Parallel-CFS

Strengthening the CFS McEliece-Based Signature Scheme

Matthieu Finiasz

Digital Signatures

The hash and sign paradigm
plaintext space ciphertext space

\times Any public key encryption can be turned into a signature.

Digital Signatures

The hash and sign paradigm

plaintext space
ciphertext space

\times The document is simply hashed into a random ciphertext.

The Niederreiter Cryptosystem

plaintext space
ciphertext space

$\times H$ is a scrambled Goppa code parity check matrix.

The Niederreiter Cryptosystem

 The signature problem
plaintext space

The Niederreiter Cryptosystem

 The signature problemplaintext space

ciphertext space

\times Random syndromes are not decodable.

The CFS Signature Scheme

 [Courtois-Finiasz-Sendrier 2001]
plaintext space

The CFS Signature Scheme [Courtois-Finiasz-Sendrier 2001]

\times Key generation works like for Niederreiter.
\times Signature repeats the following steps:
« compute $h_{i}=h(D, i)$,
\& try to decode the syndrome h_{i} into s, \quad success $\sim \frac{1}{t!}$
\approx the signature is $\left(s, i_{0}\right)$ for the first decodable $h_{i_{0}}$.
\times Verification is simple and fast:

* compute $h_{i_{0}}=h\left(D, i_{0}\right)$,
\approx compute e_{s}, the word of weight t corresponding to s,
\approx compare $h_{i_{0}}$ and $H \times e_{s}$.

One out of Many Syndrome Decoding

\times When attacking Niederreiter, one has to find the error pattern corresponding to a given syndrome:

Syndrome Decoding (SD)
Input: A binary matrix H, a weight t and a target syndrome s.
Problem: Find e of weight at most t such that $H \times e=s$.
\times When attacking CFS, one has to find an error pattern corresponding to one of the h_{i} :

One out of Many Syndrome Decoding (OMSD) Input: A binary matrix H, a weight t and a set \mathcal{L} of syndromes. Problem: Find e of weight at most t such that $H \times e \in \mathcal{L}$.

Generalized Birthday Algorithm

 Bleichenbacher's Attack on CFS

Generalized Birthday Algorithm

 Bleichenbacher's Attack on CFS\times The size of the lists of low weight syndromes is limited x it is compensated by a larger list of hashes.
\times One obtains the following complexity formulas:

$$
\begin{gathered}
\text { Complexity }=L \log (L), \text { with } \\
L=\min \left(\frac{2^{m t}}{\left(2^{2 m}\right.}, \sqrt{\frac{2^{m t}}{\left(\begin{array}{l}
2^{m} \\
\lfloor t / 3\rfloor \\
)
\end{array}\right.}}\right) .
\end{gathered}
$$

\times Asymptotically the cost of an attack is $2^{\frac{m t}{3}}$ instead of $2^{\frac{m t}{2}}$ for SD.

Parallel-CFS

Parallel-CFS

Description
x Instead of signing one hash, one uses two (or i) different hash functions and signs each hash.
\times Instead of signing one hash, one uses two (or i) different hash functions and signs each hash.
\times Using a counter is no longer possible:
\approx using different counters makes parallelism useless,
\approx with one counter, the probability of having 2 decodable syndromes simultaneously is too small:
\rightarrow cost of signing would be $t!^{2}$ instead of $t!$,
\times Instead of signing one hash, one uses two (or i) different hash functions and signs each hash.
\times Using a counter is no longer possible:
«using different counters makes parallelism useless,
\approx with one counter, the probability of having 2 decodable syndromes simultaneously is too small:
\rightarrow cost of signing would be $t!^{2}$ instead of $t!$,
\times We use a CFS variant based on complete decoding:
\approx the signature is a word of weight $t+\delta$,
$\approx \delta$ positions are searched for exhaustively,
\approx cost/signature size are roughly the same
\times Using the CFS variant allows to sign almost every hash: \approx signing every hash requires to know the covering radius $\approx \delta$ is chosen so that $\binom{2^{m}}{t+\delta}>2^{m t}$, \rightarrow mostly negligible probability of non signability.
\times Allowing $t+\delta$ errors makes OMSD attacks easier: \approx the first 3 lists can be larger, * when $\binom{2^{m}}{t+\delta}=2^{m t}$ the attack costs exactly $2^{\frac{m t}{3}}$.
\times To simplify computations we consider $\binom{2^{m}}{t+\delta}=2^{m t}$,
x in practice the 3 lists can be slightly larger, but the gain in terms of attack cost is negligible.

Attacking Parallel-CFS

\times There is not a unique way of attacking Parallel-CFS.
\times Using two independent SD attacks:

* the cost of such an attack is well known
[Finiasz, Sendrier - Asiacrypt 2009]
\approx gives a reference security of the order of $2^{\frac{m t}{2}}$.
\times Using OMSD two strategies are possible:
*attack both instances in parallel,
\approx attack them sequentially.

Attacking Parallel-CFS Parallelizing OMSD

× This strategy considers one "double size" instance:

\times Here, the cost of the attack is of the order of $2^{\frac{2}{3} m t}$, \approx this attack is more expensive than direct SD attacks.

Attacking Parallel-CFS

Chaining OMSD

* One has to solve two instances with "linked" syndromes:

1	I	II
	I	1

\times The forgeries must be for h_{i} and h_{i}^{\prime} with the same i.

Attacking Parallel-CFS

Chaining OMSD

× One has to solve two instances with "linked" syndromes:

\times Start by solving the first instance

Attacking Parallel-CFS

Chaining OMSD

× One has to solve two instances with "linked" syndromes:

\times Start by solving the first instance

* find several solutions, and keep them

Attacking Parallel-CFS

Chaining OMSD

× One has to solve two instances with "linked" syndromes:

\times Start by solving the first instance

* find several solutions, and keep them
\approx solve the second instance with the associated list.

Attacking Parallel-CFS

Chaining OMSD

× One has to solve two instances with "linked" syndromes:

\times The same technique can be chained i times for order i parallel-CFS,

* each step will reduce the number of target syndromes.

Attacking Parallel-CFS

Chaining OMSD

\times The attack complexity depends on the costs of finding:
$\approx 2^{c_{1}}$ solutions with unlimited target syndromes,
$\approx 2^{c_{j+1}}$ solutions given $2^{c_{j}}$ target syndromes.
\times The cost of this attack is asymptotically:

$$
\text { Complexity }=i L \log (L), \text { with } L=2^{\frac{2^{i}-1}{2^{i+1}-1} m t} .
$$

\times The exponent follows the series $\frac{1}{3}, \frac{3}{7}, \frac{7}{15}, \frac{15}{31} \ldots$ xasymptotic complexity can never reach $2^{\frac{m t}{2}}$, $\approx i=2$ or 3 is already very close.

Parameter Examples
Fast signature

parameters				$\begin{gathered} \text { ISD } \\ \text { security } \end{gathered}$	security against (chained) GBA	sign. failure probability	public key size	sign. cost	$\begin{gathered} \text { sign. } \\ \text { size } \end{gathered}$
m	t	δ	i						
20	8	2	1	$2^{81.0}$	$2^{59.1}$	~ 0	20.0 MB	$2^{15.3}$	98
-	-	-	2	-	$2^{75.7}$	~ 0	-	$2^{16.3}$	196
-	-	-	3	-	$2^{82.5}$	~ 0	-	$2^{16.9}$	294
16	9	2	1	$2^{76.5}$	$2^{53.6}$	2^{-155}	1.1 MB	$2^{18.5}$	81
-	-	-	2	-	$2^{68.7}$	2^{-154}	-	$2^{19.5}$	162
-	-	-	3	-	$2^{74.9}$	2^{-153}	-	$2^{20.0}$	243
18	9	2	1	$2^{84.5}$	$2^{59.8}$	2^{-1700}	5.0 MB	$2^{18.5}$	96
-	-	-	2	-	$2^{76.5}$	2^{-1700}	-	$2^{19.5}$	192
-	-	-	3	-	$2^{83.4}$	2^{-1700}	-	$2^{20.0}$	288
19	9	2	1	$2^{88.5}$	$2^{62.8}$	~ 0	10.7 MB	$2^{18.5}$	103
-	-	-	2	-	$2^{80.5}$	~ 0	_	$2^{19.5}$	206
-	-	-	3	-	$2^{87.7}$	~ 0	-	$2^{20.0}$	309
15	10	3	1	$2^{76.2}$	$2^{55.6}$	~ 0	0.6 MB	$2^{21.8}$	90
-	-	-	2	-	$2^{71.3}$	~ 0	-	$2^{22.8}$	180
-	-	-	3	-	$2^{77.7}$	~ 0	-	$2^{23.4}$	270
16	10	2	1	$2^{86.2}$	$2^{59.1}$	2^{-13}	1.2 MB	$2^{21.8}$	90
-	-	-	2	-	$2^{75.7}$	2^{-12}	-	$2^{22.8}$	180
-	-	-	3	-	$2^{82.5}$	$2^{-11.3}$	-	$2^{23.4}$	270
17	10	2	1	$2^{90.7}$	$2^{62.5}$	2^{-52}	2.7 MB	$2^{21.8}$	98
-	-	-	2	-	$2^{80.0}$	2^{-51}	-	$2^{22.8}$	196
-	-		3	-	$2^{87.2}$	2^{-50}	-	$2^{23.4}$	294

parameters				$\begin{gathered} \text { ISD } \\ \text { security } \end{gathered}$	security against (chained) GBA	sign. failure probability	public key size	sign. cost	sign. size
m	t	δ	i						
20	8	2	1	$2^{81.0}$	$2^{59.1}$	~ 0	20.0 MB	$2^{15.3}$	98
-	-	-	2	-	$2^{75.7}$	~ 0	-	$2^{16.3}$	196
-	-	-	3	-	$2^{82.5}$	~ 0	-	$2^{16.9}$	294
16	9	2	1	$2^{76.5}$	$2^{53.6}$	2^{-155}	1.1 MB	$2^{18.5}$	81
-	-	-	2	-	$2^{68.7}$	2^{-154}	_	$2^{19.5}$	162
-	-	-	3	-	$2^{74.9}$	2^{-153}	-	$2^{20.0}$	243
18	9	2	1	$2^{84.5}$	$2^{59.8}$	2^{-1700}	5.0 MB	$2^{18.5}$	96
-	-	-	2	-	$2^{76.5}$	2^{-1700}	-	$2^{19.5}$	192
-	-	-	3	-	$2^{83.4}$	2^{-1700}	-	$2^{20.0}$	288
19	9	2	1	$2^{88.5}$	$2^{62.8}$	~ 0	10.7 MB	$2^{18.5}$	103
-	-	-	2	-	$2^{80.5}$	~ 0	-	$2^{19.5}$	206
-	-	-	3	-	$2^{87.7}$	~ 0	-	$2^{20.0}$	309
15	10	3	1	$2^{76.2}$	$2^{55.6}$	~ 0	0.6 MB	$2^{21.8}$	90
-	-	-	2	-	$2^{71.3}$	~ 0	-	$2^{22.8}$	180
-	-	-	3	-	$2^{77.7}$	~ 0	-	$2^{23.4}$	270
16	10	2	1	$2^{86.2}$	$2^{59.1}$	2^{-13}	1.2 MB	$2^{21.8}$	90
-	-	-	2	-	$2^{75.7}$	2^{-12}	-	$2^{22.8}$	180
-	-	-	3	-	$2^{82.5}$	$2^{-11.3}$	-	$2^{23.4}$	270
17	10	2	1	$2^{90.7}$	$2^{62.5}$	2^{-52}	2.7 MB	$2^{21.8}$	98
-	-	-	2	-	$2^{80.0}$	2^{-51}	-	$2^{22.8}$	196
-	-	-	3	-	$2^{87.2}$	2^{-50}	-	$2^{23.4}$	294

Parameter Examples Short Signatures

$\left.$| parameters | | | | ISD | security against
 security |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (chained) GBA | | | | | | | sign. failure |
| :---: |
| probability | | public key |
| :---: |
| size | | sign. |
| :---: |
| cost | | sign. |
| :---: |
| size | \right\rvert\,

\times Resisting OMSD attacks required to notably increase CFS parameters.
\times Parallel-CFS offers a way to keep parameters as small as possible:

* key size remains the same as for CFS,
* OMSD attacks cost the same as direct SD attacks, «signature time and size are doubled.
\times Parallel-CFS is not the most efficient signature scheme, but at least it is practical.

