Methods for the Reconstruction of
Parallel Turbo Codes

M. Cluzeau, M. Finiasz, and J.-P. Tillich

€4

ENSTA @ iINRIA

ParisTech

slide 1/22

Source

{

Compression

'

Encryption

{

Encoding

Noisy channel

Encoded message E

T

Overview of the problem

Recipient

t

Decompression

T

Decryption

T

Decoding

f

Interception

(encrypted) information.

» WWe intercept a noisy bitstream and want to recover the

Overview of the problem

» Code reconstruction consists in finding the code and an
efficient decoder for the intercepted bitstream,

> if nothing is known about the encoder, this is generally
a hard problem.

» Depending on the type of code, some techniques exist:
> convolutional codes,

> linear block codes,

> LDPC codes.
[Valembois, Filliol, Barbier, Sendrier, Céte...]

» Here we focus on parallel turbo codes.

slide 2/22

Parallel Turbo Codes

Description

» \We consider rate % parallel turbo codes using 2 system-
atic convolutional encoders and a permutation 11

information
X output> X
, ,] convolutional
P/Q output> Y

turbo coded
| P/Q output > Z

» \We want to find P, @, P’, ()’ and 1I from the interleaved
outputs X, Y and Z, with some noise.

slide 3/22

First Step of Reconstruction

Isolating the outputs

» We apply convolutional code reconstruction techniques:

> search short parity check equations valid for offsets of
any multiple of n (n = 3 for standard interleaving).

> they will only involve bits of X and Y
—> we can Isolate Z,
—> with enough equations we can recover P’ and ()’.

» Deciding which of the reconstructed X and Y was indeed
X 1s impossible:
> Reconstruction only works for the correct choice:
—> in case of failure we start over.

slide 4/22

Second Step of Reconstruction

Finding the block/permutation length

» We can find the block length by using linear block code
reconstruction techniques:

> again search for parity check equations,
—> longer equations involving bits of Z.

For a permutation of length N and no puncturing,
the shortest block length with parity checks equations
involving bits of Z is equal to 3.V.

slide 5/22

slide 5/22

Second Step of Reconstruction

Finding the block/permutation length

» We can find the block length by using linear block code
reconstruction techniques:

> again search for parity check equations,
—> longer equations involving bits of Z.

For a permutation of length N and no puncturing,
the shortest block length with parity checks equations
involving bits of Z is equal to 3.V.

» N can be large, depending on the noise level this step
can be very expensive,

> synchronization patterns or other similar things can
help guess the correct length.

slide 6/22

Third Step of Reconstruction

Finding everything else...

» Now one has to recover P, () and II from X and Z with
some noise.

> P and () can be exhaustively searched for,

> recovering II is the hard part.

» \We propose two methods:
> search for low weight parity check equations,

> guess the positions of 11 one by one, using a “decoder”
to decide which is correct.

Using Parity Checks

Using Parity Checks

» The input X is first permuted...

slide 7/22

Using Parity Checks

» ...then encoded by P/Q.

slide 8/22

(/)]
4
(@)
D —ll—=lloll—~]lloll—
- ol ol1o)]]
C ||]| O]||O]|O]|O
Fey oflo]|—|[—]lo]lo] «——-
nﬂa —||—=]lollo]lo]l—
Dl oll—l|loll—|—]]|—
oll—||—]||—]||lo]|lo ,
o0 S ~
n |||}l |_|
) — | O
- A re
- SE
—+ p c
@
][O]|O|]|]]|O D et
—|oll—]||lollo]l]|— H v
olloll—~ll—~]|l—~|lo + .m
— — —
(@) |l [a») (@) —®
oll—lloll—ll—|]|— O
O
O] —]]|O]]|O (g}
—ll—]|Ooll—H]||Oo]]— 0p]
)]
(V)]
Q
@
—ll—lloll—~]llo]ll— o
oll—lloll—l|—]]— rD||
—lloll~]llollo]ll— D)
olloll—ll—ll—llo m
][O |O]||H]|[O}]]| %
oll—l|l—ll—]|lollo (D)
-
ollo|llo]l—]lo||lo —
—|loll—]lloll—llo >

22/6 °pl|s —

()]
4
% —|[—|lo]||—]lo]lo
- ol ollIol]
C | [—]|O||I—||O]||O
Fey SIEIEIENEE
nﬂa —||—]lollo]lo]—
Dl oll—l|oll—|—]]—
0 oll—lloll—]lollo
- =11kl l=11E=]11[=]1]=)
s -~
= N
=
-
(v
5
m.
S F
S
%e
>
> O
@)
>
o L
c B
oll=lloll—=]lo!l—
ollo!ll—||—]l—~|lo o ©
O =
—l|lOo]ll—|l—llO]|]|— mme
oll—ll—ll—||lo]||lo eW
—|lolloll—~]lollo WD
| IO|II]IO|II—]1O >

2z/0T1 °p!|s —

()]

X

C i |

D oll—|lo]|— o

- oll—=llollo]l—]]— —

O il =1ll=] =]]= —

Fey olloll~][—~]lo]lo o

- —|l—=llo]llollo]ll— o n

(qv] -

all oll—lloll—ll—]|]|—) (@)

B0 oll—|l—]l—|lollo o ._qLa
Y

- —||—|lol—||lo]]— ol Y -

T o
-

z =
> ¥
= @)

OO H|IO]|IH]]|O Ol © (D)
o N

i (@) i (@) O i | C
ollo|l—=ll—=]|—|lo — >,
i)

=== o dw
ollolloll—llo]lo — qDau
O (@) | O VJ
oll—=|ll—]l~|lollo o O
(@) | (@) — (@) w
X

-

—ll—lloll—llo]ll— (D)
S

Sl (g}
=l =11kl =1 =]]k= N
(@) (@) | i Ao | (@) d
—||lo]llo]ll—H]||lo]]|— qna
oll—ll—ll—]|lo|lo —
ollolloll—]lollo VA
| IO|II]IO|I—]1O >

2/ 11 °pl|s —

Using Parity Checks

11]0{0]1])0f1[{0]1 110{0]1]0f{1]0]1
O0[0]1]0f{0J0]1]1 LJ1{1]1]0f1]1]1
1]011]0[1]1{0]0 0[1]0]0f{1]0[0]O
Of1]1]1{1]0]1]1 1]1{1]0]1{0]0]1
110{0]0]1{0[1]0 O0[0]1]0f[0J0]1fO
O[0]JOJ1[{Of1]1]1 110f1]1]0f{0]1]1
O0[1]0]J0f1]1]0]0 O0[0]J0]JOfOJ1]1{O

permuted parity check

» X1 and Z are linked by parity check equations,
> X and Z by permuted parity checks.

slide 12/22

Using Parity Checks

110]0[{1({0]1]0]1 110]10]1]0]1]0]1
0[{0[1]0]0]0]1]1 111]11]1]0)1]1]1
110]11]10]1])1]0]0 0]1{0f(0]1]0]0]0
O|1|1f[1[1|0f1]1 11111]10]1)0]0]1
110]0{0(1]0]1]0 0]0[1[{0]0]0]1]0
0[{0[O]1]0]1]1]1 110]11]11]0)0]1]1
0[1[0]0]1]1]0]0 0]0[{0f[0]0]1]1]0
0[{0[0]1]1]0]1]0 0]0[{0f[0]1]1]0]0
0[1[1]11]0]0]0|0 0]0{0f[1]1]0]0]0
permutation shifts parity check shifts

» X1 and Z are linked by parity check equations,
> any shift is also valid.

slide 13/22

()]
X
%]| OO O @) i fa»)
- oll—=llollo]l—~]||— — | [~
C][OOI H]IOIO (a»] §l [e»]
Fey olloll—=][=]lo]llo —|[o
- —ll—=llollollo]l]|— oll— —
© o
ol oll—=lloll—=]]—|]— ollo B
4
Ol O]]H]|O]]O Ol O (v
20 =
- =11zl {=11E=]l[=]][=) ol|O -
7)) SN O
D i ¥=
+ + L=
—
()]
-
)]
D)
2
oY0)
T
c =
— =
mo
O
X C
O @©
(D)
—ll=lloll—]llo]ll— ollo eruQ
—||o|l|l—]||lollo]]— —||— 2 <
v ©
olloll—ll—]l—]]lo () i [e») (@V)
o R
—loll—=ll—~llol]|— —| o
L C
oll=ll—=ll—=]llollo oll— O o
O] O|]|H]|O OO >

ze/v1 9pIs —

Using Parity Checks

» Each parity check found is of the form AP on the Xy
part and A\() on the Z part

> one knows A() and the weight of AP

> it is possible to classify the P, () pairs depending on
their parity checks.

» Once P/(@ is known, one knows AP too and gets even
more information on II.

» For low noise levels this technique is very efficient.

> For higher noise levels, only some parity check equa-
tions are found, leaving parts of II unknown.

slide 15/22

Using a Convolutional

Decoder

Using a Convolutional Decoder

» For this technique, P/QQ has to be known or guessed.

» One wants to find the first position = of II: TI(z) =1

> there are IV possibilities,

> for each of the M intercepted blocks, one knows the
first output bit of the convolutional encoder P/Q)
—> the first “column” of Z

> each of the N “columns” of X corresponds to a
different set of input bits.

» For each possible value of x, one computes the entropy

of the internal state of the convolutional encoder P/(Q,

> N distributions of M samples each.

slide 16/22

Using a Convolutional Decoder

» When guessing x two cases can occur:
> for the correct choice (II(x) = 1), the entropy on the
encoder state should be quite low
—> directly related to the noise level
> for an incorrect choice (II(x) # 1), this entropy will
be higher
—> equivalent to having an unrelated input bit.
» Among the N computed distributions:
> N — 1 will follow a “bad” distribution,
> 1 will follow the “good” distribution.

& » The "bad” and “good’ distributions can be computed
trough sampling if the noise level is known.

slide 17/

Using a Convolutional Decoder

Typical Distributions

occurrences

entropy

» For a Gaussian noise of standard deviation o quite high
the “target” distributions can still be distinguished

slide 18/22

Using a Convolutional Decoder

Our algorithm

» \We use a straightforward algorithm:
> the positions of II are recovered sequentially,

> at each step the most “probable” positions are selected
using a Neyman-Pearson test:
—> we fix a threshold and keep all candidates above
this threshold,

> at step 7, we consider the ¢ — 1 previous steps were
successful:
—> If no position is above the threshold, the candidate
Is discarded,

> once we reach the end, only a few candidates for 11
should remain.

slide 19/22

Using a Convolutional Decoder

Practical results

N o M (theory) running time
64 0.43 50 (48) 0.2s
64 0.6 115 (115) 0.3s
64 1 1380 (1380) 12s
512 06 170 (169) 115
512 0.8 600 (597) 37s
512 1 2800 (2736) 1735
512 1.1 3840 (3837) 357s
512 1.3 29500 (29448) 4477s
10000 0.43 300 (163) 8173s
10000 0.6 250 (249) 7043s

» Complexity in O(N?M2™):
> however, the larger IV, the larger M must be.

slide 20/22

Using a Convolutional Decoder

Conclusion

» We can predict the number of intercepted words required
to reconstruct the turbo code:

> for low noise levels only few words are required.

» Particularly efficient technique for Gaussian noise:

> the distributions are quite messy for a BSC

» Recovery can fail for two reasons:

> the number of candidates explodes
—> happens when M is too small.

> the number of candidates drops to 0
—> bad choice for P/(@), or bad luck with the noise
distribution.

slide 21/22

Further Improvements

» Both techniques can be adapted to punctured turbo
codes

> the complexity will increase significantly (at least by
a factor V).

» Both methods can be combined:

> one should always spend a few seconds/minutes
searching for low weight parity checks,

> it helps find P/Q, and decreases the cost of the second
algorithm.

slide 22/22

