
Security Bounds for the Design of
Code-Based Cryptosystems

M. Finiasz and N. Sendrier

The Syndrome Decoding Problem

e

S

Hr

n

Syndrome Decoding (SD)
Does e ∈ {0, 1}n of weight ≤ w such that e×H = S exist?

. NP-complete problem.

[Berlekamp, McEliece, van Tilborg - 1978]

sl
id

e
1/

22

The Syndrome Decoding Problem

e

S

Hr

n

Computational Syndrome Decoding (CSD)
Find e ∈ {0, 1}n of weight ≤ w such that e×H = S.

. The security of most code-based cryptosystems relies on

the difficulty of solving this problem.

sl
id

e
1/

22

Our Point of View

I Depending on parameters (n, r, w), what is the difficulty

of solving CSD?

. we are looking for a lower bound:

_ any attack on the system costs at least this.

I There are three families of attacks to look at:

. we describe an idealized version of each attack,

_ trying to take into account improvements to come.

. we propose a lower bound for each of them (or an

approximation of a lower bound).

sl
id

e
2/

22

Birthday Algorithm

Birthday Algorithm
Basic algorithm

I Build a list/hash table of XORs of w
2 columns of H:

. look for 2 equals elements in this set

_ each such pair gives a solution to the CSD instance.

I The size L of the list to build is:

. if
(

n
w

)
> 2r then L = 2

r
2,

. else, if the problem has a single solution, L =
(

n
w
2

)
.

I In both cases, the complexity is O(L log L) with regards

to time or memory.

sl
id

e
3/

22

Birthday Algorithm
Basic algorithm

I The basic technique has 2 drawbacks:

. one manipulates r-bit long XORs,

. in the second case, the solution is found 1
2

(
w
w
2

)
times.

I We thus improve/idealize the algorithm accordingly:

. introduce a “window” of size `

_ does not improve the asymptotic complexity,

. store a list of smaller size.

sl
id

e
4/

22

Birthday Algorithm
Detailed algorithm

I W1 et W2 are subsets of the words of weight w
2 .

input: H0 ∈ {0, 1}r×n, s ∈ {0, 1}r

repeat (main loop)

P ← random n× n permutation matrix

H ← H0P

for all e ∈ W1

i ← h`(eHT) (ba 1)

write(e, i) // store e at index i of a structure

for all e2 ∈ W2

i ← h`(s + e2H
T) (ba 2)

S ← read(i) // extract the elements stored at index i

for all e1 ∈ S

if e1H
T = s + e2H

T (ba 3)

return (e1 + e2)PT (success)

sl
id

e
5/

22

Birthday Algorithm
Effective cost

I We make two assumptions:

. for all pairs of words (e1, e2), the sum e1 + e2 is

uniformly distributed,

. if K0 is the cost of a complete test, the total cost is:

` ·](ba 1) + ` ·](ba 2) + K0 ·](ba 3).
I Then, the cost of solving an instance of CSD is lower

bounded by:

WFBA(n, r, w) = 2L log(K0L) with L=min
(√

(n
w),2r/2

)
.

_ L is the size of W1 and, in average, of W2.

sl
id

e
6/

22

Birthday Algorithm
Effective cost

I We make two assumptions:

. for all pairs of words (e1, e2), the sum e1 + e2 is

uniformly distributed,

. if K0 is the cost of a complete test, the total cost is:

` ·](ba 1) + ` ·](ba 2) + K0 ·](ba 3).
I Then, the cost of solving an instance of CSD is lower

bounded by:

WFBA(n, r, w) =
√

2L log(K0L) with L=min
(√

(n
w),2r/2

)
.

_ the attacker might choose better sets W1 and W2.

sl
id

e
6/

22

Information Set
Decoding (ISD)

Information Set Decoding
Basic idea

I The idea is to look for an information set:

_ a set of k positions containing no errors.

I For CSD, this is equivalent to finding a set of r columns

of H containing the w positions of a solution.

e

S

Hr

n
k

sl
id

e
7/

22

Information Set Decoding
Stern’s algorithm

I Each Gaussian elimination tests
(

r
w

)
solution candidates,

. we want to increase this number.

I We introduce two parameters ` and p. [Stern 1989]

. equality on a window of size ` _ birthday algorithm.

S'

H'r

n

1

1

0 `

w p- p

sl
id

e
8/

22

Information Set Decoding
Detailed algorithm

I W1 and W2 are words of weight p
2 and length k + `.

input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r

repeat (main loop)

P ← random n× n permutation matrix

(H ′, U) ← PGElim(H0P) // partial Gaussian elimination

s ← s0U
T

for all e ∈ W1

i ← h`(eH ′T) (isd 1)

write(e, i) // store e at index i of a structure

for all e2 ∈ W2

i ← h`(s + e2H
′T) (isd 2)

S ← read(i) // extract the elements stored at index i

for all e1 ∈ S

if wt(s + (e1 + e2)H ′T) = w − p (isd 3)

return (P, e1 + e2) (success)

sl
id

e
9/

22

Cost Estimation

I Again, we make two assumptions:

. for all pairs of words (e1, e2), the sum e1 + e2 is

uniformly distributed,

. if Kw−p is the cost of an isd 3 test, the total cost is:

` ·](isd 1) + ` ·](isd 2) + Kw−p ·](isd 3).
I For a CSD instance with a single solution:

WFISD(n, r, w) ≈ min
p

2`(n
w)

λ(r−`
w−p)

√
(k+`

p)
with `=log

(
Kw−p

√
(k

p)
)
.

I With λ = 1− e−1, success probability of the “birthday”.

sl
id

e
10

/2
2

Cost Estimation
When multiple solutions exist

I When
(

n
w

)
> 2r, we distinguish between 2 cases:

. either isd 3 has less than a solution:
(

r
w−p

)(
k
p

) ¿ 2r

_ a similar formula applies,

WFISD(n, r, w) ≈ min
p

2` 2r

λ(r−`
w−p)

√
(k+`

p)
with `=log

(
Kw−p

√
(k

p)
)
.

. or isd 3 has several solutions:
(

r
w−p

)(
k
p

)
> 2r

_ a single iteration is enough, using smaller lists,

WFISD(n, r, w) ≈ min
p

2` 2r/2√
(r−`

w−p)
with `=log

(
Kw−p

2r/2√
(r
w−p)

)
.

I Not always very tight, especially for intermediate cases...

sl
id

e
11

/2
2

Generalized Birthday
Algorithm (GBA)

Generalized Birthday Algorithm
Basic idea

I We first look at a modified problem with f : N→ {0, 1}r

_ Find x0, ..., x2a−1 ∈ N such that
⊕

i f(xi) = 0.

. We no longer have a length constraint n and w is a

power of 2.

. There is an infinite number of solutions.

I With the standard birthday algorithm:

. pick a list W1 of XORs of 2a−1 vectors f(xi),

. same for W2 and then look for collisions,

_ the list size has to be 2r/2.

. we do not benefit from the infinite number of solu-

tions...

sl
id

e
12

/2
2

Generalized Birthday Algorithm
Basic idea

I Lists W1 and W2 are built so as to help collisions:

elements are not chosen at random.

. Start with 2a lists L0, ...L2a−1 each containing 2
r

a+1

vectors f(xi),
. pairwise merge lists L2j and L2j+1 to obtain 2a−1 lists

L′j of XORs of 2 f(xi). Keep only elements starting

with r
a+1 zeros.

_ the L′j still contain 2
r

a+1 elements in average.

. similarly merge again until 2 lists of XORs of 2a−1

vectors starting with (a−1)r
a+1 zeros remain.

I We end up with a single solution in average, and all

manipulated lists are of size 2
r

a+1.

sl
id

e
13

/2
2

Application to CSD
Addition of constraints

I If w is not a power of 2:

. choose different size lists _ difficult to analyse,

. we only consider lists of XORs of w
2a elements.

I When the length constraint n is added:

. the starting lists may be too small,

_ use a smaller a and higher weight starting elements.

. all lists contain the same elements,

_ less distinct elements in the merged lists.

I We build the lists L′j so that they only contain unique

elements, bringing us back to the general case.

sl
id

e
14

/2
2

Application to CSD
Addition of constraints

I We select 2a−1 distinct a-bit vectors sj such that:⊕
sj = 0

. in the L′j lists we keep the XORs of weight w
2a−1 having

sj as their first a bits,

_ the
(

n
w/2a−1

)
possible vectors are distributed among

the 2a−1 lists.

. we then use GBA normally on vectors of length r− a.
I We obtain the following constraint on a:

1
2a

(
n
2w
2a

)
≥ 2

r−a
a .

. The complexity of the attack is then r−a
a 2

r−a
a .

sl
id

e
15

/2
2

Using a non integer value for a
An idealized, but realistic, algorithm

(a) (c)(b)

I Integer values for a give a complexity curve like (a),
. zeroing a few bits in the lists Lj we obtain (b).

I Almost the same as a using non-integer values (c)
_ this is what should be used in our bound.

sl
id

e
16

/2
2

Bound on GBA applied to CSD

I Our complexity considers an idealized algorithm:

. XORs of non-integer numbers of vectors,

. non-integer number of lists,

_ impossible to achieve better with GBA.

I For any parameter set (n, r, w) of CSD we have:

WFGBA(n, r, w) ≥ r−a
a 2

r−a
a with a such that 1

2a(n
2w
2a

)=2
r−a

a .

sl
id

e
17

/2
2

Application to some
Existing Cryptosystems

Code-Based Encryption
[McEliece 1978] and [Niederreiter 1986]

I We have to solve instances of CSD with a single “unex-

pected” solution,

. below the Gilbert-Varshamov bound.

. GBA can not be applied (a < 1 in the formula).

I Our bound on ISD gives a good approximation:

(m,w) optimal p optimal ` binary work factor

(10, 50) 4 22 259.9

(11, 32) 6 33 286.8

(12, 41) 10 54 2128.5

I In the (10, 50) case, Canteaut-Chabaud costs 264.2 and

Bernstein-Lange-Peters 260.5.

sl
id

e
18

/2
2

McEliece-based Signature
[Courtois-Finiasz-Sendrier 2001]

I Parameters similar to those of encryption:

. only one instance out of w! has a solution,

. unlimited number of target syndromes,

_ for GBA, we can use a syndrome list in addition.

[Bleichenbacher]

I We use an unbalanced GBA: 3 small lists of XORs of

columns of H, one large list of syndromes.

. XORs of dw
3e, w − dw

3e − bw
3c and bw

3c columns,

. we can’t us any idealization (the gap is too large),

_ still we can give practical complexities.

sl
id

e
19

/2
2

McEliece-based Signature
[Courtois-Finiasz-Sendrier 2001]

I The time and memory complexities are respectively

O(T log T) and O(M logM).

If 2r

(n
w−bw/3c)

≥
√

2r

(n
bw/3c)

:

T =
2r

(
n

w−bw/3c
) and M =

(
n

w−bw/3c
)

(
n

bw/3c
) ,

otherwise:

T = M =

√
2r

(
n

bw/3c
).

sl
id

e
20

/2
2

McEliece-based Signature
[Courtois-Finiasz-Sendrier 2001]

I The time and memory complexities are respectively

O(T log T) and O(M logM).

w = 8 w = 9 w = 10 w = 11 w = 12
m = 15 251.0/251.0 260.2/243.3 263.1/255.9 267.2/267.2 281.5/254.9

m = 16 254.1/254.1 263.3/246.5 266.2/260.0 271.3/271.3 285.6/259.0

m = 17 257.2/257.2 266.4/249.6 269.3/264.2 275.4/275.4 289.7/263.1

m = 18 260.3/260.3 269.5/252.7 272.4/268.2 279.5/279.5 293.7/267.2

m = 19 263.3/263.3 272.5/255.7 275.4/272.3 283.6/283.6 297.8/271.3

m = 20 266.4/266.4 275.6/258.8 278.5/276.4 287.6/287.6 2101.9/275.4

m = 21 269.5/269.5 278.7/261.9 281.5/280.5 291.7/291.7 2105.9/279.5

m = 22 272.6/272.6 281.7/265.0 284.6/284.6 295.8/295.8 2110.0/283.6

sl
id

e
20

/2
2

Code-Based Hashing
FSB

I We attack a compression function:

. necessarily many solutions for inversion or collision

search.

I Standard case for the application of GBA:

. we directly use our formula with 2w for collisions, and

w for inversion.

I More problematic case for ISD:

. we are between the zones of application of our two

formulas...

sl
id

e
21

/2
2

Code-Based Hashing
FSB

I Bounds on the complexity of GBA against FSB:

n r w inversion collision

FSB160 5× 218 640 80 2156.6 2118.7

FSB224 7× 218 896 112 2216.0 2163.4

FSB256 221 1 024 128 2245.6 2185.7

FSB384 23× 216 1 472 184 2360.2 2268.8

FSB512 31× 216 1 984 248 2482.1 2359.3

I These are only bounds using an idealized algorithm. This

does not give any attack.

sl
id

e
21

/2
2

Conclusion

I We described idealized version of known attacks against

CSD:

. these idealized versions have a complexity easier to

analyse, allowing us to derive “simple” bounds

. achieving better complexities than these bounds nec-

essarily requires to change the algorithms.

_ generalized birthday inside ISD?

I It is also interesting to note that existing algorithms have

practical complexities very close to our bounds:

. these algorithms are already almost optimal.

sl
id

e
22

/2
2

