Classification and Generation of Disturbance Vectors
for Collision Attacks against SHA-1

Stéphane Manuel®

CRI - Paris Rocquencourt
stephane.manuel@inria.fr

Abstract. The main contribution of this paper is to provide a classification of
disturbance vectors used in differential collision attacks against SHA-1. We show
that all published disturbance vectors can be classified into two types of vectors,
type-1 and type-1I. We present a deterministic algorithm which produce efficient
disturbance vectors with respect to any given cost function. We define two simple
cost functions to evaluate the efficiency of a candidate disturbance vector. Using
our algorithm and those cost function we retrieved all previously known vectors
and found that the most efficient disturbance vector is the one first reported as
Codeword2 by Jutla and Patthak in [7].

Key words: Hash Functions, SHA-1, Collision Attack, Disturbance Vector.

1 Introduction

SHA-1 has been a widely used hash function since it was published by NIST as a Federal
Processing Standard in 1995 [13]. SHA-1 is an evolution of a previous standard named
SHA-0 [12]. SHA-1 and SHA-0 only differ in their message expansion.

Many researches have discussed collision attacks against SHA-0 and SHA-1 [5,1,2, 18—
20,3,11,17,4,6,8]. Chabaud and Joux [5] pointed out the weakness of the state update
transformation common to SHA-0 and SHA-1. They described a linear differential path
composed of interleaved 6-step local collisions. The core of this differential path is rep-
resented by a disturbance vector (so-called L-characteristic) which indicates where the
6-step local collisions are initiated. Once a disturbance vector is chosen, one can evaluate
the complexity of a collision attack against SHA-0 or SHA-1 directly from this vector. The
critical factor for choosing a disturbance vector is considered to be the Hamming weight
of its last 60 coordinates. A lot of work has been spent in order to find good vectors [19,
9,7,16,15,21]. The algorithms proposed are essentially probabilistic algorithms based on
coding theory tools.

This article presents a generalized algorithm able to produce efficient disturbance
vectors, with respect to any given cost function. Based on the experiments done using
this algorithm, we present a classification for these vectors. First, we will describe our
algorithm and introduce what we will call type-I and type-II classes. We then show that
all the previously proposed and/or used disturbance vectors lie into these classes. We
define two cost functions in order to compare the efficiency of known vectors. The optimal

The author is supported in part by the french Agence Nationale de la Recherche under the
project designation EDHASH, DPg/ANR-CI FA/VB 2007-010.

vector with respect to those cost functions is the one first reported as Codeword2 by Jutla
and Patthak in [7].

The paper is organized as follows. In Section 2, we give a brief description of SHA-1.
Then, in Section 3, we describe our new algorithm, define type-I and type-II classes and
show that all known vectors belong to these classes. In Section 4, we define the cost func-
tions used in order to evaluate the efficiency of disturbance vectors and give a comparison
of known vectors. We then briefly discuss how the efficiency evaluation of a disturbance
vector reflects the complexity of the collision attack. Finally, we draw conclusions in Sec-
tion 5.

2 Short Description of SHA-1

SHA-1 [13] is a 160-bit dedicated hash function based on the design principle of MD4. It
applies the Merkle-Damgard paradigm to a dedicated compression function. The input
message is padded and split into k 512-bit message blocks. At each iteration of the com-
pression function h, a 160-bit chaining variable H, is updated using one message block
M1, i.e Hipq = h(Hg, Myy1). The initial value Hy (also called IV) is predefined and Hy,
is the output of the hash function.

The SHA-1 compression function is build upon the Davis-Meyer construction. It uses
a function E as a block cipher with H; for the message input and My, for the key input,
a feed-forward is then needed in order to break the invertibility of the process:

Hyyy = E(Hy, Myyq) B He,

where B denotes the addition modulo 232 32-bit words by 32-bit words. This function is
composed of 80 steps (4 rounds of 20 steps), each processing a 32-bit message word W;
to update 5 32-bit internal registers (A, B,C, D, E). The feed-forward consists in adding
modulo 232 the initial state with the final state of each register. Since more message bits
than available are utilized, a message expansion is therefore defined.

Message Expansion. The message block M, is split into 16 32-bit words Wy, ..., Wis.
These 16 words are then expanded linearly, as follows:

W, = (Wiflc OW; 14 DW;,_ gD Wl;g) < 1for 16 <1 < 79.
State Update Transformation. First, the chaining variable H; is divided into 5 32-

bit words to fill the 5 registers (A, By, Co, Do, Eo). Then the following transformation is
applied 80 times:

Aipr = (A; < 5)8B fi(B;,Cy, D) BE;BK; BW;,

Biy1 = Ay,
STEP1+1 =0 Ciy1 =B; > 2,

Diy1 =C;

Fivi = D;.

where K; are predetermined constants and f; are Boolean functions defined in Table 1.

round step @ ‘ fi(B,C, D) ‘ Ki

1 1<i<20 fir=(BAC)® (BAD) 0x5a827999
2 21 <4 <40 fxorR=B&C®D Ox6ed6ebal
3 41 <i <60 fuas=(BANC)D(BAD)® (CAD) 0x8fabbcdc
4 61 <7 <80 fxorR=B&C®&D Oxca62c1d6

Table 1. Boolean functions and constants in SHA-1.

Feed-Forward. The sums: (AO H Ago)7 (BO H Bgo), (CQ H C’go)7 (DO H DSO), (EO H Ego)
are concatenated to form the chaining variable Hyy.

Note that all updated registers but A;,; are just rotated copies, so we only need to
consider the register A at each step. Thus, we have:

Aipr = (A 5) B fi(Aim1, Ao > 2, A 3> 2)B (Ai—s > 2) B K, BW,.

3 Disturbance Vectors Searching Algorithm

3.1 Description of the Algorithm

The search algorithm we used is mainly based on the simple observation that the message
expansion of SHA-1 can be defined in two directions: forward expansion and backward
expansion. Namely, one can fix Wy,...,Wi5 and then expand them forward to obtain
WlG; R W79:

— Forward expansion: W; = (W;_16 @ Wi_14 ® Wi_g @ W;_3) < 1 for 16 <1i < 79.

This is the standard way defined in SHA-1 specifications. We can also expand backward
to obtain W_gy, ..., W_; defined by:

— Backward expansion: W; = (W16 3> 1) @ W13 ® W18 & Wiys for —64 <4 < —1.

Any sequence of 80 consecutive 32-bit words W, ..., W79 with —64 < i < 0 is a valid
expanded message.

We will call information window the 16 32-bit words Wy, ..., Wis5. For a given infor-
mation window, we define an extended expanded message (EEM) consisting of 144 32-bit
words:

W_64,...,W_1,Wo,...,Wi5,Wis, ..., Wy,

where W_gy, ..., W_1 (respectively Wig, ..., Wrg) are generated using the backward (re-
spectively forward) expansion. Each EEM is composed of 65 valid expanded messages,
each of these is a plausible candidate as disturbance vector.

This is the core property we use to build disturbance vectors. Our algorithm is de-
scribed in Algorithm 1.

This algorithm generalizes the algorithm described by Wang et al. in [19]. We explicitly
use forward and backward expansions. We relax the constraints imposed by Wang et al.
both on columns and bit positions where to insert disturbances.

Previously proposed algorithms mainly focused on searching for vectors with lowest
Hamming weight in the last 60 of the 80 expanded 32-bit words. Jutla and Patthak [7]

Backward expansion Forward expansion

W_64,...,W_1 Wo,...,W15 i Wlﬁ,.447W79

Wi, ..., Witre

Fig. 1. Extended expanded message.

Algorithm 1 Disturbance vectors searching algorithm

Require: w > 0, cost function f
for all information windows of total binary Hamming weight w or less do
generate corresponding EEM
for all 65 disturbance vectors of the EEM do
evaluate efficiency with cost function f
store vector with best evaluation
end for
end for
return best vector found

have demonstrated that the minimum Hamming weight of such a vector is 25. However,
the holding probability of a local collision can vary according to the bit position where
it starts. A local collision starting at step 20 holds with probability 272 if the first dis-
turbance is located on bit 1, with probability 272 on bit 31 and probability close to 274
on other bits. The holding probability also depends on the round function (IF, MAJ or
XOR) where the corrections occur. Hence, a vector with higher Hamming weight may
have a better efficiency than a vector with weight exactly 25. Therefore our approach
consists in evaluating the efficiency of disturbance vectors without directly considering
their Hamming weights. This is also the approach chosen in [4], but no algorithm is given.

Yajima et al. proposed in [21] an algorithm evaluating the number of chaining variable
conditions (CVCs) of a disturbance vector. Their method uses new techniques in order to
accurately count the number of CVCs from a disturbance vector. However following Wang
et al. approach, they chose to define their search space as a rectangle range : disturbances
may only appear on the first two columns of their information window. They do not
limit the Hamming weight of their information window, but limit the positions where
disturbances can occur. We use a different trade-off. We limit the Hamming weight of our
information window but allow disturbances to be placed anywhere in this window.

In order to use our algorithm, we need a cost function to evaluate the efficiency of
candidate disturbance vectors. We ran our algorithm using two different cost functions
described in section 4.

3.2 Experimental Results

We first searched for disturbances vectors leading to two-block collision attacks. We run
the algorithm with w = 4 and experimentally observed some facts:

— fact 1: we were able to find all previously known vectors,

— fact 2: all efficient vectors ”"looked” similar in some way,
— fact 3: the most efficient vectors were the same under cyclic shift of their W;,

— fact 4: all efficient vectors mainly have their disturbances on low weight or heavy
weight bits of their W;.

Considering fact 3 and fact 4 led us to add some heuristics to our algorithm. With these
heuristics, we were able to extend our search for efficient vectors to information windows of
binary Hamming weight 6 or less. This new search confirmed the previous constated facts.
Furthermore, we remarked that no better vector appeared during the extended search. The
best vectors were obtained with information windows of weight 1 and weight 3. Table 2
describes the two information windows which lead to the best disturbance vectors.

We also searched for disturbance vectors which could lead to one-block collisions, im-
posing the constraint that no disturbance starts after step 75. We experimentally verified
that the most efficient vector for one-block collisions is the one reported in [19].

We exhaustively tested all vectors generated by information windows of Hamming
weight lower or equal to 4. However, this is only a subspace of the whole space of all
possible disturbance vectors.

i Weight 1 Information Window Weight 3 Information Window

= e 5
m%ww}iowmﬂmmﬁuwwo

Table 2. Information windows leading to the most efficient disturbance vectors.

It is worth noticing that some of the observations we made were already present in the
literature. Wang et al. [19] stated that different choices of bit position produce disturbance
vectors that are rotations of each other with same Hamming weight. Rijmen and Oswald
[16] noticed that the codewords they found have a large amount of W; in common. Jutla
and Patthak [7] indicated that their first codeword was earlier reported by Wang et al..
Pramstaller et al. [15] also pointed out that their vector was the same disturbance vector
as the one used by Wang et al. with a shifted version of the indices. However to our
knowledge, no publication prior to this work described a model which takes into account
those observations. The interpretation of the experimental facts leads us to conclude that
efficient vectors can be classified in only two classes. These classes are defined in the next
section.

3.3 Classification of Disturbance Vectors

We generate disturbance vectors using information windows and extended expanded mes-
sages. It is easy to see that cyclic shifts of the W; in a given information window will
generate vectors that are rotations of each other. Also disturbance vectors within a given
EEM only differ from the index ¢ (—64 < i < 0) where valid expanded messages start.
Based on these properties, we can define an equivalence relationship. We say that two
disturbance vectors are equivalent if:

— the vectors are globally invariant under cyclic shift of their 32-bit words Wy, ..., Wrg
or,
— the vectors are generated by the same extended expanded message.

We experimentally verified that all efficient disturbance vectors lie in only two different
classes. We name these classes type-I and type-II. The type-I class contains the vector
first reported by Wang et al. in [19]. Type-II class contains the vector first reported as
Codeword2 by Jutla and Patthak in [7]. Table 5 and Table 6, at the end of this document,
present in a synthetic way previously known vectors and show that they all are of type-I
or type-II (notation > ¢ indicates that to retrieve the vector published in the reference,
one should cyclically shift by 4 bits to the left the corresponding 80 32-bit words). We now
define a new notation. We will note 1(i,j) (respectively II(i,j)) the disturbance vector of
type-I (respectively type-IT) generated as follows :

— cyclically shift by j bits to the left the 16 32-bit words of the type-I (respectively
type-1I) information window,

— expand backward ¢ times,

— expand forward 64 — i times.

Table 3 details the corresponding notations for known disturbance vectors. The advantage
of this notation is to provide a practical description for disturbance vectors. This classifi-
cation also permits to explain the observations previously remarked in several papers.

Whereas vectors in the same class are equivalent according to our definition, the com-
plexity of their associated collision attacks may vary. We discuss in the next section how
we evaluated the efficiency of disturbance vectors.

4 Efficiency Evaluation

4.1 Cost Function

In order to compare the efficiency of different disturbance vectors we use a cost function.
Such a cost function has to reflect the complexity of a collision attack based on a given
vector. The literature describes two different approaches for complexity evaluation:

— conditions counting [8, 17-20] and,
— probabilities computation [1-6, 10].

For a given disturbance vector, the complexity of a collision attack can be evaluated by
counting the number of conditions to fulfill or by computing the product of local collisions
holding probabilities for each disturbance bit. We remark that complexity evaluations
described in [3,4], even if based on probabilities computations, take into account more

Disturbance vectors Notation
Wang et al. CRYPTO 2005 [19]

58 steps 1(43,2)

80 steps 1(49, 2)
Rijmen & Oswald CT-RSA 2005 [16]

Codewordl I(45,1)

Codeword2 1(41,1)

Codeword3 1(39,1)
Jutla & Patthak ePrint 2005 [7]

Codewordl 1(52,0)

Codeword2 11(52,0)

Codeword3 I(51,0)
Pramstaller et al. IMA 2005 [15] 1(50, 2)
De Cannieére & Rechberger ASTACRYPT 2006 [3] 1(35,2)
De Canniere et al. SAC 2007 [4] 11(46,2)
Yajima et al. ASTACCS 2008 [21] 11(56, 2)

Table 3. New notation for known disturbance vectors.

factors influencing the complexity computation. Although in order to roughly evaluate
candidate disturbance vectors, we arbitrarily chose to base our cost functions on a simple
probability computation.

Both functions start computing probabilities from step 21 to step 80. Following [4],
cost functions only discard the carry conditions in the last two steps. Cost functions
also consider the technique described in [19] for two consecutive disturbances within the
same step. This technique has been extended and named strict differential bit compression
by Yajima et al. [21]. Cost function 1 uses the probabilities for local collisions in SHA-
1 described in the article by Mendel et al. at FSE 2006 [10]. Cost function 2 uses the
probabilities given in Tables B.1 and B.2 of Annex B detailled in the Ph. D thesis of
Thomas Peyrin [14].

We do not claim that those cost functions exactly evaluate the effective complexity of
a collision attack against SHA-1. Their purpose is to evaluate efficiency, and a simple cost
function is a convenient way to make a raw (and reasonably fast) comparison between
candidate disturbance vectors. Furthermore, we point out that our algorithm may use any
other cost function.

Using those cost functions, we gather in Table 4 all disturbance vectors we are aware
of and give an efficiency comparison. We remark that the evaluations we obtained are
very close to the claimed complexity of successfull collision attacks [19,3,4] on reduced
versions of SHA-1. We also notice that the most efficient disturbance vector which appears
in the literature is Codeword2 given by Jutla and Patthak [7]. This is confirmed by our
experiments. With respect to the two cost functions we used, the disturbance vector of
Jutla and Patthak is the best vector found by our algorithm.

Previously described algorithms based their rectangle range in order to maximize the
number of perturbations occurring on bit position 1. Our approach has permitted to show
that over positions may also be interresting. Indeed, this is the case of the disturbance
vector of Jutla and Patthak.

We can define different cost functions, for example by starting complexity evaluation
from steps higher than 21. In [20], the authors used advanced message modifications
to start complexity evaluation from step 25. In [6], the authors proposed Boomerangs
in the neutral bits framework in order to speed up the search. We found several new
vectors which have better efficiency according to cost functions with complexity evaluation
starting from step 25. However, we can not confirm the practicability of such speed-up
techniques independently of the used disturbance vector.

Disturbance vectors Given evaluations | Evaluation 1 | Evaluation 2
—log, —log,

Wang et al. CRYPTO 2005 [19]

58 steps 233 hash operations 35 35

80 steps 2% hash operations 73 73
Rijmen & Oswald CT-RSA 2005 [16]

80 steps

Codewordl - 90 90

Codeword?2 - 97 97

Codeword3 - 102 102
Jutla & Patthak ePrint 2005 [7]

80 steps

Codewordl - 70 76

Codeword?2 - 65 69

Codeword3 - 71 76
Pramstaller et al. IMA 2005 [15]

80 steps - 73 73

De Canniere & Rechberger
ASTACRYPT 2006 [3]

64 steps 235 hash operations 34 34

80 steps - 94 94
De Canniere et al. SAC 2007 [4]

70 steps 244 hash operations 43 43

80 steps - 88 88
Yajima et al. ASTACCS 2008 [21]

80 steps 70 (72) CVCs 75 75

Table 4. Efficiency comparison of known disturbance vectors. Evaluation 1 (respectively 2) is
computed using cost function based on Mendel et al. (respectively based on Peyrin).

4.2 From efficiency evaluation to complexity evaluation

The cost function computes an evaluation of the efficiency of a given disturbance vector.
We should now consider how far is this efficiency evaluation from the complexity of an

effective attack against SHA-1 based on a given vector. First, our cost functions assume
that fullfilling conditions from steps 16 to 20 can be done independently of the disturbance
vector. This is an arguable assumption. However, this seems to be a common assumption
in the literature. Second, in order to build an effective two-block collision attack against
SHA-1 from a given disturbance vector, one shall need at least (1) a non-linear characteris-
tic generator and (2) speed-up techniques. Efficient disturbance vectors may have different
behaviors with respect to these tools. Thus, we do not claim that one could directly build
an effective collision attack against SHA-1 from the most efficient disturbance vector found
by our algorithm.

5 Conclusion

In this paper, we introduce a new algorithm to produce disturbance vectors to be used
in collision attacks against SHA-1. Given a cost function, this algorithm will produce
the most efficient disturbance vector with respect to this cost function. Based on the
experiments done using this algorithm, we were able to retrieve all previously proposed
and/or used disturbance vectors. By identifying classes of efficient vectors, we showed that
all known vectors lie into type-I or type-II classes. We run our algorithm and found that
the most efficient disturbance vector with respect to the chosen cost functions is the one
first reported as Codeword2 by Jutla and Patthak in [7].

References

1. E. Biham and R. Chen. Near-Collisions of SHA-0. In M.K. Franklin, editor, Advances in
Cryptology — CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages
290-305. Springer-Verlag, 2004.

2. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby. Collisions of SHA-0
and Reduced SHA-1. In R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages 36—57. Springer-Verlag, 2005.

3. C. De Canniere and C. Rechberger. Finding SHA-1 Characteristics: General Results and
Applications. In X. Lai and K. Chen, editors, Advances in Cryptology — ASIACRYPT 2006,
volume 4284 of Lecture Notes in Computer Science, pages 1-20. Springer-Verlag, 2006.

4. C. De Canniere, F. Mendel and C. Rechberger. Collisions for 70-step SHA-1: On the Full
Cost of Collision Search. in C. Adams and A. Miri and M. Wiener, editors, Selected Areas in
Cryptography — SAC 2007, volume 4876 of Lecture Notes in Computer Science, pages 56—73.
Springer-Verlag, 2007.

5. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk, editor, Advances
in Cryptology — CRYPTO 2008, volume 1462 of Lecture Notes in Computer Science, pages
56-71. Springer-Verlag, 1998.

6. A. Joux and T. Peyrin. Hash Functions and the (Amplified) Boomerang Attack. In A.
Menezes, editor, Advances in Cryptology — CRYPTO 2007, volume 4622 of Lecture Notes
in Computer Science, pages 244-263. Springer-Verlag, 2004.

7. C.S. Jutla and A.C. Patthak. A Matching Lower Bound on the Minimum Weight of SHA-
1 Expansion Code. Cryptology ePrint Archive, Report 2005/266, 2005. Available from:
http://eprint.iacr.org.

8. S. Manuel and T. Peyrin. Collisions on SHA-0 in one hour. In K. Nyberg, editor, Fast
Software Encryption — FSE 2008, volume 5086 of Lecture Notes in Computer Science, pages
16-35. Springer-Verlag, 2008.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

K. Matusiewicz and J. Pieprzyk. Finding Good Differential Patterns for Attacks on SHA-1.
In Proceedings of International Workshop on Coding and Cryptography — WCC 2005, volume
3969 of Lecture Notes in Computer Science, pages 164-177. Springer-Verlag, 2005.

F. Mendel, N. Pramstaller, C. Rechberger and V. Rijmen. The Impact Of Carries on the
Complexity of Collision Attacks on SHA-1. In M.J.B. Robshaw, editor, Fast Software En-
cryption — FSE 2006, volume 4047 of Lecture Notes in Computer Science, pages 278-292.
Springer-Verlag, 2006.

Y. Naito, Y. Sasaki, T. Shimoyama, J. Yajima, N. Kunihiro and K. Otha. Improved Col-
lision Search for SHA-0. In X. Lai and K. Chen, editors, Advances in Cryptology — ASI-
ACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages 21-36. Springer-
Verlag, 2006.

National Institute of Standards and Technology. FIPS 180: Secure Hash Standard, May 1993.
Available from: http://csrc.nist.gov.

National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard, April
1995. Available from: http://csrc.nist.gov.

T. Peyrin. Analyse de fonctions de hachage cryptographiques. Ph.D Thesis in Cryptology.
November 2008

N. Pramstaller, C. Rechberger and V. Rijmen. Exploiting Coding Theory for Collision Attacks
on SHA-1. in N.P. Smart, editor, Cryptography and Coding 2005, volume 3796 of Lecture
Notes in Computer Science, pages 78-95. Springer-Verlag, 2005.

V. Rijmen and E. Oswald. Update on SHA-1. in A.J. Menezes, editor, The Cryptogra-
phers’Track at the RSA conference — CT-RSA 2005, volume 3376 of Lecture Notes in Com-
puter Science, pages 58-T71. Springer-Verlag, 2005.

M. Sugita, M. Kawazoe, L. Perret and H. Imai. Algebraic Cryptanalysis of 58-Round SHA-1.
In A. Biryukov, editor, Fast Software Encryption — FSE 2007, volume 4593 of Lecture Notes
in Computer Science, pages 349-365. Springer-Verlag, 2007.

X. Wang, H. Yu and Y.L. Yin. Efficient Collision Search Attacks on SHA-0. In V. Shoup,
editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer
Science, pages 1-16. Springer-Verlag, 2005.

X. Wang, Y.L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor,
Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 17-36. Springer-Verlag, 2005.

X. Wang, Y.L. Yin, and H. Yu. New Collision Search for SHA-1. In Proceedings of NIST
Cryptographic Hash Workshop, 2005. Available from: http://csrc.nist.gov.

J. Yajima, T. Iwasaki, Y. Naito, Y. Sasaki, T. Shimoyama, N. Kunihiro and K. Ohta. A
Strict Evaluation Method on the Number of Conditions for the SHA-1 Collision Search. In
proceedings ASIACCS 2008. March 18-20, Tokyo, Japan, 2008.

Wang Rijmen Jutla Pramstaller| De Canniére
et al. & & et al. &
Type — I Oswald Patthak Rechberger
[19,20,17,6] [15]
(16] (7] (3]
Disturbance Vector
> 2 > 1 Code | Code > 2 > 2
wordl|word3
0
-00 1 0
2 1 0
-0-0 0 3 2 1
o 1 4 3 2
o 2 5 4 3
0-o0 3 6 5 4
-o 4 0 7 6 5
5 1 8 7 6
-00 6 2 9 8 7
o 7 3 10 9 8
o 8 4 0 11 10 9
o 9 5 1 12 11 10
10 6 2 0] 13 12 11
11 7T 3 1 14 13 12
-0 12 8 4 2 15 14 13
13 9 5 3] 16 15 14
0-0 14 10 6 4| 17 16 15 0
o 15 11 7 5 18 17 16 1
0-0 16 12 8 6| 19 18 17 2
17 13 9 7] 20 19 18 3
o 18 14 10 8| 21 20 19 4
19 15 11 9| 22 21 20 5
00 20 16 12 10| 23 22 21 6
21 17 13 11| 24 23 22 7
o 22 18 14 12| 25 24 23 8
o 23 19 15 13| 26 25 24 9
-0 24 20 16 14| 27 26 25 10
25 21 17 15| 28 27 26 11
61 57 53 51| 64 63 62 47
62 58 54 52| 65 64 63 48
63 59 55 53| 66 65 64 49
o 64 60 56 54| 67 66 65 50
65 61 57 55| 68 67 66 51
66 62 58 56| 69 68 67 52
o- 67 63 59 57| 70 69 68 53
68 64 60 58| 71 70 69 54
69 65 61 59| 72 71 70 55
o-- 70 66 62 60| 73 72 71 56
71 67 63 61| 74 73 72 57
o- 72 68 64 62| 75 74 73 58
o--- 73 69 65 63| 76 75 74 59
74 70 66 64| 77 76 75 60
75 71 67 65| 78 ks 76 61
o---- 76 72 68 66| 79 78 e 62
7 73 69 67 79 78 63
o-o- 78 74 70 68 79 64
o 79 75 71 69 65
00— 76 72 70 66
77T T3 71 67
o 78 T4 T2 68
o--- 79 75 73 69
0-0--- 76 74 70
o 7775 71
o--- 78 76 72
79 77 73
o----0--- 78 74
79 75
0-o0 76
o 7
00--0-- 78
79

Table 5. Known disturbance vectors of type-I.

Yajima |De Canniere| Jutla &
Type — I1 et al. et al. Patthak
Disturbance Vector [21] [4] 7
> 2 > 2 Codeword2
00-0 0
o 1
000 2
0-o 3
---o 4
o 5 0
000 6 1
--o 7 2
00-0 8 3
o 9 4
000 10 5
0-o 11 0 6
---0 12 1 7
o 13 2 8
000 14 3 9
--0 15 4 10
0o 16 5 11
o 17 6 12
-00 18 7 13
o 19 8 14
00 20 9 15
o 21 10 16
0-o 22 11 17
o 23 12 18
000 24 13 19
25 14 20
61 51 57
62 52 58
63 53 59
64 54 60
65 55 61
66 56 62
67 57 63
68 58 64
69 59 65
70 60 66
o 71 61 67
72 62 68
73 63 69
o- 74 64 70
o 75 65 71
76 66 72
o—- e 67 73
o- 78 68 74
o- 79 69 75
o--- 70 76
o-—- 71 ks
72 78
o--o0- 73 79
o--- 74
0-0-— 75
o 76
0-00- 7
78
0--0-0 79

Table 6.

Known disturbance vectors of type-II.

