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Abstract—Let K(a) be the so-called classical Kloosterman (see Theorem 2) and show how we can extend our result for
sums over Bm, where m is even. In this paper, we compute odd m to any m. Section IV is devoted to the congruences
K(a) modulo 24, completing our previous results for oddm. We modulo3, and further modul@4, which prepare the complete

extensively study the links betweerK(a) and other exponential It f fth t fi o - it
sums, in particular with the cubic sums. We point out (as we did résult, for everm, or theé next section. Uur main resulis are

for odd m) that the valuesK(a) are related with cosets of weight given in Section V, where we comput€(a) modulo 24 by
4 of primitive narrow sense extended BCH codes of length=2™ means of the values of the cubic sums. In particular, we show

and minimum distance 8. the links betweerK (a) modulo3 and the pair of cubic sums
Keywords: BCH code, coset weight distribution, Kloostermaﬁc(a)’c(a’ a)) by Theorem 5_‘ . .
sum, cubic sum, inverse cubic sum. .I.n.thg last section, we give an glternatlve description of
divisibility of K(a) — 1 by 3, obtained in the recent paper [9].
I. INTRODUCTION This paper is an extended abstract, so that several proofs

We denote byK(a), a € Fom, the so-called classical binaryare hot given or are shortened.

Kloosterman sums ovefom. Let By, be the extended binary Il. PRELIMINARIES
narrow sense BCH code of leng#' and minimum distance

4 ini '
8 and D' be any coset 0By, of minimum weight4. Recall oM wherem > 3. We use the notatios(p(x)) — (—1)TTPX)

that the vectors of weight in D¥) are thecoset leaders . . .
. ) .. whereTr is the absolute trace ovEpm, ande(a) is an additive
We continue here our work on coset weight d|str|butloncsnarmter oFm. For the case of evem we use also the trace
of By (see [8], [4], [6], [7]) and on the relations which link 2 '

. ) ) m .
the weight distribution of any cos@® with the spectrum function fromFom to its subfieldF4, denoted byTrj\(x), i.e.

of three exponential sums, including Kloosterman sums. In Tri(x) = XX x4 m=2s

[5], we computed the spectrum &f(a) modulo 24 in the

case wheren is odd. We obtained this result by using som&or any seV, V* =V \ {0}.

congruences modul8, which we derived from our study of

the cosetD®, for m odd. _ _
Most recently, we treat the even case ¢ven) and found ~Lemma 1:[1] The cubic equa_tlorx.3+ax_+ b= 0, where

the exact expression for the number of coset leaders of ghp € Fom has a unique solution irFom if and only if

coset D@ [7]. We proved that, as for the odd case, thigr(a3/b2) # Tr(1). Furthermore, if it has three distinct roots

expression includes exponential sums of three different typ&d:Fam, thenTr(a®/b?) =Tr(1).

Kloosterman sums, cubic sums and inverse cubic sums, ovePenote fo(x) = x*+x-+b, whereb € Fjn. Let

GF(2™M). As often, the even case is much hardeg, the

expressions are more complicated as well as the spectrum of

the cubic sum is. This led us to another approach, independentemma 2:[11] Let n=2". If mis odd, then

In this paperFom always denotes the Galois field of order

A. Equations of low degree

Mi = |{b : fu(x) has precisely solutions inFom}| .

;romdtge codesB,; it appeared that this approach is suitable Mo —  (n+1)/3,
or odd m too. My - (n-2)/2
The paper is organized as follows. Section IlI, includes M3 = (n—-2)/6.

the definitions and properties which we need for the nept s even, then

sections. Most of them are known. By Lemma 5, we exhibit

some relations betweeli(a) and partial cubic sums which Mo = (h=1/3
are particularly important in the even case. In Section Ill, we Mz n/2,
recall our main result concerning cos@$" of By, [4], [7] Ms = (n-4)/6.



B. Some exponential sums

Now, we need to define several exponential sums-gn
Definition 1: The classical Kloosterman sums are:

1
K@ = Z elax + =), aeFom.
X
XEkFom

The cubic sums are:

C(a,b) = Z e(ax’ + bx), acFjm, beFom.
XEFom

The inverse cubicsums are:

G(a,b) = Z

a

e(3 + bx), a€Fsm, beFom
X

XekFom

The patrtial cubic sums are:

P(a,b) = e(@x’ + bx), acFjm, beFom.

xeFom: Tr(1/x)=0

The Kloosterman sums and the inverse cubic sums AIFE

generally defined ofr;m, the multiplicative group ofom. In
this paper we extend them & assuming that

ex H)=e(x3) =1 for x=0.

In fact: Tr(x) = TrpE™ 1) and Tr(x %) = Tr(p&" *1).

The spectrum of the cubic suf(a,b) was first specified

by Carlitz [3]. In this paper we use the su@&,a) andC(a)

only. For everm, m= 2s, the next theorem is directly deduced

from [3, Theorem 1]. The sunB(a,0) is denoted byC(a).
Theorem 1:For any everm= 2s we have that

C(a) = (—1)st12st1 if ais a cube inFom,
(—=1)%25, otherwise
If a=Db3 be Fim, then
- 10 if T75(b) #0,
clas = { (71)H12H19(X8)7 otherwise

wherexy denotes any solution of* +x = b*.

If a# b3, then for all sucha € Fin

C(a,a) = e<h_~1_1> (—1)%25,

whereh is the unique solution ofx*+x+a=0.

C. Useful Properties
Lemma 3:[10] For anym
_ 4 mod 8 if Tr(a)=1,
K(@) = { 0 mod 8 if Tr(a)=0.
Lemma 4:[7] For anya € F5m» and anym:
Ka = 2 e(ax)
xeFom, Tr(1/x)=0

= -2 e(ax).
xeFom, Tr(1/x)=1

Lemma 5:Let ac F5m. Then we have

» 2P(a,a) =K(a) whenm is odd,;
« 2P(a,a) =2 C(a,a)+K(a) whenmis even.

Proof: We have first

Claa) = Z e(a(C+x))
= S @ +x)+ e(a(x®*+x))
X, Tr(1/x)=0 X, Tr(1/x)=1
= P(aa)+ e(a(x®>+x)). (1)
x, Tr(1/x)=1

Note that forx € Fom\ {0,1}

1 1 1 1 1
Tf(m)—Tf(ﬂH*m*x)—“(x)' @

We use now Lemmas 1 and 2. The equati®f-x+c =0 has
a unique solution if and only iTr(1/c) # Tr(1).

Assume first tham is odd. SoTr(1) =1 and we know that
re are2™ 1 — 1 elementsc € F3m such thatTr(1/c) = 0.
e mapping— x3+Xx is a permutation on the set B Fjm
such thaffr(1/x) = 0, according to (2).Then, the next equality
holds.

{xC+x| xeFbm, Tr(1/x)=0}
={yeFm|[Tr(l/y)=0}.
We deduce, using Lemma 4,

K(a
e(ay) = %
y, Tr(1/y)=0

P(a,a) = e(a(®+x)) =
x, Tr(1/x)=0

Now, let m be even so thalr(1) = 0 and we know that
there are2™ ! elementsc such thatTr(1/c) = 1. In this case
X +— X34 X is a permutation on the set afc Fom such that
Tr(1/x) = 1. Then, the next equality holds.

{ X 4+x|xeFam, Tr(l/x)=1}
={yeFam | Tr(l/y)=1}.
We deduce
e(a(x +x) =
X, Tr(1/x)=1
and, using (1) and Lemma 4,
2P(a,a) =2C(a,a) — 2 e(ay) = 2C(a,a) +K(a).
Y, Tr(1/y)=1

e(@y),
y. Tr(Tjy)=1

Il1. THE NUMBER OF SOLUTIONS TO THE NONLINEAR
SYSTEM OFBCH EQUATIONS

Recall thatBy, is the binary extended (primitive narrow
sense) BCH code of lengtm = 2™ where m > 5, with
minimum distance. The number of coset leaders of any coset
D@ (of minimum weight4) of By, is the number of solutions
{x,y,z,u} of the following system of equations ovEpm:

X+y+z+u = a
C4+y+Z2+08 = b (3)
Y +2+0 = ¢



Here x,y,z and u are pairwise distinct elements &,bm and When A is not a cube, the cubic sun@®A) andC(A,A)
a,b,c € Fom are fixed, witha+# 0. Let (a, b, c) be the number are congruent t® modulo2® and the result holds as soon as

of solutions of (3). Then there aee F, andA € Fin s>4. [ ]
b c b b Using the previous corollaries, we get also the first congruence
E=Tr (a3) and A= s+5+5+1 (4) linking K (a) to cubic sums for evem.

Corollary 3: Let m> 8 be any integer and let € F5m. Set
such thatu(a,b,c) equalsu(e,A), which is given in the next
theorem. Bm(g,A) =24 u(e,A)—3-G(A,A),
Theorem 2:Form> 5 the valueu(g,A) is an even integer,
given by the following expressions:

« for evenm [7]:

241(&,A)

whereu(g,A) is given by (5) for everm and by (6) for odd
m. Then for anye € F,, we have

_ [ 0 (mod48, if Tr(A)=0,
- - Bm(g’}‘):{zzt (mod4g, if Tr(\)=1
—_1)\¢ _
+ (Z1D)7(2K(A) +4C(A,2) -8), IV. M ORE CONGRUENCE RELATIONS

« and for oddm [4]: In this section, we establish some congruences which could
24u(e,A) = 2™—8+3-G(A,A) be obtained from the results of the previous section. We
+ (=1)F1(2K(A)+2C(A,A)—8)) used this last method for odah: in [5], we computedK(a)
(6) (mod3 by means of our results o8-error-correcting BCH

2M_8+3-G(A,A)+C(})

whereA ande are given by (4). codes of lengtt2™, m odd.
« Furthermore, whe = 0 then u(e,0) = 0 for even and ~ We here use the relations linking Kloosterman sums to the
odd m. partial sumsP(a,a). Then we are able to prove directly the

Note that in [4], in the corresponding expressionfige,A) main congruences for any (see the next theorem).
(see (19) in [4]) the cubic sum w&{1,A/3). For oddmit is
easy to see, that(a,a) = C(1,b) wherea=bq. Indeed, since
x+— X3 is a permutation orfFom, we have A= 5  e@(+x) and B= Y e@x’+x)).

x, Tr(1/x)=0 x, Tr(1/x)=1
C(a,a) = Z e(ad+ax) = Z ey’ +by) =C(1,b) (7)
yekom

XekFom

Lemma 6:Set, summing ovex € Fom\ {0,1},

Then, 3 dividesA whenm is even and dividesB whenm is
odd.
wherex =y/b. Proof: Let mbe even. Sinc@r(0) =Tr(1) =0, the sum

m-—1 i
We deduce two corollaries from the previous theorem. F&has exacthy2™ " —2 terms.. Ac_cordmg to Lemma 1.’ fof any
both, the case whena is odd was already proved in [5]. We® such thaffr(1/c) = 0 there is either zero or threesatisfying

3 _ .
are now able to treat the even case too. x°+Xx=c. Thus, using (2),

Corollary 1: For anym> 4, anye € F> and anyA € Fim, A =3 e(ac), | ={c|c#0, Cc= x>+ x with Tr(1/x) = 0}.
whereF,m has orde2™, the number at the right hand side of ce

the equality (5) (resp.(6)) is a positive integer divisible48/ Now, assume tham is odd. In this caseTr(0) = O while

Corollary 2: Let A € Fjn, wheremis any integer such that T"(1) = 1. The sumB has2™*—1 terms and for ang such
m> 5. ThenG(A,A) is divisible by8 for anym and anyA. thatTr(1/c)=1there is either zero or threesatisfyingx® +
If A is a cube then x=c. Thus, using (2),

GOAA) = { 8 (mod 16), if Tr(A)=1, ®) B= 3Ze(ac)7 | ={c| c#0,c=x>+xwith Tr(1/x) = 1}.
71 0 (mod 16), if Tr(A)=0. ce
. [ |
Otherwise, therm=2s and (8) holds fomn > 8. Theorem 3:Let a € F5m. Then the following congruences
Proof: We already proved the case whends odd in [5, hold.
Lemma 5]. So, we assume thaitis even,m= 2s with s> 3. o If mis odd thenK(a) =1—-C(a,a) (mod 3.
First, it is clear thatG(A,A) is divisible by 8 for any A € F* « If mis even therK(a) =1+C(a,a) (mod 3.
and anym > 6. This comes directly from the formula (5) in
Theorem 2. Note that the vald&(A ) is multiple of 4, for any
A € F5m. Moreover, from Theorem 1C(A) andC(A,A) are K(a) = 2P(a,a) = 2C(a,a) — 2 z e(a(x3+x))‘
divisible by 8 as soon as > 3. x, Tr{T/x)=1
The cubic sumsC(A) and C(A,A) are congruent td0
modulo25t1 when A is a cube. Thus they are congruentito
modulo16 as soon as> 3 which ism> 6. The result is then
obtained by using Lemma 3. K(a)=2(C(a,a)—1) (mod3),

Proof: Let m be odd. Then, using Lemma 5 and (1),

But the sum above on the right is equalBer 1 whereB is
divisible by 3 (see Lemma 6). Then



which gives the statement.
Now assume tham is even. Using Lemma 5, we get

K(a) =2P(a,a) — 2C(a,a)

whereP(a,a) is equal toA+ 2 whereA is divisible by 3 (see
Lemma 6). Hence

K(a)=4—2C(a,a)=1+C(a,a) (mod3.

[ |
The next theorem is our main congruence mod2do From
now on, we treat the even case only (see [5] for agd

Theorem 4:Let m= 2s with s> 3. Let a € Fn. Then we
have: If Tr(a) = 0 then

K(a)—C(a,a) =16 (mod 24 9

else
K(a)—C(a,a) =4 (mod 249. (10)
Proof: Recall that for everm, we have for anya € Fjm

K(a)—C(a,a)=1 (mod 3. (11)

3) K(a)=1 (mod 3 ifand only if |C(a,a)| # |C(a)|. In this

caseC(a,a) = 0, a= b® for someb such thatT"(b) # 0 and
K(a) = 16 (mod24 if Tr(a)=0
- 4 (mod24 if Tr(a)=1

Proof: We simply apply Theorem 4. Before, we have to
specify the divisibility ofC(a). From Theorem 1, we know
thatC(a) = (—1)'2" with r =s or r =s+ 1. From Lemma 7,
we get

(—1)'2" = (~1)" x (~1)'16 (mod 24,

providingC(a) =16 (mod 24.
Assume thatC(a) =C(a,a). Then

K(a)—C(a,a) =K(a)—C(a) =K(a)— 16 (mod 24.

Using (9) and (10), we géf(a) =8 if Tr(a) =0 andK(a) =
20 otherwise. In both casek(a) =2 (mod 3.
Assume thaC(a) = —C(a,a). Then

K(a) —C(a,a) =K(a)+C(a) =K(a)+16 (mod 24.
Thus, we geK(a) =0if Tr(a) =0 andK(a) = 12 otherwise.

Now, we use the result of Carlitz [3], which is clearlyln both casesK(a)=0 (mod 3.

expressed by Theorem 1. It implies ti&(ia,a) = 0 modulo8
as soon as> 3, that ism> 6. So, in this case

K(a) — C(a,a) = K(a) (mod8§.

SetL(a) = K(a) —C(a,a) and apply Lemma 3. Iffir(a) =0
then L(a) = 8R, for some integelR, which leads toL(a) =
2R modulo 3. According to (11) we geR = 2 modulo 3.
Consequentlyt(a) = 16 modulo 24.

Similarly, if Tr(a) =1 thenL(a) = 8R+4 leads toL(a) =
2R+ 1 modulo 3. Then we geR= 0 modulo3 which implies
L(a) = 4 modulo 24, completing the proof. ]

V. KLOOSTERMAN SUMS MODULO24 AND CUBIC SUMS

In this section we computk(a) (mod 24. Moreover we
obtain some relations betweé{(a), C(a) andC(a,a) which

do not hold whemm is odd. The next theorem (comparing to
[5, Theorem 3.]) shows the differences between the even case

(m even) and the odd casen(odd).
Lemma 7:Letr > 3. Then

of — 8 (mod24 if ris odd
- 16

(mod 24 if ris even
Theorem 5:Let m= 2s, with s> 2, anda € Fjn. LetK(a),

C(a) andC(a,a) be the exponential sums defined in Section

II-B. Then we have:

1) K(a)=2 (mod3 if and only if C(a,a) =C(a). In this
case
_ 8 (mod24 if Tr(a)=0
K(@) = { 20 (mod24 if Tr(a)=1.

Now, if C(a,a) ¢ {£C(a)} then the only possibility is
C(a,a) =0, implying a= b® for someb such thafT;"(b) # 0
(see Theorem 1). In this case the divisibility of K(a) is directly
obtained from Theorem 4. And this is clearly the case where
K(a)=1 (mod3. |

We can also expred§(a) modulo 24 usingC(a,a) only.

Theorem 6:Let m= 2s with m> 4. Then we have for any
ae Fim:
. If C(a,a) = Othen

K(a) = 16 (mod 24), if Tr(a = 0,
- 4 (mod 24), if Tra = 1
. If C(a,a) € {2525t} then for odds
K(a) = 0 (mod24), if Tr(a) = 0O,
- 12 (mod24), if Tr(a = 1,
and for evers
K(a) = 8 (mod 24), if Tr(a = 0,
- 20 (mod 24), if Tr(a = 1
. If C(a,a) € {—25251} then for odds
K(a) = 8 (mod 24), if Tr(a = 0,
- 20 (mod 24), if Tr(a = 1,
and for evers
K(a) = 0 (mod 24), if Tr(a = 0,
- 12 (mod 24), if Trla = 1

Proof: The caseC(a,a) = 0 is given by Theorem 5,
3). Assume thatC(a,a) € {25,251}, Using Theorem 1,

2) K(a)=0 (mod 3 if and only if C(a,a) = —C(a). In this  tpis impliesC(a) € {—25,+25*11 whens is odd andC(a) €

case

(mod 24 if
(mod 24 if

Tr(a)
Tr(a) =

K@) = { 102 0.

{25, —25t11 whens is even. Thus we apply Theorem 3),

and Theorem 1), respectively. We treat the cagda,a) €

{—2525t1} by the same way. [ ]



VI. ANOTHER DIVISIBILITY MODULO 3

In this section we study the divisibility b of K(a) — 1. bay* + by+b=0 < ay*+y+1=0.
In [10] it has been proved that for odd and anya

K(a*+a®)—1=0 (mod3.

Z z \?
2

In [5], we specifiedK(a) — 1 modulo 3, but for oddm only. a = (Z+1)2 = <z4+1> :
Another expression is proposed by [9], also for addFor
evenm and anya we have from [10] thatk(a* + a%) is
congruent to8 or 0 modulo 12 depending onTr(a) =0 or .
Tr(a) = 1. Here we give another proof of our result of [4] K@ -1=0 (mod3,

and also completely solve the case of ewerby proving the is treated. ]

foI_II(_)r\:vmg the7c?[er:1. b | CiFs  Th h Remark 1:There is a natural expansion of the previous
eorem ; etabe any eemen_l_ 2m: en. we have theorem, since the general problem of the computation of
« Whenmis odd therK(a) — 1 is divisible by3 if and only K(a) — 1 modulo 3 is not considered. Whem is even,

Soa= (y+1)/y* which is by replacing/ = (z+ 1)

Let m= 2s. In this case, we can use TheorenBj,where the
case

if Tr(a'/3) = 0. This is equivalent to Theorem 5 could be used extensively.
B
a=——— for somef € Fin. VII. CONCLUSION
(1+p)* Peks

In this paper, we study some divisibility properties of clas-
« Whenm= 2s. K(a) — 1 is divisible by 3 if and only if  sical binary Kloosterman sums. However, our main purpose
.3 2s is to point out the interesting (and often surprising) relations
a=b" for someb such that T;*(b) 7 0. which appear between these sums, the cubic sums and the
« In both caseK(a) —1 is divisible by 3 if and only if inverse cubic sums. Formula (5) and (6) show clearly these
C(a,a) =0. relations, as well as the involvement of these sums in the
weight distributions of cosets of thH&error-correcting BCH-
code. Moreover our results lead us to several open problems.
It is first the spectrum oK(a) modulo 24. We were able to
give it for oddmin [5], but the even case seems more difficult.
K(a)—1=—-C(a,a) (mod3). To obtain, even for specifia, the values oiK(a) by means
of other exponential sums or of the valugés, A), using (5)
and (6), is a more general and difficult problem.

Proof: Let m be odd, so thak — ax® is a permutation
which means notably tha(a) =0, for anya e Fjn. We start
from the congruences given by Theorem 3. For amyFim

If C(a,a) # 0, it is never divisible by3. We deduce tha8
divides K(a) — 1 if and only if C(a,a) = 0. We know that
C(a,a) =0 if and only if Tr(al3) = 0 (see [4]).

There is also the other point of view, that we develop now. REFERENCES
Clearly, we have for any € Fom: [1] E.R. Berlekamp, H. Rumsey & G. Solomon, “On the solution of
algebraic equations over finite fieldsihformation and Contrgl vol.
c(1) = e(x3) - e((x+ h)3) 12, no. 5, pp. 553-564, Oct. 1967.
x&Fom xFom [2] L. Carlitz, “Kloosterman sums and finite field extension&tta Arith-

1 meticag vol. XVI, no. 2, pp. 179-193, 1969.
- e X3—|-X(h2—|—h2 " )_|_h3) [3] L. Carlitz, “Explicit evaluation of certain exponential sumstjath.
XGsz Scand, vol. 44, pp. 5-16, 1979.
[4] P. Charpin, T. Helleseth & V.A. Zinoviev, “On cosets of weightof
= Z e(y3+y(h4+h) +h3) binary BCH codes with minimum distand and exponential sums”,
yeFom Problems of Information Transmissiovol. 41, no. 4, pp. 301-320, 2005.
TR 4 [5] P. Charpin, T. Helleseth, & V.A. Zinoviev, “The divisibility moduld4
= (-1 r )C(l,h +h)=0. of Kloosterman sums on GE™), m odd”. Journal of Combinatorial
Theory, Series Avol. 114, Issue 2, pp. 322-338, 2007.
Since the magh — h4-|-h is 2-to-1, we then ge12m—1 values [6] P. Charpin, T. Helleseth & V.A. Zinoviev, “The Coset Distribution of

; _ 14 the Triple-Error-Correcting Binary Primitive BCH Codes”, IEEE Trans.
C(1,a) W.Ith a=h +?' NOte. that, for anya, h+1 andh are Inform. Theory, vol. 52, No. 4, pp. 1727-1732, 2006.
the solutions ofa = h*+h. Since [7] P. Charpin, T. Helleseth, & V.A. Zinoviev. “On cosets of weigit
3 3 5 3 of binary primitive BCH codes of lengt@™ (m even) with minimum
Tr((h+1)°)=Tr(h*+h“+h+1)=Tr(h°)+1 distance8”. SIAM J. of Discrete Math.2007, submitted.

. [8] P. Charpin & V.A. Zinoviev, “On coset weight distributions of ti3e
then eitheth or h+-1 has trace zero. Hence we have got here * error-correcting BCH-codes'SIAM J. Discrete Math.vol. 10, no. 1,

all the a such thatC(1,a) = 0. Now come back tca = b* pp. 128-145, February 1997.

- o . : . : [9] K. Garaschuk & P. Lisonek, “On Kloosterman sums divisible &y
with C(1,b) = 0. This holds if and only if there i& such that Designs, Codes and Cryptography appear.

h*+h+b=0. Settingh = by we get [10] T. Helleseth & V.A. Zinoviev, “OnZ4-Linear Goethals Codes and
Kloosterman Sums”Designs, Codes and Cryptographyol. 17, no.
h*+h+b=0 < b%*+by+b=0 1-3, pp. 246-262, 1999.
. . . [11] P.V. Kumar, T. Helleseth, R. Calderbank & R. Hammons, “Large
which is equwalent to Families of Quaternary Sequences with Low CorrelatidBEE Trans.

Inform. Theory vol. 42, No. 2, pp. 579-592, March 1996.



