^{a-1} vectors f(x_i),
 ▷ same for W₂ and then look for collisions,
 → the list size has to be 2^{r/2}.
 - we do not benefit from the infinite number of solutions...

- \blacktriangleright Lists W_1 and W_2 are built so as to help collisions: elements are not chosen at random.
 - \triangleright Start with 2^a lists $L_0, ... L_{2^a-1}$ each containing $2^{\frac{i}{a+1}}$ vectors $f(x_i)$,
 - \triangleright pairwise merge lists L_{2i} and L_{2i+1} to obtain 2^{a-1} lists L'_i of XORs of 2 $f(x_i)$. Keep only elements starting with $\frac{r}{a+1}$ zeros.
 - \rightarrow the L'_i still contain $2^{\frac{r}{a+1}}$ elements in average.
 - \triangleright similarly merge again until 2 lists of XORs of 2^{a-1} vectors starting with $\frac{(a-1)r}{a+1}$ zeros remain.
- We end up with a single solution in average, and all manipulated lists are of size $2^{\frac{r}{a+1}}$.

Application to CSD Addition of constraints

If w is not a power of 2:

- choose different size lists —> difficult to analyse,
- ▷ we only consider lists of XORs of $\frac{w}{2^a}$ elements.

► When the length constraint *n* is added:

▷ the starting lists may be too small,

- → use a smaller *a* and higher weight starting elements.
- ▷ all lists contain the same elements,
 - → less distinct elements in the merged lists.

Application to CSD Addition of constraints

We select 2^{a-1} distinct *a*-bit vectors s_j such that:

▷ in the L'_j lists we keep the XORs of weight w/2^{a-1} having s_j as their first a bits,
 → the (n/w/2^{a-1}) possible vectors are distributed among

 $\bigoplus s_i = 0$

the 2^{a-1} lists.

▷ we then use GBA normally on vectors of length r - a.
 ▷ We obtain the following constraint on a:

$$\frac{1}{2^a} \binom{n}{\frac{2w}{2^a}} \ge 2^{\frac{r-a}{a}}.$$

 \triangleright The complexity of the attack is then $\frac{r-a}{a}2^{\frac{r-a}{a}}$.

Using a non integer value for *a* An idealized, but realistic, algorithm

Integer values for a give a complexity curve like (a),
 zeroing a few bits in the lists L_j we obtain (b).

Bound on GBA applied to CSD

Our complexity considers an idealized algorithm:
 XORs of non-integer numbers of vectors,
 non-integer number of lists,
 impossible to achieve better with GBA.

For any parameter set (n, r, w) of CSD we have:

WF_{GBA}
$$(n, r, w) \ge \frac{r-a}{a} 2^{\frac{r-a}{a}}$$
 with a such that $\frac{1}{2^a} \binom{n}{\frac{2w}{2^a}} = 2^{\frac{r-a}{a}}$.

Application to some Existing Cryptosystems

Code-Based Encryption [McEliece 1978] and [Niederreiter 1986]

- We have to solve instances of CSD with a single "unexpected" solution,
 - ▷ below the Gilbert-Varshamov bound.
 - ▷ GBA can not be applied (a < 1 in the formula).
- Our bound on ISD gives a good approximation:

$\boxed{(m,w)}$	optimal p	optimal ℓ	binary work factor
(10, 50)	4	22	$2^{59.9}$
(11, 32)	6	33	$2^{86.8}$
(12, 41)	10	54	$2^{128.5}$

In the (10, 50) case, Canteaut-Chabaud costs $2^{64.2}$ and Bernstein-Lange-Peters $2^{60.5}$.

Parameters similar to those of encryption:

 \triangleright only one instance out of w! has a solution,

unlimited number of target syndromes,

- → for GBA, we can use a syndrome list in addition. [Bleichenbacher]
- We use an unbalanced GBA: 3 small lists of XORs of columns of *H*, one large list of syndromes.
 ▷ XORs of [^w/₃], w [^w/₃] [^w/₃] and [^w/₃] columns,
 ▷ we can't us any idealization (the gap is too large),
 → still we can give practical complexities.

McEliece-based Signature [Courtois-Finiasz-Sendrier 2001]

The time and memory complexities are respectively $O(\mathcal{T}\log \mathcal{T})$ and $O(\mathcal{M}\log \mathcal{M})$.

If
$$\frac{2^r}{\binom{n}{w-\lfloor w/3 \rfloor}} \ge \sqrt{\frac{2^r}{\binom{n}{\lfloor w/3 \rfloor}}}$$
:

$$\mathcal{T} = \frac{2^r}{\binom{n}{w - \lfloor w/3 \rfloor}} \text{ and } \mathcal{M} = \frac{\binom{n}{w - \lfloor w/3 \rfloor}}{\binom{n}{\lfloor w/3 \rfloor}},$$

otherwise:

$$\mathcal{T} = \mathcal{M} = \sqrt{rac{2^r}{\binom{n}{\lfloor w/3
floor}}}.$$

McEliece-based Signature [Courtois-Finiasz-Sendrier 2001]

The time and memory complexities are respectively $O(\mathcal{T}\log \mathcal{T})$ and $O(\mathcal{M}\log \mathcal{M})$.

	w = 8	w = 9	w = 10	w = 11	w = 12
m = 15	$2^{51.0}/2^{51.0}$	$2^{60.2}/2^{43.3}$	$2^{63.1}/2^{55.9}$	$2^{67.2}/2^{67.2}$	$2^{81.5}/2^{54.9}$
m = 16	$2^{54.1}/2^{54.1}$	$2^{63.3}/2^{46.5}$	$2^{66.2}/2^{60.0}$	$2^{71.3}/2^{71.3}$	$2^{85.6}/2^{59.0}$
m = 17	$2^{57.2}/2^{57.2}$	$2^{66.4}/2^{49.6}$	$2^{69.3}/2^{64.2}$	$2^{75.4}/2^{75.4}$	$2^{89.7}/2^{63.1}$
m = 18	$2^{60.3}/2^{60.3}$	$2^{69.5}/2^{52.7}$	$2^{72.4}/2^{68.2}$	$2^{79.5}/2^{79.5}$	$2^{93.7}/2^{67.2}$
m = 19	$2^{63.3}/2^{63.3}$	$2^{72.5}/2^{55.7}$	$2^{75.4}/2^{72.3}$	$2^{83.6}/2^{83.6}$	$2^{97.8}/2^{71.3}$
m = 20	$2^{66.4}/2^{66.4}$	$2^{75.6}/2^{58.8}$	$2^{78.5}/2^{76.4}$	$2^{87.6}/2^{87.6}$	$2^{101.9}/2^{75.4}$
m = 21	$2^{69.5}/2^{69.5}$	$2^{78.7}/2^{61.9}$	$2^{81.5}/2^{80.5}$	$2^{91.7}/2^{91.7}$	$2^{105.9}/2^{79.5}$
m = 22	$2^{72.6}/2^{72.6}$	$2^{81.7}/2^{65.0}$	$2^{84.6}/2^{84.6}$	$2^{95.8}/2^{95.8}$	$2^{110.0}/2^{83.6}$

Code-Based Hashing FSB

► We attack a compression function:

- necessarily many solutions for inversion or collision search.
- Standard case for the application of GBA:
 we directly use our formula with 2w for collisions, and w for inversion.
- More problematic case for ISD:
 we are between the zones of application of our two formulas...

Bounds on the complexity of GBA against FSB:

	n	r	w	inversion	collision
FSB ₁₆₀	$5 imes 2^{18}$	640	80	$2^{156.6}$	$2^{118.7}$
FSB_{224}	$7 imes 2^{18}$	896	112	$2^{216.0}$	$2^{163.4}$
FSB_{256}	2^{21}	1024	128	$2^{245.6}$	$2^{185.7}$
FSB_{384}	23×2^{16}	1472	184	$2^{360.2}$	$2^{268.8}$
FSB_{512}	31×2^{16}	1984	248	$2^{482.1}$	$2^{359.3}$

These are only bounds using an idealized algorithm. This does not give any attack.

- We described idealized version of known attacks against CSD:
 - these idealized versions have a complexity easier to analyse, allowing us to derive "simple" bounds
 - achieving better complexities than these bounds necessarily requires to change the algorithms.
 generalized birthday inside ISD?
- It is also interesting to note that existing algorithms have practical complexities very close to our bounds:
 these algorithms are already almost optimal.