Parallel-CFS Strengthening the CFS McEliece-Based Signature Scheme

Matthieu Finiasz

Digital Signatures The hash and sign paradigm

× Any public key encryption can be turned into a signature.

Digital Signatures The hash and sign paradigm

× The document is simply hashed into a random ciphertext.

slide 1/18

The Niederreiter Cryptosystem

 $\times H$ is a scrambled Goppa code parity check matrix.

The Niederreiter Cryptosystem The signature problem

× Ciphertexts are always decodable syndromes...

The Niederreiter Cryptosystem The signature problem

× Random syndromes are not decodable.

slide 3/18

The CFS Signature Scheme [Courtois-Finiasz-Sendrier 2001]

slide 4/18

× Key generation works like for Niederreiter.

× Signature repeats the following steps: × compute $h_i = h(D, i)$, × try to decode the syndrome h_i into s, success $\sim \frac{1}{t!}$ × the signature is (s, i_0) for the first decodable h_{i_0} .

× Verification is simple and fast:

- st compute $h_{i_0}=h(D,i_0)$,
- × compute e_s , the word of weight t corresponding to s, × compare h_{i_0} and $H \times e_s$.

One out of Many Syndrome Decoding

*When attacking Niederreiter, one has to find the error pattern corresponding to a given syndrome:

Syndrome Decoding (SD) *Input:* A binary matrix H, a weight t and a target syndrome s. *Problem:* Find e of weight at most t such that $H \times e = s$.

× When attacking CFS, one has to find an error pattern corresponding to one of the h_i :

One out of Many Syndrome Decoding (OMSD) — *Input:* A binary matrix H, a weight t and a set \mathcal{L} of syndromes. *Problem:* Find e of weight at most t such that $H \times e \in \mathcal{L}$.

Generalized Birthday Algorithm Bleichenbacher's Attack on CFS

★ The size of the lists of low weight syndromes is limited∞ it is compensated by a larger list of hashes.

× One obtains the following complexity formulas:

Complexity =
$$L \log(L)$$
, with
 $L = \min\left(\frac{2^{mt}}{\binom{2^m}{t-\lfloor t/3 \rfloor}}, \sqrt{\frac{2^{mt}}{\binom{2^m}{\lfloor t/3 \rfloor}}}\right)$

x Asymptotically the cost of an attack is $2^{\frac{mt}{3}}$ instead of $2^{\frac{mt}{2}}$ for SD.

Parallel-CFS

★ Instead of signing one hash, one uses two (or i) different hash functions and signs each hash.

- **×** Instead of signing one hash, one uses two (or *i*) different hash functions and signs each hash.
- ★ Using a counter is no longer possible:
 ∞ using different counters makes parallelism useless,
 ∞ with one counter, the probability of having 2 decodable syndromes simultaneously is too small:
 → cost of signing would be t!² instead of t!,

- **×** Instead of signing one hash, one uses two (or *i*) different hash functions and signs each hash.
- Using a counter is no longer possible:
 w using different counters makes parallelism useless,
 w with one counter, the probability of having 2 decodable syndromes simultaneously is too small:
 - \rightarrow cost of signing would be $t!^2$ instead of t!,
- **×**We use a CFS variant based on complete decoding:
 - \approx the signature is a word of weight $t+\delta,$
 - $\approx \delta$ positions are searched for exhaustively,
 - \times cost/signature size are roughly the same

× Using the CFS variant allows to sign almost every hash:
 ∞ signing every hash requires to know the covering radius
 ∞ δ is chosen so that
 ^{2m}
 _{t+δ}) > 2^{mt}
 _{t+δ}

Allowing t + δ errors makes OMSD attacks easier:
* the first 3 lists can be larger,
* when (^{2^m}_{t+δ}) = 2^{mt} the attack costs exactly 2^{mt}/₃.
* To simplify computations we consider (^{2^m}_{t+δ}) = 2^{mt},
* in practice the 3 lists can be slightly larger, but the gain in terms of attack cost is negligible.

Attacking Parallel-CFS

× There is not a unique way of attacking Parallel-CFS.

★ Using two independent SD attacks: ★ the cost of such an attack is well known [Finiasz, Sendrier - Asiacrypt 2009] ★ gives a reference security of the order of $2^{\frac{mt}{2}}$.

× Using OMSD two strategies are possible:

- × attack both instances in parallel,
- \times attack them sequentially.

Attacking Parallel-CFS Parallelizing OMSD

× This strategy considers one "double size" instance:

× Here, the cost of the attack is of the order of $2^{\frac{2}{3}mt}$, × this attack is more expensive than direct SD attacks.

× One has to solve two instances with "linked" syndromes:

× The forgeries must be for h_i and h'_i with the same *i*.

× One has to solve two instances with "linked" syndromes:

× Start by solving the first instance

× One has to solve two instances with "linked" syndromes:

× One has to solve two instances with "linked" syndromes:

× Start by solving the first instance

- \times find several solutions, and keep them
- \times solve the second instance with the associated list.

× One has to solve two instances with "linked" syndromes:

× The same technique can be chained *i* times for order *i* parallel-CFS,

× each step will reduce the number of target syndromes.

- ***** The attack complexity depends on the costs of finding: $\approx 2^{c_1}$ solutions with unlimited target syndromes,
 - $\approx 2^{c_{j+1}}$ solutions given 2^{c_j} target syndromes.
- **×** The cost of this attack is asymptotically:

Complexity = $iL \log(L)$, with $L = 2^{\frac{2^{i}-1}{2^{i+1}-1}mt}$.

★ The exponent follows the series $\frac{1}{3}, \frac{3}{7}, \frac{7}{15}, \frac{15}{31}$... × asymptotic complexity can never reach $2^{\frac{mt}{2}}$, × i = 2 or 3 is already very close.

Parameter Examples Fast signature

parameters				ISD	security against	sign. failure	public key	sign.	sign.
m	t	δ	i	security	(chained) GBA	probability	size	cost	size
20	8	2	1	$2^{81.0}$	$2^{59.1}$	~ 0	20.0 MB	$2^{15.3}$	98
-	_	_	2	_	$2^{75.7}$	~ 0	_	$2^{16.3}$	196
_	_	_	3	_	$2^{82.5}$	~ 0	_	$2^{16.9}$	294
16	9	2	1	$2^{76.5}$	$2^{53.6}$	2^{-155}	1.1 MB	$2^{18.5}$	81
_	_	_	2	_	$2^{68.7}$	2^{-154}	_	$2^{19.5}$	162
-	_	—	3	—	$2^{74.9}$	2^{-153}	_	$2^{20.0}$	243
18	9	2	1	$2^{84.5}$	$2^{59.8}$	2^{-1700}	5.0 MB	$2^{18.5}$	96
_	_	_	2	_	$2^{76.5}$	2^{-1700}	_	$2^{19.5}$	192
-	_	_	3	—	$2^{83.4}$	2^{-1700}	_	$2^{20.0}$	288
19	9	2	1	$2^{88.5}$	$2^{62.8}$	~ 0	10.7 MB	$2^{18.5}$	103
-	_	—	2	_	$2^{80.5}$	~ 0	_	$2^{19.5}$	206
_	_	_	3	—	$2^{87.7}$	~ 0	_	$2^{20.0}$	309
15	10	3	1	$2^{76.2}$	$2^{55.6}$	~ 0	0.6 MB	$2^{21.8}$	90
-	_	_	2	_	$2^{71.3}$	~ 0	_	$2^{22.8}$	180
-	_	—	3	_	$2^{77.7}$	~ 0	-	$2^{23.4}$	270
16	10	2	1	$2^{86.2}$	$2^{59.1}$	2^{-13}	1.2 MB	$2^{21.8}$	90
-	_	—	2	_	$2^{75.7}$	2^{-12}	_	$2^{22.8}$	180
_	_	_	3	_	$2^{82.5}$	$2^{-11.3}$	_	$2^{23.4}$	270
17	10	2	1	$2^{90.7}$	$2^{62.5}$	2^{-52}	2.7 MB	$2^{21.8}$	98
-	_	—	2	—	$2^{80.0}$	2^{-51}	-	$2^{22.8}$	196
-	_	—	3	_	$2^{87.2}$	2^{-50}	_	$2^{23.4}$	294

slide 15/18

Parameter Examples Everyday Use

parameters				ISD	security against	sign. failure	public key	sign.	sign.
m	t	δ	i	security	(chained) GBA	probability	size	cost	size
20	8	2	1	$2^{81.0}$	$2^{59.1}$	~ 0	20.0 MB	$2^{15.3}$	98
-	_	_	2	_	$2^{75.7}$	~ 0	_	$2^{16.3}$	196
-	_	—	3	_	$2^{82.5}$	~ 0	_	$2^{16.9}$	294
16	9	2	1	$2^{76.5}$	$2^{53.6}$	2^{-155}	1.1 MB	$2^{18.5}$	81
_	_	_	2	_	$2^{68.7}$	2^{-154}	_	$2^{19.5}$	162
-	_	—	3	_	$2^{74.9}$	2^{-153}	_	$2^{20.0}$	243
18	9	2	1	$2^{84.5}$	$2^{59.8}$	2^{-1700}	5.0 MB	$2^{18.5}$	96
-	_	—	2	_	$2^{76.5}$	2^{-1700}	_	$2^{19.5}$	192
-	_	_	3	—	$2^{83.4}$	2^{-1700}	_	$2^{20.0}$	288
19	9	2	1	$2^{88.5}$	$2^{62.8}$	~ 0	10.7 MB	$2^{18.5}$	103
-	_	—	2	_	$2^{80.5}$	~ 0	_	$2^{19.5}$	206
_	_	_	3	_	$2^{87.7}$	~ 0	_	$2^{20.0}$	309
15	10	3	1	$2^{76.2}$	$2^{55.6}$	~ 0	0.6 MB	$2^{21.8}$	90
-	_	_	2	_	$2^{71.3}$	~ 0	_	$2^{22.8}$	180
-	_	—	3	_	$2^{77.7}$	~ 0	-	$2^{23.4}$	270
16	10	2	1	$2^{86.2}$	$2^{59.1}$	2^{-13}	1.2 MB	$2^{21.8}$	90
-	_	—	2	_	$2^{75.7}$	2^{-12}	_	$2^{22.8}$	180
_	_	_	3	—	$2^{82.5}$	$2^{-11.3}$	—	$2^{23.4}$	270
17	10	2	1	$2^{90.7}$	$2^{62.5}$	2^{-52}	2.7 MB	$2^{21.8}$	98
-	_	—	2	_	$2^{80.0}$	2^{-51}	_	$2^{22.8}$	196
-	_	—	3	_	$2^{87.2}$	2^{-50}	_	$2^{23.4}$	294

slide 16/18

Parameter Examples Short Signatures

parameters				ISD	security against	sign. failure	public key	sign.	sign.
m	t	δ	i	security	(chained) GBA	probability	size	cost	size
20	8	2	1	$2^{81.0}$	$2^{59.1}$	~ 0	20.0 MB	$2^{15.3}$	98
_	_	_	2	_	$2^{75.7}$	~ 0	_	$2^{16.3}$	196
-	_	—	3	_	$2^{82.5}$	~ 0	_	$2^{16.9}$	294
16	9	2	1	$2^{76.5}$	$2^{53.6}$	2^{-155}	1.1 MB	$2^{18.5}$	81
_	_	_	2	_	$2^{68.7}$	2^{-154}	_	$2^{19.5}$	162
_	_	—	3	_	$2^{74.9}$	2^{-153}	-	$2^{20.0}$	243
18	9	2	1	$2^{84.5}$	$2^{59.8}$	2^{-1700}	5.0 MB	$2^{18.5}$	96
_	_	—	2	_	$2^{76.5}$	2^{-1700}	_	$2^{19.5}$	192
-	_	—	3	_	$2^{83.4}$	2^{-1700}	_	$2^{20.0}$	288
19	9	2	1	$2^{88.5}$	$2^{62.8}$	~ 0	10.7 MB	$2^{18.5}$	103
_	_	—	2	_	$2^{80.5}$	~ 0	_	$2^{19.5}$	206
_	_	_	3	_	$2^{87.7}$	~ 0	_	$2^{20.0}$	309
15	10	3	1	$2^{76.2}$	$2^{55.6}$	~ 0	0.6 MB	$2^{21.8}$	90
_	_	—	2	_	$2^{71.3}$	~ 0	_	$2^{22.8}$	180
_	_	—	3	_	$2^{77.7}$	~ 0	_	$2^{23.4}$	270
16	10	2	1	$2^{86.2}$	$2^{59.1}$	2^{-13}	1.2 MB	$2^{21.8}$	90
_	_	—	2	_	$2^{75.7}$	2^{-12}	_	$2^{22.8}$	180
_	_	_	3		$2^{82.5}$	$2^{-11.3}$	_	$2^{23.4}$	270
17	10	2	1	$2^{90.7}$	$2^{62.5}$	2^{-52}	2.7 MB	$2^{21.8}$	98
-	_	—	2	-	$2^{80.0}$	2^{-51}	_	$2^{22.8}$	196
_	_	—	3	-	$2^{87.2}$	2^{-50}	_	$2^{23.4}$	294

slide 17/18

- ★ Resisting OMSD attacks required to notably increase CFS parameters.
- Parallel-CFS offers a way to keep parameters as small as possible:
 - \times key size remains the same as for CFS,
 - \times OMSD attacks cost the same as direct SD attacks,
 - \times signature time and size are doubled.

★ Parallel-CFS is not the most efficient signature scheme, but at least it is practical.