Private Stream Search at Almost the
Same Communication Cost as a
Regular Search

Matthieu Finiasz and Kannan Ramchandran

CrRYPTOCXPERTS"




What is it?

A consists in filtering data according to a
set of
% the data is a (it could also be a database)

—> every piece of data is treated independently

% the filtering is done
—> you retrieve only the matching data.

A typical scenario is Google Alerts:

% get an alert for each new page matching your interests.

does this without revealing the
keywords (your interests) to the filtering server.



Why is it useful?

Protect your privacy:
% Google Alerts,

x web search Iin general...

Protect your financial interests:

x when searching for patents,
—> reveals what your company is focusing on.

Global surveillance systems:

% search for keywords in emails.

But PSS is only worth it if it is

% no one is ready to lose efficiency for privacy...



How can it work?

To preserve privacy, the user sends a masked query:
% a public list of possible keywords is needed,

% the query Is an of keywords.

The server filters according to the encrypted query:
% all documents/all keywords are treated symmetrically,
% 1t accumulates matches in an ,

% only the user can extract the matches.

PSS requires computations on encrypted data:
% possible using (simple) ,
—> here we use Paillier's cryptosystem.



[Ostrovsky-Skeith 2005]

Requirements for this scheme:

% a of keywords Q0 = {k1, ..., kjq|},
% the users asks queries on words of {2,

% a database/stream of t documents (f1, ..., fi),

% the users has an estimate of the number m of matches.

We consider an example with:

() = dog brown cat black bird white

fi="the dog is black" f;="the bird is white"
fo="the cat is white" f,="the bird is black"




The First PSS Scheme

Query Construction

{) = dog brown |cat| black bird |white

N

Q = £(0) &(0) &(1) &0) £©0) &(1)

% The user wants to query ‘cat OR white”,
% he computes a tuple @ of £(0) and £(1) accordingly.



The First PSS Scheme

Query Execution

() = dog brown cat black bird white
Q = £(0) £(0) &1) £©0) £>0) &(1)

buffer B

% The server prepares a response buffer B,

% the matches will be accumulated in B.



The First PSS Scheme

Query Execution

() = dog brown cat black bird white
Q = £(0) £(0) &1) £0) £(0) &(1)

f,="the|dog}is black E(0+0)

buffer B

% For every document f;, the server computes:

E(ci) = ijefz- qj-

—> ¢; IS the number of matching keywords in /.




The First PSS Scheme

Query Execution

() = dog brown cat black bird white
Q = £(0) £(0) &1) £©0) £(0) &(1)

f1="the|dog|is |black" E((0+0) f1)

| oo |

buffer B

% For every document f;:
» the server “adds” £(c;)/i = £(c;f;) randomly in B.



The First PSS Scheme

Query Execution

() = dog brown cat black bird white
Q = £(0) £0) &1) &£©0) £>0) &(1)

o~

fo="the cat|is white/ E((1+1) f5)
‘ E(2f) ‘ EOFf,) H ‘ E(2f,) H E(0f1) ‘
buffer B

% The server repeats this for all documents.



The First PSS Scheme

Query Execution

() = dog brown cat black bird white
Q = £(0) £(0) &1) &£©0) £0) &(1)

v

f3="the |bird|is white" E((0+1) f5)

E(1fs
‘ E0f,) H E(1fs) <5(£]22)

buffer B

‘ E(2f>) H E0F,) ‘

% The server repeats this for all documents.



The First PSS Scheme

Query Execution

() = dog brown cat black bird white
Q = £(0) £(0) &1) £0) £(0) &(1)

N

f,="the bird|is |black" E((0+0) fy)

E(1f;
E0f) H E(1fs) g5(J2t]22)

buffer B

(0
‘ £(21))

£(0£,) ‘ £(0f1) ‘

% The server repeats this for all documents.



The First PSS Scheme

Extraction of Results

() = dog brown cat black bird white
Q = £(0) £(0) &1) £©0) £>0) &(1)

E(1f,
E(0f) H E(1f3) ééfé)

buffer B

(0
‘ £(21))

E(0fy) E(0f) ‘

% The user receives the encrypted buffer B.



The First PSS Scheme

Extraction of Results

() = dog brown cat black bird white
Q = £(0) £(0) &1) £©0) £>0) &(1)

2 f 0 fa fst2fs. O 0
A A

A A

E(1f,
E(0f) H E(1f3) ééfé)

buffer B

(0
‘ £(21))

E(0fy) E(0f) ‘

% The user receives the encrypted buffer B,
% he decrypts it.



The First PSS Scheme

Extraction of Results

() = dog brown cat black bird white
Q@ = £0) £0) &1) &£0) &£0) &)
"the cat is white” "the bird is white"

e
ot W i e X X

E(1f;
E0f) H E(1fs) 2(5]22)

buffer B

% The user receives the encrypted buffer B,

(0
‘ £(21))

£(0£,) ‘ £(0f1) ‘

% he gets one document for each singleton.



Computations:

< PSS requires one operation for each message,

% difficult to improve,
—> requires more efficient homomorphic encryption.

Communications:

% the query is linear in the dictionary size,
—> fully homomorphic encryption could help,

% the reply is linear in the buffer size,
_D

In the Ostrovsky-Skeith scheme, the size is O(m logm),

x Bethencourt et al. and Danezis-Diaz improve this.



Take an information theory look at the problem:

% the server computes £(¢; f;) an
—> the problem is to ,

% possible to for any linear code
—> compatible with homomorphic encryption.

We propose two different approaches:

% Using Reed-Solomon codes,
—> allows a “zero-error” guarantee (if m is known).

% Using irregular LDPC codes,
—> gives optimal asymptotic performances.



The straightforward solution uses:

% a buffer B of size 2m for m matching documents,
x each E(c;f;) is multiplied by a Reed-Solomon parity

check matrix column and added to B.

The code length (database size) is much smaller than
the error space (symbol size),
—> possible to combine erasure and error correction.

low weight bits

logt

logt

—

—

— —

0

RS2] 1

0] RS9j41.

0

T~ ft

logt + log | 2|




This solution gives:

% a buffer of size m,
—> with some loss in each symbol,

% a zero-error guarantee,
—> If the number of matches is known in advance.

It has two main drawbacks:

% it is computationally (very) heavy on the ,
—> each document requires m exponentiations,

% the reply size still depends on the database size,
—> we get the documents and



To obtain an optimal reply size:

% the user should only get the documents,

% changing their order should not change the syndrome.

Each document defines its own parity check column:
% use the document as a seed to a PRNG,

% use the PRNG to generate a “random”™ LDPC column.

/\ This can't be done in a standard communication,
—> we define the code from the values of the error.



)
Q
.=
s
@
O
Q
0
)
-
=
3
v
7
Q

fs

f7

fo

Ja

/3

\ \SERVER, |

/o

% Use a PRNG to generate LDPC columns.

h

L



PSS with LDPC codes

£0f) EQf) E(1fs) E(0f) E(1f5) €(0fs) E(0f7) E(1fs)

_ O O O B O = O O
_ O B HBH O O O O O

O O O r O r O O =
O r O O O O+ +»r O
O r B O O O O —~ O
OO O O O B H O O ==
OO O O r O Hr O O =
O O B HBH O O O O

» Compute the encrypted sparse vector £(c;f;) as before.



PSS with LDPC codes

05 EQf) EAf) S0 E(Lfs) €00 S0 E(1fs)

X
0 0 0 0 £(0)
1 0 0 0 E(f,)
1 1 0 0 E(fot13)
0 0 0 0 £(0)
0 1 0 1| = | &(fitf
0 0 1 1 E(f5+T5)
0 0 1 1 E(fstTs)
1 0 0 0 E(f,)
0 1 1 0 E(fs+15)

» Compute it's syndrome and send it to the user.



PSS with LDPC codes

0 £(0)
o E(f2)
Jotfs E(fotfs3)
0 £(0)
fstfs €——| &(fs+fs)
J5+Ts E(f5+1s)
J5+Ts E(fst+fs)
f> E(f2)
fst s E(fst+15)

% The user first decrypts the buffer.



PSS with LDPC codes

X £(0)
J E(f2)
1 fot 13 E(fot[3)
0 X £(0)
0 fstfs €——| &(fs+fs)
0 fs+1s E(f5+1s)
0 f5+Ts E(f5+1s)
1 fo E(f2)
0 fst s E(fst+15)

% For each singleton, he can generate its column.



PSS with LDPC codes

fo

X

0 £(0)

1 % £(£)

1 Kt/ E(fot[3)
0 £(0)

0 fstfs €——| E(fs+[s)
0 fs+1s E(fst1s)
0 fst1s E(fs+[s)
. X ()
0 fst+1s E(fstTfs)

% He can remove it completely from the buffer.



PSS with LDPC codes

fo

X

0 0 £(0)

1 0 E(f2)

1 1 fs E(fot[3)
0 0 £(0)

0 1 fstfs €——| E(fs+[s)
0 0 J5t+Ts E(f5+1s)
0 0 J5t+Ts E(fst+fs)
1 0 E(f2)

0 1 fst+1s E(fs+[5)

» This uncovers new singletons.



PSS with LDPC codes

f f3

X X

0 0 £(0)

1 0 E(f2)

1 1 P4 E(fotfs3)
0 0 £(0)

0 1 Ktfs €——| E(fs5+[s)
0 0 J5+Ts E(f5+1s)
0 0 J5+Ts E(fst+fs)
1 0 E(f2)

0 1 K+ E(fst+15)

» They can again be stripped from the buffer.



PSS with LDPC codes

o f3

X X

0 0 0 0 £(0)

1 0 0 0 &(f,)

1 1 0 0 E(fot13)
0 0 0 0 £(0)

0 1 1 0 fs| €——| E(fstfs)
0 0 1 1 fs+1s E(fst1s)
0 0 1 1 f5t+ 13 E(f5+1s)
1 0 0 0 (1)

0 1 0 1 Js E(fst+15)




PSS with LDPC codes

fo fs J3 fs

X X X X

0 0 0 0 £(0)

1 0 0 0 E(f,)

1 1 0 0 E(fot 1)
0 0 0 0 £(0)

0 1 1 0 X | &(f3tfs)
0 0 1 1 Ktk E(fs+1s)
0 0 1 1 Ktk E(f5+13)
1 0 0 0 E(f)

0 1 0 1 )4 E(fs+[5)

% All documents were recovered when the buffer 1s 0.



Analysis

The whole algorithm is independent of the stream size,
% the buffer size depends only on the number of matches.

Computationally very efficient:

% for the server, one “encryption” per document,

% for the user, one decryption per buffer position
—> the rest of the decoding is also linear.

We have full control on the column distribution,

% possible to use ,
—> not optimal asymptotically,

% possible to use ,
—> use work of Luby, Mitzenmacher, Shokrollahi for
asymptotic analysis.



Simulation results

average ratio of recovered documents A average ratio of recovered documents A average ratio of recovered documents

0.99 -
0.98 1

0.95 -
0.9 1
0.8 1

0.6 X
0.4

Distributions:

~
~
-----

0 T T T T . m
500 600 700 800 900 1000

0 . : : el | ,
5000 6000 7000 8000 9000 10000 weight 3
(c)

A full recovery probability

=— = = harmonic

enhanced
harmonic

1

0.99 -
0.98 -

0.95 1
0.9 1~
0.8 1 ~~

0.6 -

~

/
/

/

0.4 -

/

~
AN

0 T T T T > N
5000 6000 7000 8000 9000 10000

(1
Simulations for buffers of sizes 100, 1 000 and 10 000:

x for 100, constant weight is as good as irregular,

x we see the asymptotic limitation of constant weight
—> at least a ratio 1.22 between buffer/matches.

-




Our new Private Stream Search scheme:

. compared to the Ostrovsky-Skeith scheme
—> same computational cost, better communication,

x compared to a non-private search
—> same communication cost, additional
computations (especially for the server)

Is it practical?

% probably too expensive using Paillier's encryption
—> lighter homomorphic encryption (lattice based?).

% practical from a communication point of view.

Would any search engine want to use it?



