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Overview of the problem

» Code reconstruction consists in finding the code and an
efficient decoder for the intercepted bitstream,

> if nothing is known about the encoder, this is generally
a hard problem.

» Depending on the type of code, some techniques exist:
> convolutional codes,

> linear block codes,

> LDPC codes.
[Valembois, Filliol, Barbier, Sendrier, Céte...]

» Here we focus on parallel turbo codes.
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Parallel Turbo Codes

Description

» \We consider rate % parallel turbo codes using 2 system-
atic convolutional encoders and a permutation 11

information
X output> X
, ,] convolutional
P/Q output> Y

turbo coded
| P/Q output > Z

» \We want to find P, @, P’, ()’ and 1I from the interleaved
outputs X, Y and Z, with some noise.
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First Step of Reconstruction

Isolating the outputs

» We apply convolutional code reconstruction techniques:

> search short parity check equations valid for offsets of
any multiple of n (n = 3 for standard interleaving).

> they will only involve bits of X and Y
—> we can Isolate Z,
—> with enough equations we can recover P’ and ()’.

» Deciding which of the reconstructed X and Y was indeed
X 1s impossible:
> Reconstruction only works for the correct choice:
—> in case of failure we start over.
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Second Step of Reconstruction

Finding the block/permutation length

» We can find the block length by using linear block code
reconstruction techniques:

> again search for parity check equations,
—> longer equations involving bits of Z.

For a permutation of length N and no puncturing,
the shortest block length with parity checks equations
involving bits of Z is equal to 3.V.
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Second Step of Reconstruction

Finding the block/permutation length

» We can find the block length by using linear block code
reconstruction techniques:

> again search for parity check equations,
—> longer equations involving bits of Z.

For a permutation of length N and no puncturing,
the shortest block length with parity checks equations
involving bits of Z is equal to 3.V.

» N can be large, depending on the noise level this step
can be very expensive,

> synchronization patterns or other similar things can
help guess the correct length.
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Third Step of Reconstruction

Finding everything else...

» Now one has to recover P, () and II from X and Z with
some noise.

> P and () can be exhaustively searched for,

> recovering II is the hard part.

» \We propose two methods:
> search for low weight parity check equations,

> guess the positions of 11 one by one, using a “decoder”
to decide which is correct.
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Using Parity Checks

» The input X is first permuted...
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Using Parity Checks

» ...then encoded by P/Q.
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Using Parity Checks

11]0{0]1])0f1[{0]1 110{0]1]0f{1]0]1
O0[0]1]0f{0J0]1]1 LJ1{1]1]0f1]1]1
1]011]0[1]1{0]0 0[1]0]0f{1]0[0]O
Of1]1]1{1]0]1]1 1]1{1]0]1{0]0]1
110{0]0]1{0[1]0 O0[0]1]0f[0J0]1fO
O[0]JOJ1[{Of1]1]1 110f1]1]0f{0]1]1
O0[1]0]J0f1]1]0]0 O0[0]J0]JOfOJ1]1{O

permuted parity check

» X1 and Z are linked by parity check equations,
> X and Z by permuted parity checks.
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Using Parity Checks

110]0[{1({0]1]0]1 110]10]1]0]1]0]1
0[{0[1]0]0]0]1]1 111]11]1]0)1]1]1
110]11]10]1])1]0]0 0]1{0f(0]1]0]0]0
O|1|1f[1[1|0f1]1 11111]10]1)0]0]1
110]0{0(1]0]1]0 0]0[1[{0]0]0]1]0
0[{0[O]1]0]1]1]1 110]11]11]0)0]1]1
0[1[0]0]1]1]0]0 0]0[{0f[0]0]1]1]0
0[{0[0]1]1]0]1]0 0]0[{0f[0]1]1]0]0
0[1[1]11]0]0]0|0 0]0{0f[1]1]0]0]0
permutation shifts parity check shifts

» X1 and Z are linked by parity check equations,
> any shift is also valid.
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Using Parity Checks

» Each parity check found is of the form AP on the Xy
part and A\() on the Z part

> one knows A() and the weight of AP

> it is possible to classify the P, () pairs depending on
their parity checks.

» Once P/(@ is known, one knows AP too and gets even
more information on II.

» For low noise levels this technique is very efficient.

> For higher noise levels, only some parity check equa-
tions are found, leaving parts of II unknown.
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Using a Convolutional

Decoder




Using a Convolutional Decoder

» For this technique, P/QQ has to be known or guessed.

» One wants to find the first position = of II: TI(z) =1

> there are IV possibilities,

> for each of the M intercepted blocks, one knows the
first output bit of the convolutional encoder P/Q)
—> the first “column” of Z

> each of the N “columns” of X corresponds to a
different set of input bits.

» For each possible value of x, one computes the entropy

of the internal state of the convolutional encoder P/(Q,

> N distributions of M samples each.
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Using a Convolutional Decoder

» When guessing x two cases can occur:
> for the correct choice (II(x) = 1), the entropy on the
encoder state should be quite low
—> directly related to the noise level
> for an incorrect choice (II(x) # 1), this entropy will
be higher
—> equivalent to having an unrelated input bit.
» Among the N computed distributions:
> N — 1 will follow a “bad” distribution,
> 1 will follow the “good” distribution.

& » The "bad” and “good’ distributions can be computed
trough sampling if the noise level is known.
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Using a Convolutional Decoder

Typical Distributions

occurrences

entropy

» For a Gaussian noise of standard deviation o quite high
the “target” distributions can still be distinguished

slide 18/22



Using a Convolutional Decoder

Our algorithm

» \We use a straightforward algorithm:
> the positions of II are recovered sequentially,

> at each step the most “probable” positions are selected
using a Neyman-Pearson test:
—> we fix a threshold and keep all candidates above
this threshold,

> at step 7, we consider the ¢ — 1 previous steps were
successful:
—> If no position is above the threshold, the candidate
Is discarded,

> once we reach the end, only a few candidates for 11
should remain.
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Using a Convolutional Decoder

Practical results

N o M  (theory) running time
64  0.43 50 (48) 0.2s
64 0.6 115 (115) 0.3s
64 1 1380 (1380) 12s
512 06 170 (169) 115
512 0.8 600 (597) 37s
512 1 2800 (2736) 1735
512 1.1 3840 (3837) 357s
512 1.3 29500 (29448)  4477s
10000 0.43 300 (163) 8173s
10000 0.6 250 (249) 7043s

» Complexity in O(N?M2™):
> however, the larger IV, the larger M must be.
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Using a Convolutional Decoder

Conclusion

» We can predict the number of intercepted words required
to reconstruct the turbo code:

> for low noise levels only few words are required.

» Particularly efficient technique for Gaussian noise:

> the distributions are quite messy for a BSC

» Recovery can fail for two reasons:

> the number of candidates explodes
—> happens when M is too small.

> the number of candidates drops to 0
—> bad choice for P/(@), or bad luck with the noise
distribution.
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Further Improvements

» Both techniques can be adapted to punctured turbo
codes

> the complexity will increase significantly (at least by
a factor V).

» Both methods can be combined:

> one should always spend a few seconds/minutes
searching for low weight parity checks,

> it helps find P/Q, and decreases the cost of the second
algorithm.
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