Methods for the Reconstruction of Parallel Turbo Codes

M. Cluzeau, M. Finiasz, and J.-P. Tillich

Overview of the problem

slide 1/22

We intercept a noisy bitstream and want to recover the (encrypted) information.

Overview of the problem

- Code reconstruction consists in finding the code and an efficient decoder for the intercepted bitstream,
 - if nothing is known about the encoder, this is generally a hard problem.
- Depending on the type of code, some techniques exist:
 convolutional codes,
 - Inear block codes,
 - ▷ LDPC codes.

slide 2/22

[Valembois, Filliol, Barbier, Sendrier, Côte...]

Here we focus on parallel turbo codes.

Parallel Turbo Codes Description

► We consider rate $\frac{1}{3}$ parallel turbo codes using 2 systematic convolutional encoders and a permutation Π

We want to find P, Q, P', Q' and ∏ from the interleaved outputs X, Y and Z, with some noise.

First Step of Reconstruction Isolating the outputs

► We apply convolutional code reconstruction techniques:

- ▷ search short parity check equations valid for offsets of any multiple of n (n = 3 for standard interleaving).
- \triangleright they will only involve bits of X and Y

 \rightarrow we can isolate Z,

 \rightarrow with enough equations we can recover P' and Q'.

- Deciding which of the reconstructed X and Y was indeed X is impossible:
 - Reconstruction only works for the correct choice:
 in case of failure we start over.

Second Step of Reconstruction Finding the block/permutation length

We can find the block length by using linear block code reconstruction techniques:

▷ again search for parity check equations,

 \rightarrow longer equations involving bits of Z.

For a permutation of length N and no puncturing, the shortest block length with parity checks equations involving bits of Z is equal to 3N.

Second Step of Reconstruction Finding the block/permutation length

We can find the block length by using linear block code reconstruction techniques:

▷ again search for parity check equations,

 \rightarrow longer equations involving bits of Z.

For a permutation of length N and no puncturing, the shortest block length with parity checks equations involving bits of Z is equal to 3N.

N can be large, depending on the noise level this step can be very expensive,

synchronization patterns or other similar things can help guess the correct length.

Third Step of Reconstruction Finding everything else...

- ► Now one has to recover P, Q and II from X and Z with some noise.
 - $\triangleright P$ and Q can be exhaustively searched for,
 - \triangleright recovering Π is the hard part.

- We propose two methods:
 - ▷ search for low weight parity check equations,
 - ▷ guess the positions of Π one by one, using a "decoder" to decide which is correct.

 \blacktriangleright The input X is first permuted...

- ... then encoded by P/Q.

slide 8/22

0

0

slide 9/22

► The same process is applied to each block.

Ζ

1	1	0	1	0	1	0	1
0	0	1	0	0	0	1	1
1	0	1	1	1	1	0	0
0	1	1	1	1	0	1	1
1	0	0	0	1	0	0	0
0	0	0	1	0	1	1	1

▶ We receive noisy versions of X and Z,
 ▷ we want to recover Π.

0

1

 \triangleright X_{Π} and Z are linked by parity check equations.

Ζ

 X_{Π}

X_Π and Z are linked by parity check equations,
 X and Z by permuted parity checks.

- slide 13/22
- X_Π and Z are linked by parity check equations,
 ▷ any shift is also valid.

Ζ

 X_{Π}

slide 14/22

► Each parity check we find gives us information
 ▷ on P and Q and on Π.

- Each parity check found is of the form λP on the X_{Π} part and λQ on the Z part
 - \blacktriangleright one knows λQ and the weight of λP
 - ▷ it is possible to classify the P, Q pairs depending on their parity checks.
- ▶ Once P/Q is known, one knows λP too and gets even more information on Π .
- ▶ For low noise levels this technique is very efficient.
 ▶ For higher noise levels, only some parity check equations are found, leaving parts of ∏ unknown.

Using a Convolutional Decoder

Using a Convolutional Decoder

- For this technique, P/Q has to be known or guessed.
- One wants to find the first position x of Π: Π(x) = 1
 ▷ there are N possibilities,
 - ▷ for each of the M intercepted blocks, one knows the first output bit of the convolutional encoder P/Q
 → the first "column" of Z
 - each of the N "columns" of X corresponds to a different set of input bits.
- For each possible value of x, one computes the entropy of the internal state of the convolutional encoder P/Q,
 N distributions of M samples each.

Using a Convolutional Decoder

 \triangleright When guessing x two cases can occur:

 \triangleright for the correct choice ($\Pi(x) = 1$), the entropy on the encoder state should be quite low

→ directly related to the noise level

 \triangleright for an incorrect choice $(\Pi(x) \neq 1)$, this entropy will be higher

→ equivalent to having an unrelated input bit.

Among the N computed distributions:

 $\triangleright N-1$ will follow a "bad" distribution,

 \triangleright 1 will follow the "good" distribution.

The "bad" and "good" distributions can be computed trough sampling if the noise level is known

Using a Convolutional Decoder **Typical Distributions** occurrences $\sigma = 1.3$ $\sigma = 1.0$ $\sigma = 0.8$ 0.5entropy 0

For a Gaussian noise of standard deviation σ quite high the "target" distributions can still be distinguished

slide 18/22

Using a Convolutional Decoder Our algorithm

- ► We use a straightforward algorithm:
 - \triangleright the positions of Π are recovered sequentially,
 - at each step the most "probable" positions are selected using a Neyman-Pearson test:
 - → we fix a threshold and keep all candidates above this threshold,
 - ▷ at step *i*, we consider the i 1 previous steps were successful:
 - → if no position is above the threshold, the candidate is discarded,
 - ▷ once we reach the end, only a few candidates for Π should remain.

Using a Convolutional Decoder Practical results

\overline{N}	σ	M	(theory)	running time
64	0.43	50	(48)	0.2 s
64	0.6	115	(115)	0.3 s
64	1	1380	(1380)	12 s
512	0.6	170	(169)	11 s
512	0.8	600	(597)	37 s
512	1	2 800	(2736)	173 s
512	1.1	3840	(3837)	357 s
512	1.3	29 500	(29 448)	4 477 s
10 000	0.43	300	(163)	8 173 s
10 000	0.6	250	(249)	7 043 s

Complexity in $\Theta(N^2M2^m)$: however, the larger M^T \triangleright however, the larger N, the larger M must be.

Using a Convolutional Decoder Conclusion

- We can predict the number of intercepted words required to reconstruct the turbo code:
 - ▷ for low noise levels only few words are required.
- Particularly efficient technique for Gaussian noise:
 the distributions are quite messy for a BSC
- Recovery can fail for two reasons:
 - ▷ the number of candidates explodes
 - \rightarrow happens when M is too small.
 - ▷ the number of candidates drops to 0
 - \rightarrow bad choice for P/Q, or bad luck with the noise distribution.

- Both techniques can be adapted to punctured turbo codes
 - ▷ the complexity will increase significantly (at least by a factor N).

- Both methods can be combined:
 - one should always spend a few seconds/minutes searching for low weight parity checks,
 - ▷ it helps find P/Q, and decreases the cost of the second algorithm.