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Abstract—This paper is devoted to the classification of hy- II. THE MAIN OBJECTS

perbent functions, i.e., bent functions which are bent up to . . .
a primitive root change. We first exhibit an infinite class of In this paper we consider functions @, or on some

monomial functions which are not hyperbent. It implies notably ~Subfield ofFon. The absolute trace ofin is denoted byTr,

that Kloosterman sums at point1 on Fpm cannot be zero, unless but for anyk andr, wherer dividesk, we denote byT* the
m= 4. Further, we show that hyperbent functions with multiple  trace function fromF to Far:
trace terms can be described by means of Dickson polynomials.

r 21 k—r
Keywords. Boolean function, hyperbent function, bent func- TXB)=B+B% +B% +...+B% .
tion, Kloosterman sum, Dickson polynomial, permutation. Any Boolean functionf over Fan is a function fromFon to

F,. The weightof f, denotedwt(f), is the Hamming weight

of the image vector off, that is the number ok such that
Hyperbent functionsvere introduced by Youssef and Gongf (x) = 1. For any Boolean functiorf over Fon we state its

in [18]. A Boolean bent funcktionf, on Fon, is said to be Hadamard transform :

hyperbent if it is such thaf(x*) is bent for anyk coprime

to 2" — 1. Actually, the first d(efi)nition of hyperbent functions ackFy — F(a)= Z (_1)f(X)+Tr<aX) @)

was based on a property of the so-caleedended Hadamard X

transformof f which was introduced by Golomb and Gongnd itsextended Hadamard transform

in [12] (see (2) below). In [12], the authors proposed tBat F(ak) = Z (_1)f(x)+Tr(axk), acFon, @)

XekFon

I. INTRODUCTION

on

boxes should not be approximated by a bijective monomial,

providing a new criterion for th&box design. n _ .
Further, Carlet and Gaborit established that hyperbent fur?r@girg %r;]?(k,h? y_ ;) B izgigilgltlhzt, ;\(I)sroe\;eins]’ s];i:js ttc))egte

tions can be seen as some codewords of a cyclic code full Iancedifyand o(nl) _|f Z(0)=0 ' ’

characterized by its non zeroes [2]. However, the classificati y -

of hyperbent functions is not achieved and many problems Hyperbent Functions

remain open. Youssef and Gong proposed in [18] to strength the bent
In this paper we consider functions @hn, with n — 2m, conce.pt_ py using the extended Hgdamard transform. _
or on any subfield of». Section Il is a preliminary section. Definition 1: Any Boolean functionf on Fan, n = ZFT’ 1S
Section Il is devoted to monomial hyperbent functions. TheS&id hyperbentf, for all a and for allk, 7 (a k) € {£27}.
famous bent functions, discovered by Dillon [8](1974), are They later introduce a class of possible hyperbent functions.
strongly related with Kloosterman surkg,. We focus on such In this paper, we restrict ourselves to this class.
function f, with A = 1. We prove thakm(1) # 0 unlessm=4. Definition 2: Let R be a set of representatives of the cyclo-
In other terms, we prove thdt, defined onFan, is not bent tomic cosets modul@™+ 1 for which each coset has the full
unlessn= 8 (Theorem 6). We then solve a problem which wasize 2m. Define the Boolean functions dfyn of the form:
proposed by Dillon to the second author several years ago. oM_1)y
In Section IV we show that the spectrum of a large class o) = £ Tr(Brx( : ) whereE C R, B € Fan. (3)
of Boolean functions, possibly hyperbent, can be described Ay hyperbent function of the form (3) belongs to the class
means of Dickson polynomials (Theorem 7 and its proof). We?.# 5, a subclass of the partial spread family.”~ intro-
further apply this result to a class of binomial functions anduced by Dillon [8, pp. 95-100].
to the monomials, providing surprising results. Theorem 1:[8] Let f be a Boolean function ovefxn, n=
This paper is an extended abstract. All the proofs have 2m, and set
be found in our full paper [5]. Eir={xeFn | f(x)=1}.



Let us denote by{S, i=1,2...N} a set of subspaces &in C. Dickson Polynomials

of dimensionm satisfying: An excellent presentation of the work of Dickson can be
i2j = snSs={0} found in [16]. In our approach, we follow several recent papers
J 1= ’ where the reader can find a basic overview [10], [11]. Here

The function f is bent. and said to be if?.%~. when it We introduce some useful properties, restricting ourselves to

satisfies our context.
N Dickson polynomialD, € F;[x] are recursively defined by
— H __ om-1
Ef = iL:J1$ with N = 2™-1, Do(X) = 0 andDy(X) = X ; ©
Diy2(X) = xDj;1(x) + Di(x).
whereS =51 {0}. Using this definition, some basic properties are easily proved.

According to the previous theorem, we give now a sligthly
different version of [18, Theorem 1].

Theorem 2:Let y be a generator o¥, the cyclic subgroup
of F5n of order2™+ 1. Let f be any function of type (3). Then
f is hyperbent if and only if

Proposition 1: The polynomials defined by (6) satisfy (for
i,j>0):

. dEQDi) =1,

o Dy (X) = (Dj (X))Z,

+ Dij(x) = Di(Dj(x)),

#{i|f(y)=10<i<2m}=2"1 o Di(x+x)=x+x".
We also have the following fundamental result.
where#E denotes the cardinality of any sEt Theorem 4:The Dickson polynomiaD; € F;[x] is a per-

) i ) mutation onFom if and only if gcd(i,2’™ — 1) = 1.
To express precisely some function of type (3) which are

bent (and then hyperbent) remains open. [1l. HYPERBENTFUNCTIONS AND ZEROES OF
Open Problem 1:Characterize a class of functionfs of KLOOSTERMAN SUMS
type (3) which are bent, by giving explicitely thf. In this section, we study the monomial functions—
Tr(x@"-1) over Fon, n=2m. First, we are going to show
B. Monomial hyperbent functions that it is sufficient to treat the case= 1.

It is well-known that monomials functions of type (3),A. Monomial Functions

can be defined by means of the Kloosterman sums. In this
subsection, we consider the Boolean functionsFen: Recently, Leander [15] proposed another proof of Theorem

3, giving more informations on the spectrum of functioips

fr(X) = Tr(/\xszl) . A €Fom. (4) defined by (4). The next theorem (and its proof) is principally
due to Leander. In our proof, we include the case O ; we
Let us define the Kloosterman sums o¥enm: also consider the general forn, , instead off,.
i Theorem 5:For every integer coprime to2™m+ 1, define
Km(A) = Z (—)T G (5) the Boolean functions oRn, n=2m:
. fyr(X) = TrAX@™ D) A € Fjm. @)

whereT"(a) is the absolute trace dfym. Then we have the )
following result which is due to Dillon [8], [9]: Recall thatKy, is the Kloosterman sum oFm (see (5)). We

Theorem 3:The functionf,, defined by (4) is bent if and denote by, (a) the Hadamard transform df ; (see (1)).
only if the Kloosterman suni, satisfiesKiy(A) = 0. Then, for anyA € Fim,

—2omrq _

The set of the values of Kloosterman sums was described Z3(0) =271 = Kin(A)) +Kin(A)- (®)
by Lachaud and Wolfmann in [14] for any (even or odd). Moreover we have for ang € Fon
As a consequence, these authors proved that there are)some Tra @
such thatm(A) = 0, for anym. But this proves the existence Fx(a) =2"(=1)T AT L Kiy(). ©)
of suchA only, leading to : Consequentlyf) , is bent if and only ifK(A) = 0 or, equiv-
Open Problem 2:Describe, for some sequencenfthe set alently, .7, (0) = 2™. Also, f, , is bent if and only iff, ; is
of thoseA such thatf, is bent or, equivalentlyn(A) =0. bent. ' '

The previous problem appeared as a very difficult problem. |, ihe remaining of this section, we assume that1. We

Through numerical results it is possible to introduce SOMRnotef, ; by Ty, i.e., we come back to function§, defined
conjecture concerning a partial problem. In Section III-B WBy (4). We begin by some preliminaries.

present our main result in this context : we completely solvé | ainma 2: Let S = y/Fom, 0 <i < 2™ The function f,

the cased = 1. Open Problem 2 can be restricted as followg §efined by (4). Therf, is constant on each, equal to

(from a divisibility property ofKm [13]). Tr(Ay-2). Moreoverf, is hyperbent if and only if
Lemma 1:1f T/"(A) =1 thenKiy(A) # 0, i.e., the function

f,, defined by (4) is not bent. #i | TMA(Y+y))=1}=2m1



Remark 1:Consider again the function§, ,, defined by
(7). For anyr, even not coprime witle™+1, it is clear that
the previous result holds f) , is hyperbent if and only if
N =2"1 where

N=#{i | TG +y ) =1}

But if r divides2™+1 then2r dividesN with r odd. Hence
N # 2™1. We have proved that) , cannot be bent whenis
not coprime with2" + 1.

Proposition 2: Let n =2m and ¢ be the cyclic group of
order2™+ 1 with generatory. Then

{V+y'|1<i<2™}={ueFm |T (U =1}
Using Lemma 2, we deduce :
Corollary 1: The functionf, onFon, n=2m, is defined by
(4). Thenf, is hyperbent if and only if
#HucFm | T"Au=T"uYH=1}=2"2 (10

We also can characterize the bentness,oby its weight.
Lemma 3:Let f), defined by (4). Then the weight dj}, is

Consequently,f, is hyperbent if and only ifKm(A) = 0.
Moreover,

wt(fy) = (2M—1) (2m1+

Km(A)

#HueFom | AW =TMUu ) =1}=2"24 4

B. Main Result on Monomials

Then#Rm =#Lom+#L1m, where

#lom=2 #R,

whereRy, is defined by (11),(12).
Proof: First note thatRnNFx = 0. This is because for
uec Fx
(W) = Tf(u+u?) = 0.

The setRy is composed of two kinds of elements:
« The roots of pairs of polynomial&R,,R,-1), with R, #
P,-1. The number of roots of such a pair equédswhere
20 is the degree oR,.
« The roots of polynomiald}, which are self-reciprocal,
i.e., Ry =PR,1.
Hence, we have by definitior#Ry = #Lom+#L1m. Note that
all B, with u € Ry, have degrees which divide but notk :
these degrees are even. Notadlyivides#L1m sincelym is
composed of roots of pairs of distinct polynomials.

Let u € Ry, such thatR, = B,-1. Sinceu ¢ Fx, we deduce
from Lemma 5 that the elements &b, are roots of the
polynomial X2+ 41, Applying Proposition 2 to the cyclic
subgroup of orde + 1 in Fim, say%, we get

{ueFom | ¥ =1andT(u) =1}
{ue% | Tfu+uthh =1}

I—07m

Since
{utut [ueg\{1} }={veFy | TFv H=1},

In this section, we are going to prove Theorem 6 (see ded h
below). Notation is as in the previous section assuming thi¢ deduce that

A = 1. We need several lemmas ; the first one directly treats

the case wheren is odd. In this case, we apply Lemma 1.
Lemma 4:If mis odd thenKpy(1) #O.

Hom=2# veFx | TKV)=TfvH=1}.
We obtain#l g, = 2 #R¢ from (11), completing the proofm

According to Corollary 1, we are going to compute the Lemma 7:Let m= 2k wherek is odd ¢,k > 1). Then

cardinality of

Rn={ueFm |[TMu)=T"u"H =1} (11
From Lemma 3, we know that
#Ry=2"2 4 KmT(l) (12)

From now on we examine the case whemne= 2k, for some

integerk. We will define recursivelyRy, by using a property

#im=0 (modZ™h. (13)

MoreoverLym# 0 for anym>6 andLi2 =L14=0.

Now, we are able to prove :
Theorem 6:Let n=2m with m< 2. The Kloosterman sum

Km(1)= ¥ (—) TG,
Xe om

of self reciprocal polynomials. We first present this propertyatisfieskm(1) 7 0 unlessm= 4. In other terms, the Boolean
Lemma 5:Let m = 2k. We denote byPR, the minimal functionxi— T"(x"1+x) is not balanced unless = 4.

polynomial of u over Fy, B, € F2[X]. Assume that there is

u € Fom satisfying

ugFx and R, =P, 1.
ThendegR,) = 2r for somer > 0 dividing k. Moreover,u? =
u~! andu is a root of the polynomiax?+2 + 1.

Lemma 6:For anyu € Fom, m= 2k, let R, € F3[x] be the
minimal polynomial ofu over F,. Set

{UeRn | Ri=P, 1}
{UERm|Pu7EPu71 }

LO,m
Ll,m

Consequently, the Boolean functian— Tr(x2"~1), on Fon,
is not bent unless = 8.
Proof: We have seen th#t, (1) = 0if and only if #Ry, =
2™-2_ And this is impossible for odan. So we assume that
m= 2"k, r > 1 andk odd. We have from Lemma 6:

#Rm #LOm + #Ll"m - 2#'?2r—1k + #Ll"m
= #L]_‘m + 2#Ll72"_1k + 2#L0,2r_1k'
By induction, one proves easily that

#Rn =#lym+2H o1y +...+ 2 Haa+ 2HR.  (14)



It is easy to compute the firg¥. Note thatR; = R3 = {1}. Consequentlyf is hyperbent if and only if

Also #R, = 2 and#R4 = 4. More generally we have for odd M1
k> 1 (see (12)): Z ()T 90 — 2™ — 2w(g). 17)
XekFom

—~

Proof: Recall thatwt(g) is the weight ofg andy is a
generator of the subgroug of Fon of order2™+ 1. We have
wheree =0 if k>3 ande =1 if k=3. This is because ¢y _ 5 Tr 2"-1jiry _ § M 2y
TK(1) = 1 implying K (1) =4 (mod 8 (see [13]). Ifr =1 ) ,ZE (v ) EE B0y )
andk > 1, we get

#Rk:Zk*2+Kk—1) =241 (mod8,

Qe »

Then, applying Theorem Z, is hyperbent if and only iN =
Kk (1) 2™ where

#Ra = 2MR+#Lam =21+ == +#lam, S
- . N=#] | }ET{“(Br(V” +y ) =1} (18)
where 4 divides 2¢71 + #L1 m but does not dividey(1)/2. re
Then, it is impossible to haw#Ryy = 222,

From now on assume that> 1 so thatm=4, 8, 12....
From Lemma 7, the equation (14) becomes:

For u=y+y 1, we now use basic properties of Dickson
polynomials (see Proposition 1).

VI+y =Dy =Di(y +y)), 1<j<2m
#Rn=2"M 4 2f (2“ + Kk(l))
4 ’ Using Proposition 2, we rewritte (18) as follows :
for k> 1 and#Ry = 2"+IM 42" for k=1, whereM is some N = #{]| ZET{“(BrD,(yj +y =1}
positive integer. We suppose first that> 8 so thatM # 0 re
(see Lemma 7) and < m— 2. = 2# ueFm | T"u ) =1andg(u) =11},

In both casesk(> 1 or k=1) it is easy to check thatRm, #
2™-2 since#Ry is divisible by 2" and not by2*+1. Fork > 1
it is sufficient to see thax(1)/4 is odd. Ifm=4 then#Ry, =
4 =22, completing the proof.

whereg(x) is defined by (16).

Denote byh the functionx — Tlm(x—l). To prove (17), we
have to compute the Hadamard transform of the fundtieng
in point 0, say.# (0). We know that% (0) = 2™ —2wt(h+g).

There is an immediate consequence of the previous theordy, definition of the Hamming weight, we have:
considering again monomial functions of the form (7). me1

Corollary 2: For allr with gcd(r,2"+1) = 1, the Boolean wi(h+g) =wi(h) +wt(g) —2wi(hg) = 27" —2wt(hg) +wi(g).
function f1;(X) on Fzn is not hyperbent unless= 8. Note thatwt(h) = 2™ since the inverse function is a permu-
tation. By definition,hg(x) = 1 if and only if h(x) =g(x) =1
providing wt(hg) = N/2. Then f is hyperbent if and only if
wt(hg) = 2™2 or, equivalently,Z (0) = 2™ — 2wt(g). ]

IV. HYPERBENTFUNCTIONS IN TERMS OFDICKSON
POLYNOMIALS

When f is a monomial trace term, the bentness fois

established through some Kloosterman sum. Howevefr,igf B. A Class of Binomial Functions

a sum of multiple trace terms, defined by (3), there is no The results in Theorem 7 provide a way to transfer the
technique which has found to dealt with this case. In thig/aluation of the weight of the functiohin the cyclic group
section, using the results developed in Section I, we shaw to the evaluation of the weight of some Boolean function
that the bentness of those functions with some restrictiondg Fom. The later problem is easier than the former one, since
related to the Dickson polynomials. we could use the divisibility of some cyclic codes, especially,
for special classes of functions of type (15). To illustrate our

) ] . purpose we are going to treat some binomial functions of type
Dickson polynomials are denot&@} € F2[x] wherer in R, a  (15). Let, for anyA € Fom,

set of representatives of the cyclotomic cosets mo@(ile- 1
of size2m. f(x)=Tr (A (xZ-HE"-Y) +x(2r+1>(2m’1))) (19)

Theorem 7:Let us consider any function of type (3) &an,
n = 2m, with coefficients inFom :

A. Main Characterization

with 0 <r <m. Then, according to Theorem 7, we have

f(x) = EETr(BrX(Zm*l)r) whereE CR, B € Fom,  (15) 9(X) = (A (Dz-1(X) +Dzr41(X)))-
re We apply the recursive definition of Dickson polynomials (see
and the related Boolean function &@am : Section 1I-C) :
9(x) = EET{”(BrDr (X)) (16) Dar41(X) = XDar (X) + Dor_1(X) = X2 T2+ Dar _1(x),
re

leads tog(x) = T"(Ax? *1). Hence, we can study the bentness
of f, defined by (19), if we can exhibit some property on the
#HueFm | T"U ) =1andg(u)=1}=2"2 Hadamard transform of the function— T,"(x 1+ Ax? 1),

Then f is hyperbent if and only if



For instance, we have to prove that this function is balancedin this paper, we show that the link between the monomials

wheng is balanced too (according to (17)). We obtain directlgnd some Kloosterman sums is generalized in a link between

the following characterization which could be seen as raultiple trace terms functions and some exponential sums

generalization of Theorem 3. where Dickson polynomials are involved. We emphasize that
Theorem 8:Let n=2m. Consider any functiori defined by we have here introduced a new method for exploring the

(19), with A € Fim. Assume that the function— TM(Ax? +1)  possibly hyperbent functions.

is balanced orom. The results of Section IV-C are surprising. For instance, as
Then f is hyperbent if and only if soon as we have characterized one monomial bent function we

Dickson permutation polynomials. We are mainly interested

Z (_1)T1m(x,1+“2r+l) o can then generate a sequence of balanced functions using the
XErFom

Note that the previous equality is valid for amysuch that
gcd2 +1,2™—1) = 1. So we are expecting a number o
hyperbent functions of type (19). To describe a subset of s
functions is, in particular, to solve the next problem.

Open Problem 3:Describe the set oA € Fi» such that
the function onFom, x— TM(x 1+ Ax¥ 1), where2' +1 is
coprime to2M—1, is balanced.

The simplest case is = 1. For our next result, we use [z
a property on the divisibility of thenverse cubicsums [4,
Lemma 5]. ]

Proposition 3: Let n=2m with m odd. Let, for anyA €
F5m, the Boolean function offon

f(x)=Tr ()\ ("1 +x3<2”‘*1>)) .

Then we have :

® If m=3thenf is hyperbent unlesd = 1.
(i) Letm>5.1f T"(A)=1thenf is not hyperbent.

C. Monomial Hyperbent Functions in Terms of Dickson Poly;7]
nomials

Another interesting consequence of Theorem 7 concerns
monomial functions defined by (7)), with A € Fim. We  [8]
assume thagedr,2°™ — 1)) = 1 so thatD; is a permutation [9]
polynomial. Our main result is :

Theorem 9:Recall thatK,, denotes the Kloosterman sum
over Fom (see (5)). Dickson polynomial®, (see Section II- (0]
C) are defined for any coprime t02°™—1 andr < 2™, Let
A € F5m be fixed. Then the function§, , are bent if and only [11]
if one of these statements is satisfied :

(1) - Km(A)=0;
(2) - One proves for only one that

Z (—1)TTO +ADr (X))
XekFom

(4]

(20) 5]

(6]

(12]
(23]
0;

(14]

(2) - All functions x+— TM(x 1+ AD;(x)) are balanced. [15]

V. CONCLUSION [16]

A number of recent papers are devoted to bent Boolean
functions expressed by means of trace-functions [1], [2], [L7]
[10], [15]. In this paper, we contribute to the knowledge of this
fascinating class of functions, by studying a subclass of th
so-called 2.~ class. Such functions are not yet classified,
even when they are monomials.

by the bentness, but to have properties on the full spectrum is
f interest also. In particular, some formula in this paper can
f seen as approximations of the components of the inverse
unction.
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