Methods for the Reconstruction of Parallel Turbo Codes

M. Cluzeau, M. Finiasz, and J.-P. Tillich

Overview of the problem

- We intercept a noisy bitstream and want to recover the (encrypted) information.

Overview of the problem

- Code reconstruction consists in finding the code and an efficient decoder for the intercepted bitstream,
\triangleright if nothing is known about the encoder, this is generally a hard problem.
- Depending on the type of code, some techniques exist:
\triangleright convolutional codes,
\triangleright linear block codes,
\triangleright LDPC codes.
[Valembois, Filliol, Barbier, Sendrier, Côte...]
- Here we focus on parallel turbo codes.

Parallel Turbo Codes

 Description- We consider rate $\frac{1}{3}$ parallel turbo codes using 2 systematic convolutional encoders and a permutation Π

- We want to find $P, Q, P^{\prime}, Q^{\prime}$ and Π from the interleaved outputs X, Y and Z, with some noise.

First Step of Reconstruction

 Isolating the outputs- We apply convolutional code reconstruction techniques:
\triangleright search short parity check equations valid for offsets of any multiple of n ($n=3$ for standard interleaving).
\triangleright they will only involve bits of X and Y
\rightarrow we can isolate Z,
\rightarrow with enough equations we can recover P^{\prime} and Q^{\prime}.
- Deciding which of the reconstructed X and Y was indeed X is impossible:
\triangleright Reconstruction only works for the correct choice:
\rightarrow in case of failure we start over.

Second Step of Reconstruction

 Finding the block/permutation length- We can find the block length by using linear block code reconstruction techniques:
\triangleright again search for parity check equations, \rightarrow longer equations involving bits of Z.

For a permutation of length N and no puncturing, the shortest block length with parity checks equations involving bits of Z is equal to $3 N$.

Second Step of Reconstruction

 Finding the block/permutation length- We can find the block length by using linear block code reconstruction techniques:
\triangleright again search for parity check equations, \rightarrow longer equations involving bits of Z.

For a permutation of length N and no puncturing, the shortest block length with parity checks equations involving bits of Z is equal to $3 N$.

- N can be large, depending on the noise level this step can be very expensive,
\triangleright synchronization patterns or other similar things can help guess the correct length.

Third Step of Reconstruction

 Finding everything else...- Now one has to recover P, Q and Π from X and Z with some noise.
$\triangleright P$ and Q can be exhaustively searched for, \triangleright recovering Π is the hard part.
- We propose two methods:
\triangleright search for low weight parity check equations,
\triangleright guess the positions of Π one by one, using a "decoder" to decide which is correct.

Using Parity Checks

Using Parity Checks

- The input X is first permuted...

Using Parity Checks

- ...then encoded by P / Q.

Using Parity Checks

X

1	0	0	1	0	1	0
0	0	1	1			
	0	1	0	0	0	0

	10	100

0	1	1	1	1	0	1

1	0	0	0	1	0

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

$X_{\text {п }}$
Z

010 0	
1 1 1 0 0 0 0 0	1 1 1 1 0 1 1
0 1 0 0 0 1 1	0 1 0 0 1 0 010
1 1 1 1 1 1 0	1 1 1 0 1 0 0 $0 \mid$
0 0 1 0 0 1 0 1	0 0 1 0 0 0 1
1	1 0 1 1 0 0 1

- The same process is applied to each block.

Using Parity Checks

X

1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	1
1	0	1	1	1	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	0
0	0	0	1	0	1	1	1

1	0	0	0	1	0	1	1
1	1	1	0	0	0	0	0
0	1	0	0	0	1	1	1
1	1	1	1	1	1	0	0
0	0	1	0	0	1	0	1
1	0	1	0	1	0	1	0

1	0	0	1	0	1	0	1
1	1	1	1	0	1	1	1
0	0	0	0	1	0	0	0
1	1	1	0	1	1	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0

- We receive noisy versions of X and Z, \triangleright we want to recover Π.

Using Parity Checks

$X_{\text {пI }}$	Z
1 0 0 0 1 0 1 1	1 0 0 1 0 1 1 1 1 1 1
1 1 1 0 0 0 0	1 1 1 1 0 1 1
0 1 0 0 0 1 1	0 1 0 0 1 0 0 0
1 1 1 1 1 1 0 0	1 1 1 0 1 0 0
0 0 0 1 0 0 1	0 0 1 0 0 0 1 0
1 1 1 0 1 0 1	1 0 1 1 0 0 1

- X_{Π} and Z are linked by parity check equations.

Using Parity Checks

X

1	0	0	1	0	1	0	1
0	0	1	0	0	0	1	1
1	0	1	0	1	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	1	1
0	0	0	1	0	1	1	1

| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | permuted parity check

Z

1	0	0	1	0	1	0	1
1	1	1	1	0	1	1	1
	1				1	1	1

| 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

1	1	1	0	1	0	0

0	0	1	0	0	0	1

1	0	1	1	0	0	1

0	0	0	0	0	1	1	0

- X_{Π} and Z are linked by parity check equations, $\triangleright X$ and Z by permuted parity checks.

Using Parity Checks

X

1	0	0	1	0	1	0
0	0	1	0	0		1

| 1 | 0 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

| 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

| 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

0	1	0	0	1	1	0

| 0 | 0 | 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

| 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | permutation shifts

Z

1	0	0	1	0	1	0	1
1	1	1	1	0	1	1	1

| 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

0	1	0	0	1	0	0

1	1	1	0	1	0	0

0	0	1	0	0	0	1

1	0	1	1	0	0	1

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

0	0	1	0	1	1	0	0
0	1	0	1	1	0	0	0

- X_{Π} and Z are linked by parity check equations, \triangleright any shift is also valid.

Using Parity Checks

X

1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	1
1	0	1	1	1	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	0
0	0	0	1	0	1	1	1

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1+D^{2}+D^{3}+D^{4} \\
\hline \hline 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1+D^{4}+D^{5}
\end{array}
$$

1	0	0	1	0	1	0	1
	1	1	1				

| 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

0	0	0	0	1	0	0

| 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

| 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

| 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

$1+D^{2}$| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$1+D^{3}$| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Each parity check we find gives us information \triangleright on P and Q and on Π.

Using Parity Checks

- Each parity check found is of the form λP on the X_{Π} part and λQ on the Z part
\triangleright one knows λQ and the weight of λP
\triangleright it is possible to classify the P, Q pairs depending on their parity checks.
- Once P / Q is known, one knows λP too and gets even more information on Π.
- For low noise levels this technique is very efficient.
\triangleright For higher noise levels, only some parity check equations are found, leaving parts of Π unknown.

Using a Convolutional Decoder

Using a Convolutional Decoder

- For this technique, P / Q has to be known or guessed.
- One wants to find the first position x of $\Pi: \Pi(x)=1$ \triangleright there are N possibilities,
\triangleright for each of the M intercepted blocks, one knows the first output bit of the convolutional encoder P / Q \rightarrow the first "column" of Z
\triangleright each of the N "columns" of X corresponds to a different set of input bits.
- For each possible value of x, one computes the entropy of the internal state of the convolutional encoder P / Q, $\triangleright N$ distributions of M samples each.

Using a Convolutional Decoder

- When guessing x two cases can occur:
\triangleright for the correct choice $(\Pi(x)=1)$, the entropy on the encoder state should be quite low
\rightarrow directly related to the noise level
\triangleright for an incorrect choice $(\Pi(x) \neq 1)$, this entropy will be higher
\rightarrow equivalent to having an unrelated input bit.
- Among the N computed distributions:
$\triangleright N-1$ will follow a "bad" distribution,
$\triangleright 1$ will follow the "good" distribution.
\approx The "bad" and "good" distributions can be computed trough sampling if the noise level is known.

Using a Convolutional Decoder

 Typical Distributions
\approx For a Gaussian noise of standard deviation σ quite high the "target" distributions can still be distinguished

Using a Convolutional Decoder

 Our algorithm- We use a straightforward algorithm:
\triangleright the positions of Π are recovered sequentially,
\triangleright at each step the most "probable" positions are selected using a Neyman-Pearson test:
\rightarrow we fix a threshold and keep all candidates above this threshold,
\triangleright at step i, we consider the $i-1$ previous steps were successful:
\rightarrow if no position is above the threshold, the candidate is discarded,
\triangleright once we reach the end, only a few candidates for Π should remain.

Using a Convolutional Decoder

 Practical results| N | σ | M | (theory) | running time |
| :---: | :---: | ---: | :--- | :---: |
| 64 | 0.43 | 50 | (48) | 0.2 s |
| 64 | 0.6 | 115 | (115) | 0.3 s |
| 64 | 1 | 1380 | (1380) | 12 s |
| 512 | 0.6 | 170 | (169) | 11 s |
| 512 | 0.8 | 600 | (597) | 37 s |
| 512 | 1 | 2800 | (2736) | 173 s |
| 512 | 1.1 | 3840 | (3837) | 357 s |
| 512 | 1.3 | 29500 | (29448) | 4477 s |
| 10000 | 0.43 | 300 | (163) | 8173 s |
| 10000 | 0.6 | 250 | (249) | 7043 s |

\approx Complexity in $\Theta\left(N^{2} M 2^{m}\right)$:
\triangleright however, the larger N, the larger M must be.

Using a Convolutional Decoder

Conclusion

- We can predict the number of intercepted words required to reconstruct the turbo code:
\triangleright for low noise levels only few words are required.
- Particularly efficient technique for Gaussian noise:
\triangleright the distributions are quite messy for a BSC
- Recovery can fail for two reasons:
\triangleright the number of candidates explodes
\rightarrow happens when M is too small.
\triangleright the number of candidates drops to 0
\rightarrow bad choice for P / Q, or bad luck with the noise distribution.

Further Improvements

- Both techniques can be adapted to punctured turbo codes
\triangleright the complexity will increase significantly (at least by a factor N).
- Both methods can be combined:
\triangleright one should always spend a few seconds/minutes searching for low weight parity checks,
\triangleright it helps find P / Q, and decreases the cost of the second algorithm.

