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IWe intercept a noisy bitstream and want to recover the

(encrypted) information.
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Overview of the problem

ICode reconstruction consists in finding the code and an

efficient decoder for the intercepted bitstream,

◃ if nothing is known about the encoder, this is generally

a hard problem.

IDepending on the type of code, some techniques exist:

◃ convolutional codes,

◃ linear block codes,

◃ LDPC codes.

[Valembois, Filliol, Barbier, Sendrier, Côte...]

IHere we focus on parallel turbo codes.
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Parallel Turbo Codes
Description

IWe consider rate 1
3 parallel turbo codes using 2 system-

atic convolutional encoders and a permutation Π

IWe want to find P , Q, P ′, Q′ and Π from the interleaved

outputs X, Y and Z, with some noise.
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First Step of Reconstruction
Isolating the outputs

IWe apply convolutional code reconstruction techniques:

◃ search short parity check equations valid for offsets of

any multiple of n (n = 3 for standard interleaving).

◃ they will only involve bits of X and Y_ we can isolate Z,_ with enough equations we can recover P ′ and Q′.

IDeciding which of the reconstructedX and Y was indeed

X is impossible:

◃ Reconstruction only works for the correct choice:_ in case of failure we start over.
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Second Step of Reconstruction
Finding the block/permutation length

IWe can find the block length by using linear block code

reconstruction techniques:

◃ again search for parity check equations,_ longer equations involving bits of Z.

For a permutation of length N and no puncturing,

the shortest block length with parity checks equations

involving bits of Z is equal to 3N .
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Second Step of Reconstruction
Finding the block/permutation length

IWe can find the block length by using linear block code

reconstruction techniques:

◃ again search for parity check equations,_ longer equations involving bits of Z.

For a permutation of length N and no puncturing,

the shortest block length with parity checks equations

involving bits of Z is equal to 3N .

IN can be large, depending on the noise level this step

can be very expensive,

◃ synchronization patterns or other similar things can

help guess the correct length.
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Third Step of Reconstruction
Finding everything else...

INow one has to recover P , Q and Π from X and Z with

some noise.

◃ P and Q can be exhaustively searched for,

◃ recovering Π is the hard part.

IWe propose two methods:

◃ search for low weight parity check equations,

◃ guess the positions of Π one by one, using a “decoder”

to decide which is correct.
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Using Parity Checks



Using Parity Checks

X X
Π

IThe input X is first permuted...

◃ any shift is also valid.
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Using Parity Checks

Z

D D
D

X X
Π

I ...then encoded by P/Q.

◃ any shift is also valid.
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Using Parity Checks
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IThe same process is applied to each block.

◃ any shift is also valid.
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Using Parity Checks

ZX X
Π

IWe receive noisy versions of X and Z,

◃ we want to recover Π.p
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Using Parity Checks

ZX X
Π
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parity check

IXΠ and Z are linked by parity check equations.

◃ any shift is also valid.
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Using Parity Checks

ZX X
Π
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IXΠ and Z are linked by parity check equations,

◃ X and Z by permuted parity checks.
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Using Parity Checks

ZX
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IXΠ and Z are linked by parity check equations,

◃ any shift is also valid.
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Using Parity Checks

ZX
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I Each parity check we find gives us information

◃ on P and Q and on Π.
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Using Parity Checks

I Each parity check found is of the form λP on the XΠ

part and λQ on the Z part

◃ one knows λQ and the weight of λP

◃ it is possible to classify the P,Q pairs depending on

their parity checks.

IOnce P/Q is known, one knows λP too and gets even

more information on Π.

I For low noise levels this technique is very efficient.

◃ For higher noise levels, only some parity check equa-

tions are found, leaving parts of Π unknown.
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Using a Convolutional
Decoder



Using a Convolutional Decoder

I For this technique, P/Q has to be known or guessed.

IOne wants to find the first position x of Π: Π(x) = 1

◃ there are N possibilities,

◃ for each of the M intercepted blocks, one knows the

first output bit of the convolutional encoder P/Q_ the first “column” of Z

◃ each of the N “columns” of X corresponds to a

different set of input bits.

I For each possible value of x, one computes the entropy

of the internal state of the convolutional encoder P/Q,

◃ N distributions of M samples each.
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Using a Convolutional Decoder

IWhen guessing x two cases can occur:

◃ for the correct choice (Π(x) = 1), the entropy on the

encoder state should be quite low_ directly related to the noise level

◃ for an incorrect choice (Π(x) ̸= 1), this entropy will

be higher_ equivalent to having an unrelated input bit.

IAmong the N computed distributions:

◃ N − 1 will follow a “bad” distribution,

◃ 1 will follow the “good” distribution.

IThe “bad” and “good” distributions can be computed

trough sampling if the noise level is known.
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Using a Convolutional Decoder
Typical Distributions

I For a Gaussian noise of standard deviation σ quite high

the “target” distributions can still be distinguished
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Using a Convolutional Decoder
Our algorithm

IWe use a straightforward algorithm:

◃ the positions of Π are recovered sequentially,

◃ at each step the most “probable” positions are selected

using a Neyman-Pearson test:_ we fix a threshold and keep all candidates above

this threshold,

◃ at step i, we consider the i − 1 previous steps were

successful:_ if no position is above the threshold, the candidate

is discarded,

◃ once we reach the end, only a few candidates for Π

should remain.
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Using a Convolutional Decoder
Practical results

N σ M (theory) running time

64 0.43 50 (48) 0.2 s

64 0.6 115 (115) 0.3 s

64 1 1380 (1380) 12 s

512 0.6 170 (169) 11 s

512 0.8 600 (597) 37 s

512 1 2 800 (2 736) 173 s

512 1.1 3 840 (3 837) 357 s

512 1.3 29 500 (29 448) 4 477 s

10 000 0.43 300 (163) 8 173 s

10 000 0.6 250 (249) 7 043 s

IComplexity in Θ(N 2M2m):

◃ however, the larger N , the larger M must be.
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Using a Convolutional Decoder
Conclusion

IWe can predict the number of intercepted words required

to reconstruct the turbo code:

◃ for low noise levels only few words are required.

IParticularly efficient technique for Gaussian noise:

◃ the distributions are quite messy for a BSC

IRecovery can fail for two reasons:

◃ the number of candidates explodes_ happens when M is too small.

◃ the number of candidates drops to 0_ bad choice for P/Q, or bad luck with the noise

distribution.
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Further Improvements

IBoth techniques can be adapted to punctured turbo

codes

◃ the complexity will increase significantly (at least by

a factor N).

IBoth methods can be combined:

◃ one should always spend a few seconds/minutes

searching for low weight parity checks,

◃ it helps find P/Q, and decreases the cost of the second

algorithm.
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