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Private Stream Search
What is it?

A stream search consists in filtering data according to a

set of keywords:

the data is a stream (it could also be a database)_ every piece of data is treated independently

the filtering is done externally_ you retrieve only the matching data.

A typical scenario is Google Alerts:

get an alert for each new page matching your interests.

Private Stream Search does this without revealing the

keywords (your interests) to the filtering server.
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Private Stream Search
Why is it useful?

Protect your privacy:

Google Alerts,

web search in general...

Protect your financial interests:

when searching for patents,_ reveals what your company is focusing on.

Global surveillance systems:

search for keywords in emails.

But PSS is only worth it if it is efficient:

no one is ready to lose efficiency for privacy...

2



Private Stream Search
How can it work?

To preserve privacy, the user sends a masked query:

a public list of possible keywords is needed,

the query is an encrypted selection of keywords.

The server filters according to the encrypted query:

all documents/all keywords are treated symmetrically,

it accumulates matches in an encrypted data buffer,

only the user can extract the matches.

PSS requires computations on encrypted data:

possible using (simple) homomorphic encryption,_ here we use Paillier’s cryptosystem.
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The First PSS Scheme
[Ostrovsky-Skeith 2005]

Requirements for this scheme:

a public dictionary of keywords Ω = {k1, ..., k|Ω|},
the users asks OR queries on words of Ω,

a database/stream of t documents (f1, ..., ft),

the users has an estimate of the numberm of matches.

We consider an example with:

dog cat bird whitebrown black=

f1 "the dog is black"=

f2 "the cat is white"=

f3 "the bird is white"=

f4 "the bird is black"=
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The First PSS Scheme
Query Construction

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

USER

The user wants to query “cat OR white”,

he computes a tuple Q of E(0) and E(1) accordingly.
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The First PSS Scheme
Query Execution

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

SERVER

The server prepares a response buffer B,

the matches will be accumulated in B.
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The First PSS Scheme
Query Execution

SERVER

Q E(0)

E(0+0)

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f1 "the dog is black"=

For every document fi, the server computes:

E(ci) =
∏

kj∈fi qj._ ci is the number of matching keywords in fi.
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The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((0+0) )f1

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f1 "the dog is black"=

E(0 )f1 E(0 )f1

For every document fi:

the server “adds” E(ci)fi = E(cifi) randomly in B.
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The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((1+1) )f2

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f2 "the cat is white"=

E(0 )f1 E(0 )f1
E(2 )f2 E(2 )f2

The server repeats this for all documents.
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The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((0+1) )f3

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f3 "the bird is white"=

E(0 )f1
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

The server repeats this for all documents.
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The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((0+0) )f4

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f4 "the bird is black"=

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

The server repeats this for all documents.
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The First PSS Scheme
Extraction of Results

USER

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

The user receives the encrypted buffer B.
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The First PSS Scheme
Extraction of Results

USER

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

2f2 0 0 0f3 f f3 2+2

The user receives the encrypted buffer B,

he decrypts it.
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The First PSS Scheme
Extraction of Results

USER

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

2f2 0 0 0f3 f f3 2+2

"the cat is white" "the bird is white"

The user receives the encrypted buffer B,

he gets one document for each singleton.
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What can be improved in this scheme?

Computations:

PSS requires one operation for each message,

difficult to improve,_ requires more efficient homomorphic encryption.

Communications:

the query is linear in the dictionary size,_ fully homomorphic encryption could help,

the reply is linear in the buffer size,_ the buffer size should be the number of matches.

In the Ostrovsky-Skeith scheme, the size is O(m logm),

Bethencourt et al. and Danezis-D́ıaz improve this.
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Our Contribution

Take an information theory look at the problem:

the server computes E(cifi) an encrypted sparse vector_ the problem is to compress it,

possible to compute it’s syndrome for any linear code_ compatible with homomorphic encryption.

We propose two different approaches:

Using Reed-Solomon codes,_ allows a “zero-error” guarantee (if m is known).

Using irregular LDPC codes,_ gives optimal asymptotic performances.
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Using Reed-Solomon Codes

The straightforward solution uses:

a buffer B of size 2m for m matching documents,

each E(cifi) is multiplied by a Reed-Solomon parity

check matrix column and added to B.

The code length (database size) is much smaller than

the error space (symbol size),_ possible to combine erasure and error correction.

low weight bits

17



Using Reed-Solomon Codes

This solution gives:

a buffer of size m,_ with some loss in each symbol,

a zero-error guarantee,_ if the number of matches is known in advance.

It has two main drawbacks:

it is computationally (very) heavy on the server side,_ each document requires m exponentiations,

the reply size still depends on the database size,_ we get the documents and their position.
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Using LDPC codes

To obtain an optimal reply size:

the user should only get the documents,

changing their order should not change the syndrome.

Each document defines its own parity check column:

use the document as a seed to a PRNG,

use the PRNG to generate a “random” LDPC column.

This can’t be done in a standard communication,_ we define the code from the values of the error.
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PSS with LDPC codes
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Use a PRNG to generate LDPC columns.
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PSS with LDPC codes

SERVERE(0 )f1 E(0 )f4E(1 )f3 E(1 )f5 E(0 )f6 E(0 )f7 E(1 )f8E(1 )f2
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Q E(0) E(0)= E(1) E(0)E(0) E(1)

Compute the encrypted sparse vector E(cifi) as before.
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PSS with LDPC codes

SERVERE(0 )f1 E(0 )f4E(1 )f3 E(1 )f5 E(0 )f6 E(0 )f7 E(1 )f8E(1 )f2
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Q E(0) E(0)= E(1) E(0)E(0) E(1)

=

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

Compute it’s syndrome and send it to the user.
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PSS with LDPC codes

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8
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E( )f3+f5
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The user first decrypts the buffer.
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PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8
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For each singleton, he can generate its column.
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PSS with LDPC codes

USER
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He can remove it completely from the buffer.
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PSS with LDPC codes

USER

E( )f2
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This uncovers new singletons.
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PSS with LDPC codes

USER
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They can again be stripped from the buffer.
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PSS with LDPC codes

USER
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PSS with LDPC codes

USER
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All documents were recovered when the buffer is 0.
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PSS with LDPC codes
Analysis

The whole algorithm is independent of the stream size,

the buffer size depends only on the number of matches.

Computationally very efficient:

for the server, one “encryption” per document,

for the user, one decryption per buffer position_ the rest of the decoding is also linear.

We have full control on the column distribution,

possible to use constant weight,_ not optimal asymptotically,

possible to use irregular LDPC codes,_ use work of Luby, Mitzenmacher, Shokrollahi for

asymptotic analysis.
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PSS with LDPC codes
Simulation results

average ratio of recovered documents

full recovery probability
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Distributions:

Simulations for buffers of sizes 100, 1 000 and 10 000:

for 100, constant weight is as good as irregular,

we see the asymptotic limitation of constant weight_ at least a ratio 1.22 between buffer/matches.
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Conclusion

Our new Private Stream Search scheme:

compared to the Ostrovsky-Skeith scheme_ same computational cost, better communication,

compared to a non-private search_ same asymptotic communication cost, additional

computations (especially for the server)

Is it practical?

probably too expensive using Paillier’s encryption_ lighter homomorphic encryption (lattice based?).

practical from a communication point of view.

Would any search engine want to use it?
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