
Private Stream Search at Almost the
Same Communication Cost as a

Regular Search

Matthieu Finiasz and Kannan Ramchandran



Private Stream Search
What is it?

A stream search consists in filtering data according to a

set of keywords:

the data is a stream (it could also be a database)_ every piece of data is treated independently

the filtering is done externally_ you retrieve only the matching data.

A typical scenario is Google Alerts:

get an alert for each new page matching your interests.

Private Stream Search does this without revealing the

keywords (your interests) to the filtering server.

1



Private Stream Search
Why is it useful?

Protect your privacy:

Google Alerts,

web search in general...

Protect your financial interests:

when searching for patents,_ reveals what your company is focusing on.

Global surveillance systems:

search for keywords in emails.

But PSS is only worth it if it is efficient:

no one is ready to lose efficiency for privacy...

2



Private Stream Search
How can it work?

To preserve privacy, the user sends a masked query:

a public list of possible keywords is needed,

the query is an encrypted selection of keywords.

The server filters according to the encrypted query:

all documents/all keywords are treated symmetrically,

it accumulates matches in an encrypted data buffer,

only the user can extract the matches.

PSS requires computations on encrypted data:

possible using (simple) homomorphic encryption,_ here we use Paillier’s cryptosystem.

3



The First PSS Scheme
[Ostrovsky-Skeith 2005]

Requirements for this scheme:

a public dictionary of keywords Ω = {k1, ..., k|Ω|},
the users asks OR queries on words of Ω,

a database/stream of t documents (f1, ..., ft),

the users has an estimate of the numberm of matches.

We consider an example with:

dog cat bird whitebrown black=

f1 "the dog is black"=

f2 "the cat is white"=

f3 "the bird is white"=

f4 "the bird is black"=

4



The First PSS Scheme
Query Construction

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

USER

The user wants to query “cat OR white”,

he computes a tuple Q of E(0) and E(1) accordingly.

5



The First PSS Scheme
Query Execution

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

SERVER

The server prepares a response buffer B,

the matches will be accumulated in B.

6



The First PSS Scheme
Query Execution

SERVER

Q E(0)

E(0+0)

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f1 "the dog is black"=

For every document fi, the server computes:

E(ci) =
∏

kj∈fi qj._ ci is the number of matching keywords in fi.
7



The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((0+0) )f1

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f1 "the dog is black"=

E(0 )f1 E(0 )f1

For every document fi:

the server “adds” E(ci)fi = E(cifi) randomly in B.

8



The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((1+1) )f2

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f2 "the cat is white"=

E(0 )f1 E(0 )f1
E(2 )f2 E(2 )f2

The server repeats this for all documents.

9



The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((0+1) )f3

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f3 "the bird is white"=

E(0 )f1
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

The server repeats this for all documents.

10



The First PSS Scheme
Query Execution

SERVER

Q E(0)

E((0+0) )f4

E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

f4 "the bird is black"=

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

The server repeats this for all documents.

11



The First PSS Scheme
Extraction of Results

USER

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

The user receives the encrypted buffer B.

12



The First PSS Scheme
Extraction of Results

USER

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

2f2 0 0 0f3 f f3 2+2

The user receives the encrypted buffer B,

he decrypts it.

13



The First PSS Scheme
Extraction of Results

USER

Q E(0) E(0)

dog cat bird whitebrown black=

= E(1) E(0)E(0) E(1)

buffer B

E(0 )f1

E(0 )f4

E(0 )f4
E(1 )f3

E(1 )f3
E(0 )f1

E(2 )f2 E(2 )f2

2f2 0 0 0f3 f f3 2+2

"the cat is white" "the bird is white"

The user receives the encrypted buffer B,

he gets one document for each singleton.

14



What can be improved in this scheme?

Computations:

PSS requires one operation for each message,

difficult to improve,_ requires more efficient homomorphic encryption.

Communications:

the query is linear in the dictionary size,_ fully homomorphic encryption could help,

the reply is linear in the buffer size,_ the buffer size should be the number of matches.

In the Ostrovsky-Skeith scheme, the size is O(m logm),

Bethencourt et al. and Danezis-D́ıaz improve this.

15



Our Contribution

Take an information theory look at the problem:

the server computes E(cifi) an encrypted sparse vector_ the problem is to compress it,

possible to compute it’s syndrome for any linear code_ compatible with homomorphic encryption.

We propose two different approaches:

Using Reed-Solomon codes,_ allows a “zero-error” guarantee (if m is known).

Using irregular LDPC codes,_ gives optimal asymptotic performances.

16



Using Reed-Solomon Codes

The straightforward solution uses:

a buffer B of size 2m for m matching documents,

each E(cifi) is multiplied by a Reed-Solomon parity

check matrix column and added to B.

The code length (database size) is much smaller than

the error space (symbol size),_ possible to combine erasure and error correction.

low weight bits

17



Using Reed-Solomon Codes

This solution gives:

a buffer of size m,_ with some loss in each symbol,

a zero-error guarantee,_ if the number of matches is known in advance.

It has two main drawbacks:

it is computationally (very) heavy on the server side,_ each document requires m exponentiations,

the reply size still depends on the database size,_ we get the documents and their position.

18



Using LDPC codes

To obtain an optimal reply size:

the user should only get the documents,

changing their order should not change the syndrome.

Each document defines its own parity check column:

use the document as a seed to a PRNG,

use the PRNG to generate a “random” LDPC column.

This can’t be done in a standard communication,_ we define the code from the values of the error.

19



PSS with LDPC codes

SERVER
1

0

0

1

0

1

0

0

0

f1 f4f3 f5 f6 f7 f8f2

0

1

1

0

0

0

0

1

0

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

0

1

1

1

0

0

Use a PRNG to generate LDPC columns.

20



PSS with LDPC codes

SERVERE(0 )f1 E(0 )f4E(1 )f3 E(1 )f5 E(0 )f6 E(0 )f7 E(1 )f8E(1 )f2

1

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

0

1

1

1

0

0

Q E(0) E(0)= E(1) E(0)E(0) E(1)

Compute the encrypted sparse vector E(cifi) as before.
21



PSS with LDPC codes

SERVERE(0 )f1 E(0 )f4E(1 )f3 E(1 )f5 E(0 )f6 E(0 )f7 E(1 )f8E(1 )f2

1

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

0

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

1

1

0

0

1

1

0

0

0

0

1

0

0

1

0

1

0

0

0

0

0

0

0

1

1

1

0

0

Q E(0) E(0)= E(1) E(0)E(0) E(1)

=

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

Compute it’s syndrome and send it to the user.

22



PSS with LDPC codes

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

USER

f2

f2

f2+f3

f3+f8

f5+f8

f5+f8

f3+f5

0

0

The user first decrypts the buffer.

23



PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

f2

f2

f2+f3

f3+f8

f5+f8

f5+f8

f3+f5

0

0

0

1

1

0

0

0

0

1

0

For each singleton, he can generate its column.

24



PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

f2

f2

f2+f3

f3+f8

f5+f8

f5+f8

f3+f5

0

1

1

0

0

0

0

1

0

f2

He can remove it completely from the buffer.

25



PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

f3

f3+f8

f5+f8

f5+f8

f3+f5

0

1

1

0

0

0

0

1

0

f2

0

0

1

0

1

0

0

0

1

This uncovers new singletons.

26



PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

f3

f3

f3+f8

f5+f8

f5+f8

f3+f5

0

1

1

0

0

0

0

1

0

f2

0

0

1

0

1

0

0

0

1

They can again be stripped from the buffer.

27



PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

f3

f8

f5+f8

f5+f8

f5

0

1

1

0

0

0

0

1

0

f2

0

0

1

0

1

0

0

0

1

0

0

0

0

0

1

1

0

1

0

0

0

0

1

1

1

0

0

28



PSS with LDPC codes

USER

E( )f2

E( )f2

E( )f2+f3

E( )f3+f8

E( )f5+f8

E( )f5+f8

E( )f3+f5

E( )0

E( )0

f3

f8

f8

f5+f8

f5+f8

f5

f5

0

1

1

0

0

0

0

1

0

f2

0

0

1

0

1

0

0

0

1

0

0

0

0

0

1

1

0

1

0

0

0

0

1

1

1

0

0

All documents were recovered when the buffer is 0.

29



PSS with LDPC codes
Analysis

The whole algorithm is independent of the stream size,

the buffer size depends only on the number of matches.

Computationally very efficient:

for the server, one “encryption” per document,

for the user, one decryption per buffer position_ the rest of the decoding is also linear.

We have full control on the column distribution,

possible to use constant weight,_ not optimal asymptotically,

possible to use irregular LDPC codes,_ use work of Luby, Mitzenmacher, Shokrollahi for

asymptotic analysis.

30



PSS with LDPC codes
Simulation results

average ratio of recovered documents

full recovery probability

average ratio of recovered documents

full recovery probability

0.4
0
5000 6000 7000 8000 9000 10000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

full recovery probability

average ratio of recovered documents

0.4
0
500 600 700 800 900 1000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
50 60 70 80 90 100

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
50 60 70 80 90 100

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
500 600 700 800 900 1000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

0.4
0
5000 6000 7000 8000 9000 10000

0.6

0.8

0.9

0.95

0.98
0.99

1

m

(a) (b) (c)

(d) (e) (f)

enhanced
harmonic

harmonic

weight 3

Distributions:

Simulations for buffers of sizes 100, 1 000 and 10 000:

for 100, constant weight is as good as irregular,

we see the asymptotic limitation of constant weight_ at least a ratio 1.22 between buffer/matches.

31



Conclusion

Our new Private Stream Search scheme:

compared to the Ostrovsky-Skeith scheme_ same computational cost, better communication,

compared to a non-private search_ same asymptotic communication cost, additional

computations (especially for the server)

Is it practical?

probably too expensive using Paillier’s encryption_ lighter homomorphic encryption (lattice based?).

practical from a communication point of view.

Would any search engine want to use it?

32


