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Abstract— We present a theory of quantum serial turbo-codes
and study their performance numerically on a depolarization
channel. These codes can be considered as a generalization of
classical serial turbo-codes. As their classical cousins, they can be
iteratively decoded and with well chosen constituent convolutional
codes, we observe an important reduction of the word error rate
as the number of encoded qubits increases.

Our construction offers several advantages over quantum
LDPC codes. First, the Tanner graph used for decoding can be
chosen to be free of 4-cycles that deteriorate the performances of
iterative decoding. Secondly, the iterative decoder makes explicit
use of the code’s degeneracy. Finally, there is complete freedom
in the code design in terms of length, rate, memory size, and
interleaver choice.

We address two issues related to the encoding of convolutional
codes that are directly relevant for turbo-codes, namely the
character of being recursive and non-catastrophic. We define a
quantum analogue of a state diagram that provides an efficient
way to verify these properties on a given quantum convolutional
encoder. Unfortunately, we also prove that all recursive quantum
convolutional encoder have catastrophic error propagation. In
our constructions, the convolutional codes have thus been chosen
to be non-catastrophic and non-recursive. While the resulting
families of turbo-codes have bounded minimum distance, from a
pragmatic point of view the effective minimum distances of the
codes that we have simulated are large enough for not degrading
iterative decoding performance up to reasonable word error rates
and block sizes.

I. INTRODUCTION

Turbo-codes [1], LDPC codes [8] and their variants are one
of the most satisfying answer to the problem of devising codes
promised by Shannon’s theorem. They display outstanding
performances for a large class of error models with a decoding
algorithm of reasonable complexity. Generalizing these codes
to the quantum setting seems a promising way to efficiently
approach the quantum capacity, and quantum generalizations
of LDPC codes have indeed been proposed in [14]. However
all these attempts to obtain such quantum analogues [3], [11],
[13], [11] have not yielded results as spectacular as their
classical counterpart.

This is due to several reasons. First there are issues with the
code design. Due to the orthogonality constraints imposed on
the parity-check matrix, it is much harder to construct quantum
LDPC codes than classical ones. In particular, constructing the
code at random will certainly not do. In fact, it is still unknown
whether there exist families of quantum LDPC codes with
non-vanishing rate and unbounded minimum distance and all

known constructions seem to suffer from a poor minimum
distance for reasons which are not always fully understood.
Second, there are issues with the decoder. The Tanner graph
associated to a quantum LDPC code necessarily contains many
4-cycles which are well known for their negative effect on the
performances of iterative decoding. Moreover, quantum LDPC
codes are by definition highly degenerate but their decoder
does not exploit this property, rather it is impaired by it [18].

On the other hand, generalizing turbo-codes to the quantum
setting first requires a quantum analogue of convolutional
codes. These have been introduced in [6], [15], [16] and
followed by further investigations [7], [10]. Quantum turbo-
codes can be obtained from the interleaved serial concatenation
of convolutional codes. This idea was first introduced in [17].
There, it was shown that, on memoryless Pauli channels,
quantum turbo-codes can be decoded similarly to classical
serial turbo-codes. One of the motivation behind this work
was to overcome some of the problems faced by quantum
LDPC codes. For instance, graphical representations of serial
quantum turbo-codes do not necessarily contain 4-cycles.
Moreover, there is complete freedom in the code parameters.
Both of these points are related to the fact that there are
basically no restrictions on the choice of the interleaver used in
the concatenation. Another advantage over LDPC codes is that
the decoder makes explicit use of the coset structure associated
to degenerate errors.

Despite these features, the iterative decoding performance of
the turbo-code considered in [17] was quite poor, much poorer
in fact that results obtained from quantum LDPC codes. The
purpose of the present article is to suggest much better turbo-
codes than the one proposed there, and, most importantly,
to address the issue of catastrophic error propagation for
recursive quantum convolutional encoders. Non-catastrophic
and recursive convolutional encoders are responsible for the
great success of parallel and serial classical turbo-codes. In a
serial concatenation scheme, an inner convolutional code that
is recursive yields turbo-code families with unbounded mini-
mum distance [12], while non-catastrophic error propagation
is necessary for iterative decoding convergence. The last point
can be circumvented in several ways (by doping for instance,
see [2]) and some of these tricks can be adapted to the quantum
setting, but are beyond the scope of this paper.

The proof [12] that serial turbo-codes have unbounded
minimal-distance carries almost verbatim to the quantum



setting. Thus, it is possible to design quantum turbo-codes
with polynomially large minimal distances. However, we will
demonstrate that all recursive quantum convolutional encoders
have catastrophic error propagation. This phenomenon is re-
lated to the orthogonality constraints which appear in the
quantum setting and to the fact that quantum codes are in
a sense coset codes. As a consequence, such encoders are not
suitable for (standard) serial turbo-code schemes.

In our constructions, the convolutional codes are therefore
chosen to be non-catastrophic and non-recursive. The resulting
families of turbo-codes have bounded minimum distance.
Despite these limitations, from a pragmatic point of view, the
minimum distances of the codes that we have simulated are
large enough not to degrade the iterative decoding performance
up to moderate word error rates (10−3−10−5) and block sizes
(102 − 104).

II. STABILIZER CODES

Like the vast majority of quantum codes, quantum turbo-
codes are stabilizer codes [4], [9]. However, we will not restrict
them to the CSS family [5], [20]. Due to their particular
nature, we find it appropriate to define these codes in terms
of their encoding matrix rather than their stabilizer group.
Although somehow uncommon, this approach is completely
equivalent to the usual stabilizer-based description. In this
section, we briefly recall some basic facts about stabilizer
codes, putting emphasis on the encoder. More details about
this can be found in [19].

A quantum error correcting code protecting a system of k
qubits by embedding it in a larger system of n qubits is a 2k

dimensional subspace C of C2n

. We say that it is a quantum
code of length n and rate k

n . An encoding for a quantum code
C is in general a unitary transformation V : C2n → C2n

such
that:

C =
{
|ψ〉 = V(|ψ〉 ⊗ |0n−k〉) | |ψ〉 ∈ C2k

}
. (1)

Stabilizer codes arise by choosing V from a subgroup of the
unitary group over C2n

called the Clifford group.
Recall that the Pauli group is defined with the help of the

three Pauli matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

These matrices anti-commute with each other. The Pauli group
Gn over n qubits is obtained by

Gn = {εP1 ⊗ · · · ⊗ Pn|ε ∈ {±1,±i},Pi ∈ {I,X,Y,Z}} ,

where I denotes the 2×2 identity matrix. The n-qubit Clifford
group is the subgroup of the unitary group on C2n

that leaves
the Pauli group over n qubits globally invariant by conjugation.

In quantum mechanics two states are physically indistin-
guishable if they differ by a multiplicative constant. This
motivates the definition of another group, called the effective
Pauli group Gn, obtained by taking the quotient of Gn by
{±I,±iI}. This group is Abelian and is isomorphic to F2n

2 . It

will be convenient to bring in the following homorphism from
Gn to F2n

2 .
Notation 1: Let φ be the homorphism from Gn to F2n

2 con-
sisting in associating to a Pauli group element εP1⊗ · · ·⊗Pn
the 2n bit string ψ(P1) : · · · : ψ(Pn) with ψ(I) = 00, ψ(X) =
10, ψ(Z) = 01, ψ(Y) = 11.
We use here the notation

Notation 2: For an n-tuple a ∈ A n and an m-tuple b ∈
A m over some alphabet A , we denote by a : b the n + m-
tuple formed by the concatenation of a followed by b.
The commutation relations on Gn are encoded in Gn by
symplectic product ? : Gn × Gn → F2 between elements
of the effective Pauli group, that is defined by its action on
F2n

2 by P ? Q = PΛnQT , where Λn , 1ln ⊗ X. An n-qubit
symplectic transformation V is a 2n×2n matrix on F2 which
preserves the symplectic product, i.e. V ΛnV T = Λn.

The adjoint action of the Clifford group on the Pauli group
induces a linear action on F2n

2 . This action is specified by
a symplectic matrix V over F2 of size 2n which satisfies
φ(P)V = φ(VPV†) for any Pauli group element P. The
matrix V over F2n

2 associated to a Clifford encoding V of
a code C (c.f. Eq. (1)) is called the encoding matrix over
F2. Note that any symplectic matrix V is the encoding matrix
associated to a Clifford transformation V defining a code C
via Eq. (1). It is readily verified that the rows of V , denoted
by Vi i = 1, 2, . . . , 2n, are given by V2i−1 = φ(VXiV

†),
V2i = φ(VZiV

†), where

Xi ,

i− 1 times︷ ︸︸ ︷
I⊗ · · · ⊗ I⊗X⊗

n− i times︷ ︸︸ ︷
I⊗ · · · ⊗ I,

Zi ,

i− 1 times︷ ︸︸ ︷
I⊗ · · · ⊗ I⊗Z⊗

n− i times︷ ︸︸ ︷
I⊗ · · · ⊗ I.

Note that any state in C is invariant by VZiV
† for i > k

and that these Pauli operators commute and define an Abelian
group of size 2n−k. Conversely, it can be checked that a
stabilizer code of length n and rate k

n is equivalently defined
by a set of n − k independent generators of order 2 of an
Abelian subgroup of the Pauli group which leave the code
space pointwise fixed. Applying φ to such generators yields
an analogue of the parity-check matrix of a linear code. More
formally

Fact 1: A quantum parity-check matrix H is any matrix
over F2 whose rows are linearly independent and orthogonal
with respect to the symplectic inner product.
For a given stabilizer code C , it can be checked that there is
a unique subset S of the indices of therows of the encoding
matrix V that form its parity-check matrix : they are given by
{2k+2, 2k+4, . . . , 2n} (this follows from the previous remark
about the action of the VZiV

†’s). We call the elements of S
the stabilizer positions of the encoder. In general, these posi-
tions are derived from the qubit positions corresponding to the
|0n−k〉 state used for encoding. For reasons that will become
apparent later, we refer to T = {2k+ 1, 2k+ 3, . . . , 2n− 1}
as the syndrome positions and finally L = {1, 2, 3, . . . 2k} as
the logical positions of the encoder.

Although they can correct more general type of errors,



stabilizer codes are tailored to correct a discrete error model
which consists only of Pauli errors. This includes for example
the important depolarizing channel, which is a generalization
of the binary symmetric channel.

Definition 1 (Depolarizing channel): The depolarizing
channel on n qubits of error probability p picks up an
element E ∈ Gn where the coordinates Ei of E are chosen
independently of each other and P(Ei = 00) = 1−p,P(Ei =
01) = P(Ei = 10) = P(Ei = 11) = p

3 .
There is a quantum measurement associated to any parity-

check matrix for the stabilizer code which reveals information
about the error that has affected the quantum system. Its
outcome is an element of Fn−k2 defined by

Definition 2 (error syndrome): The error syndrome associ-
ated to an error E ∈ Gn with respect to a parity-check matrix
H with rows H1, . . . ,Hn−k is the binary vector

s(E) ,(E ? Hi)1≤i≤n−k.
The normalizer code is then defined as
Definition 3 (normalizer code): The group C of elements

of zero syndrome is the normalizer code. Elements of C are
called codewords.

To summarize these definitions, write for any P ∈ Gn
Q,PV −1 and for A ⊂ {1, 2, . . . 2n} let QA denote the
substring of Q. Let us call QL the logical component of
P . The logical component plays a role analogous to the
information sequence of a codeword in the classical setting. It
can be verified that:
(i) P is a codeword if and only if QT = 0n−k,
(ii) the syndrome s(P ) is given by QT ,
(ii) elements of the stabilizer group are codewords with all zero
logical component, i.e. they have QT = 0n−k and QL = 0k.

The fact that all states in the code C are invariant by the
stabilizer group G itself (generated by the rows of H =
VS ), has important consequences that distinguish quantum
codes from classical codes beyond the stringent orthogonality
constraint imposed on their parity-check matrix. The decoding
problem in the quantum setting for a stabilizer code does not
consist of finding the most likely error satisfying the measured
syndrome, but consists instead of finding the most likely coset
of the stabilizer group:

Definition 4 (Maximum-likelihood decoding): Maximum
likelihood decoding of a stabilizer code of length n, rate
k
n with stabilizer group G consists in finding for a given
syndrome σ ∈ Fn−k2 and an error model on Gn specified
by a probability distribution P, the coset E + G such that
s(E) = σ which maximizes P(E +G) =

∑
F∈GP(E + F ).

For a classical linear code the minimum distance of the
code is equal to the minimum weight of a nonzero error of
zero syndrome. The minimum distance of stabilizer codes is
defined by

Definition 5 (minimum distance): The minimum distance
of a stabilizer code is the minimum weight of an error in Gn
with zero syndrome which does not belong to the stabilizer
group.
We use here the following definition for the weight

Definition 6 (weight): The weight of an element of Gn is
the number of locations where it differs from the identity,
where we view now an element in Gn as an n-tuple of
elements in {I,X,Y; Z}.

A stabilizer code of minimum distance d can correct up to
bd−1

2 c errors by choosing the error of minimum weight satis-
fying the syndrome. Stabilizer codes for which the stabilizer
group contains elements of weight smaller than the minimum
weight are said to be degenerate. This is typically the case for
quantum LDPC codes which are defined to be stabilizer codes
which admit a sparse parity-check matrix. Quantum turbo-
codes also have some sparse stabilizers, and so will typically
be degenerate.

III. QUANTUM TURBO-CODES

In this section, we describe quantum turbo-codes obtained
from interleaved serial concatenation of quantum convolu-
tional codes. This first requires the definition of quantum con-
volutional codes. We will define them through their encoding
matrix rather than through their parity-check matrix as in [7],
[10]: this allows to define in a natural way the state diagram
and is also quite helpful for describing the decoding algorithm
[19].

A. Quantum convolutional codes

Formally, we define a quantum convolutional code as fol-
lows.

Definition 7 (Quantum convolutional encoder): Let n, k,
m, and t be integers defining the parameters of the code,
and N the duration of the encoding. Let U be an (n + m)-
qubit symplectic matrix called the seed transformation. The
encoding matrix V of the quantum convolutional encoder is a
symplectic matrix over m+ n(N + t) qubits given by

V =
N+t∏
i=1

U[(i−1)n+1..in+m]

where [a..b] stands for the integer interval {a, a +
1, . . . , b} and where U[(i−1)n+1..in+m] acts on an element
(P1, . . . , Pm+n(N+t)) ∈ Gm+n(N+t) such that its image
(P ′1, . . . , P

′
m+n(N+t)) satisfies: (P ′(i−1)n+1, . . . , P

′
in+m) =

(P(i−1)n+1, . . . , Pin+m)U and all other Pi are given by P ′i =
Pi. The logical, syndrome, and stabilizer positions are respec-
tively given by L = {(i− 1)2n+ j|i = [1..N ], j = [1..2k]},
T = {(i− 1)2n+ 2k + 2j − 1|i = [1..N ], j = [1..n− k]} ∪
{2k+ i|i ∈ [1..m]} ∪ {2m+ 2Nn+ 2j − 1|j ∈ [1..nt]} , and
S = {i+ 1|i ∈ T }.

We will now define some properties of convolutional codes
that will play important roles in the analysis of the perfor-
mance of turbo codes. Most of these definitions rely on the
the state diagram of a convolutional code, which is defined
similarly as in the classical case.

Definition 8 (State diagram): The state diagram of an en-
coder with seed transformation U and parameters (n, k,m) is
a directed multigraph with 4m vertices called memory-states,
each labeled by an M ∈ Gm. Two vertices M and M ′ are
linked by an edge M → M ′ with label (L,P ) if and only if



there exists L ∈ F2k
2 , P ∈ F2n

2 and an S ∈ {00, 01}n−k such
that

P : M ′ = (M : L : S)U. (2)

The labels L and P are referred to as the logical label and
physical label of the edge respectively.

The state diagram is a very handy tool for analyzing the
properties of the convolutional encoder, and also for defining
some of its essential features, such as being recursive and non
catastrophic. For instance, similarly to the classical case

Definition 9 (Non-catastrophic encoder): An encoder is
non-catastrophic if and only if the only cycles in its state
diagram with zero physical label have zero logical label.
We note that this definition is slightly weaker to the one intro-
duced in [15] which required that for the infinite convolutional
encoder, there is no error affection a finite number of qubits
that propagate under V −1 to an infinite number of qubits.
Nonetheless, the current definition is a natural generalization
of the classical one and is sufficient to ensure good iterative
decoding performances.

Again as in the classical case, a convolutional encoder is
recursive if and only if for the infinite convolutional encoder
no codeword with logical weight 1 has finite support. The
logical weight of a Pauli group element refers here to the
weight of its logical component. The difference between the
quantum setting and the classical setting is the fact that in the
classical case there is only one codeword corresponding to a
given logical (i.e. information) input, whereas there is a whole
coset in the quantum case. This reflects in the fact that there
are infinitely many paths in the state diagram which have the
same logical labels. This definition of being recursive can be
verified with the state diagram by bringing in the following
definition.

Definition 10 (Admissible path): A path in the state dia-
gram is admissible if and only if its first edge is not part
of a zero physical-weight cycle.
The previous definition is then equivalent to

Definition 11 (Recursive encoder): A recursive encoder is
such that any admissible path with logical weight 1 starting
from a vertex belonging to a zero-physical weight loop does
not contain a zero-physical weight loop.

B. Interleaved serial concatenation

Quantum turbo-codes are obtained from a particular form
of interleaved concatenation of quantum convolutional codes.
Interleaving is slightly more complex in the quantum setting
since in addition to permuting the qubits it is also possible
to perform a Clifford transformation on each qubit which
amounts to permute the three Pauli matrices. More precisely:

Definition 12 (Quantum interleaver): A quantum
interleaver Π of size N is an N -qubit symplectic
transformation which acts as follows on GN :

(P1, . . . , PN ) 7→ (R1(Pπ(1)), . . . , RN (Pπ(N)))

where π is a fixed permutation of {1, . . . , N} and R1, . . . , RN
act on G1 by fixing 00 and permuting 01, 10, and 11.

An interleaved serial concatenation of two quantum encoders
has three basic components:

1) An outer code encoding kOut qubits by embedding them
in a register of nOut qubits, with encoding matrix V Out,

2) An inner code encoding kIn qubits by embedding them
in a register of nIn qubits, with encoding matrix V Out

and which is such that kIn = nOut,
3) A quantum interleaver Π of size N = nOut = kIn.

The resulting encoding matrix of the interleaved concate-
nated code is a symplectic matrix V acting on GnIn such that

V = V ′OutΠ′V In,

with the action of V ′Out and Π′ on GnIn being defined by

(L : SOut : SIn)V ′Out = ((L : SOut)V Out : SIn) (3)

for (L : SOut : SIn) ∈ GkOut ×GnOut−kOut ×GnIn−kIn , and

(L′ : SIn)Π′ = (L′Π : SIn) (4)

for L′ ∈ GnOut . The rate of the concatenated code is equal to
kOut

nIn = kOut

nOut
kIn

nIn , that is the product of the rates of the inner
code and the outer code.

A serial quantum turbo-code is obtained from this inter-
leaved concatenation scheme by choosing V Out and V In as
quantum convolutional encoders.

C. Recursive convolutional encoders are catastrophic

In the classical setting, non-catastrophic and recursive con-
volutional encoders are of particular interest. When used as the
inner encoders of a concatenated coding scheme, the resulting
codes have a minimal distance that grows polynomially with
their length and offer good iterative decoding performances.
More precisely, random serial turbo-codes have a minimum

distance which is typically of order N
dOut
∗ −2

dOut
∗ when the inner

encoder is recursive, where N is the length of the concatenated
code and dOut

∗ the free distance of the outer code [12]. That
the encoder be non-catastrophic is important to obtain good
iterative decoding performances.

This result and its proof would carry over the quantum
setting almost verbatim with our definition of recursive en-
coders. The quantum case is slightly more subtle due to the
coset structure of the code. Unfortunately, such encoders do
not exist:

Theorem 1: Quantum convolutional recursive encoders are
catastrophic.
This result is perhaps surprising since the notions of catas-
trophic and recursive are quite distinct in the classical setting.
Nonetheless, the stringent symplectic constraints imposed to
the seed transformation U gives rises to a conflicting relation
between them. The proof of Theorem 1 is too long to be
included here and can be found in [19].



IV. RESULTS

The convolutional codes we used for our construction of
turbo-codes are for the most part generated at random. That
is, we first generate a random seed transformation U of desired
dimensions. Using its state diagram, we then test whether the
corresponding encoder is catastrophic, and if so we reject it
and start over. Non-catastrophicity is the only criterion that
we systematically imposed.

As a first sieve among the randomly generated
non-catastrophic seed transformations, we can study
their distance spectrums and make some heuristic
test based on it. An example of a good seed
transformation obtained from this procedure is U(2,1,4) =
{610, 3323, 760, 1591, 2500, 942, 2290, 794, 1535, 2202, 2859,
809} where the binary symplectic encoding matrix is
specified by its list of rows and each row is given by the
integer corresponding to the binary entry. The subscripts on
the encoder specify its parameters (n, k,m). Let us denote
by d1 the minimum weight of a codeword of the infinite
convolutional code of logical weight 1 and d∗ the same
minimum weight but without any constraint on the logical
weight. For our code d1 = 8 and d∗ = 6. It can easily be
seen that the minimum distance of a turbo-code obtained
from the concatenation of two convolutional codes is no
greater than dOut

∗ dIn
1 . Therefore the codes obtained from the

concatenation of U(2,1,4) with itself have minimum distance
at most 8× 6 = 48.

The serial turbo-codes that we have presented here can be
decoded similarly to classical serial turbo-codes. The decoding
algorithm is presented in detail in [19]. We have performed nu-
merical simulations of these codes on the depolarizing channel
for different lengths and for randomly chosen interleavers. The
WERs as a function of the depolarizing probability p is shown
on Fig.1. Perhaps the most striking features of those curves is
the existence of a pseudo-threshold value of p below which the
WER decreases as the number of encoded qubits is increased.
Since the codes have a bounded minimal distance, this is not
a true threshold in the sense that as we keep increasing the
number of encoded qubits, the WER should start to increase.
However, we see that for modest sizes NL of up to 1000, this
effect is not observed. These values should be compared with
the hashing bound, whose value is approximately 0.12689 for
rate 1

4 . We can also compare with the results obtained from
LDPC codes in [14, Figure 10] by evaluating the depolarizing
probability p at which the WER drops below 10−4. For a
rate 1

4 , this threshold was achieved at pth ≈ 0.033 (note the
convention fm = 2

3p) for LDPC codes while the turbo-code
shown at Fig. 1 has pth ≈ 0.048. It should also be noted that
this improved threshold is achieved with a smaller block size
than that used for the LDPC in [14]; a larger block should
further improve this result.
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