Noname manuscript No.
(will be inserted by the editor)

How easy is code equivalence over F,?

Nicolas Sendrier .- Dimitris E. Simos

Received: date / Accepted: date

Abstract The code equivalence problem is to decide whether two linear codes
over F, are equivalent, that is identical up to a linear isometry of the Ham-
ming space. The support splitting algorithm [24] runs in polynomial time for
all but a negligible proportion of all linear codes, and solves the latter problem
by recovering the isometry when it is just a permutation of the code support.
While for a binary alphabet isometries are exactly the permutations, this is
not true for ¢ > 3. We explore in this paper, a generalization of the support
splitting algorithm where we aim to retrieve any isometry between equivalent
codes. Our approach is twofold; first we reduce the problem of deciding the
equivalence of linear codes to an instance of permutation equivalence. To this
end, we introduce the notion of the closure of a code and give some of its
properties. In the aftermath, we exhibit how this algorithm can be adapted
for ¢ € {3,4}, where its complexity is polynomial for almost all of its instances.
Although the aforementioned reduction seems attractive, when ¢ > 5 the clo-
sure reduces the instances of the code equivalence problem to exactly those
few instances of permutation equivalence that were hard for the support split-
ting algorithm. Finally, we argue that for ¢ > 5 the code equivalence problem
might be hard for almost all instances.

Keywords Equivalence - Isometry - Closure of a Code - Linear Codes

Mathematics Subject Classification (2000) 94B05 - 05E20

Nicolas Sendrier

INRIA Paris-Rocquencourt
Project-Team SECRET

78153 Le Chesnay Cedex, France
E-mail: nicolas.sendrier@inria.fr

Dimitris E. Simos

INRIA Paris-Rocquencourt
Project-Team SECRET

78153 Le Chesnay Cedex, France
E-mail: dimitrios.simos@inria.fr

2 Nicolas Sendrier, Dimitris E. Simos

1 Introduction

The purpose of this work is to examine the worst-case and average-case hard-
ness of the CODE EQUIVALENCE problem. That is, given the generator matrices
of two g-ary linear codes, how hard is it to decide whether or not these codes
are identical up to an isometry of Hamming space?

The PERMUTATION CODE EQUIVALENCE problem is the restriction of the
above problem when the isometries are limited to permutations of the code
support!. Petrank and Roth proved [21] that the worst-case was not easier than
for the GRAPH ISOMORPHISM problem (unless the NP hierarchy collapses). On
the other hand, the support splitting algorithm [24] solves the problem in time
polynomial for all but an exponentially small proportion of the instances.

For a more general notion of code equivalence which includes all linear
isometries, the situation seems to change drastically. Obviously, the LINEAR
CoDE EQUIVALENCE problem is not easier in the worst-case than its PERMU-
TATION CODE EQUIVALENCE subproblem. In practice, the support splitting
algorithm can be extended for ¢ € {3,4}, and similarly solves all but an expo-
nentially small proportion of the instances in polynomial time. However, for
any fixed ¢ > 5, the problem seems to be intractable for almost all instances.

The paper is structured as follows. In section 2, we present the different
notions of code equivalence induced by isometries of Hamming space, while
in section 3, we define in formal terms the CODE EQUIVALENCE problem and
mention the most significant contributions in terms of complexity and algo-
rithms. In section 4, we illustrate a reduction of the LINEAR CODE EQUI-
VALENCE problem as an instance of PERMUTATION CODE EQUIVALENCE, and
its efficiency is analyzed in the following section. Finally, we elaborate on the
hardness of the CODE EQUIVALENCE problem and possible implications, in
the concluding discussion.

2 Equivalence of linear codes

Code equivalence is a basic concept in coding theory. However, the equiva-
lence of linear codes has met a few different definitions in the literature, often
without motivation. We review the concept of what it means for codes to be
“essentially different” by considering the metric Hamming space together with
its isometries, which are the maps preserving the metric structure. This in turn
will lead to a rigorous definition of equivalence of linear codes. In fact, we will
call codes isometric if they are equivalent as subspaces of the Hamming space.

Let IF, be a finite field of cardinality ¢ = p”, where the prime number p
is its characteristic, and r is a positive integer. As usual, a linear [n, k] code
C is a k-dimensional subspace of the finite vector space Fy and its elements
are called codewords. We consider all vectors, as row vectors. Therefore, an
element v of Fy! is of the form v := (vi,...,v,). It can also be regarded as

1 except for ¢ = 2 the isometries are not limited to permutations.

How easy is code equivalence over [Fy? 3

the mapping v from the set Z,, = {1,...,n} to F, defined by v(i) := v;. The
Hamming distance (metric) on Fy is the following mapping,

d:Fy xFy = N:(z,y) = d(z,y) = {i € {1,2,...,n} | 2 #yi} |-

The pair (Fy, d) is a metric space, called the Hamming space of dimension
n over Fy, denoted by H(n, ¢). The Hamming weight w(z) of a codeword z € C
is simply the number of its non-zero coordinates, i.e. w(z) := d(z,0).

It is well-known due to a theorem of MacWilliams that any isometry be-
tween linear codes preserving the weight of the codewords induces an equiva-
lence for codes [17]. Therefore, two codes C, C’ are of the same quality if there
exists a mapping ¢ : Fy — Fy with t(C) = C" which preserves the Hamming
distance, i.e. d(v,v") = d(1(v),t(v")), for all v,v" € Fy. Mappings with the lat-
ter property are called the isometries of H(n,q), and the two codes C' and C’
will be called isometric. Clearly, isometric codes have the same error-correction
capabilities, and obvious permutations of the coordinates are isometries. We
write S,, for the symmetric group acting on the set Z,, equipped with the
composition of permutations.

Definition 1 Two linear codes C,C’ C Fy will be called permutationally

equivalent?, and will be denoted as C 2o , if there exists a permutation
o € S, that maps C onto C’, i.e. C' =0o(C) ={o(z) |z = (z1,...,2,) € C}
where o(z) = o (21,...,20) == (To-101), -+ To—1(n))-

Note also that the use of o~! in the index is consisted as we have o(7(C)) =
o o w(C). This can easily be seen by considering € C, and o,7 € S,, such
that o(n(x)) = o((r-1()))iez,). Let yi = 2713y, © € I,. Then o(n(x)) =
o((Wi)iez,) = Wo-1())icz, = (Tn-10-1())icz, = (T(om)-1(s))icz, = 0 o 7(2).

Moreover, there is a particular subgroup of S, that maps C onto itself,

the permutation group of C defined as PAut(C) := {C = o(C) | ¢ € S, }.
PAut(C) always contains the identity permutation. If it does not contain any
other element, we will say that it is trivial.
Recall, that we defined two codes to be isometric if there exists an isome-
try that maps one into another. Isometries that are linear3, are called linear
isometries. Therefore, we can obtain a more general notion of equivalence for
codes induced by linear isometries of F,. Moreover, it can be shown that any
linear isometry between two linear codes C,C’ C IB‘Z can always be extended
to an isometry of Iy [3].

The group of all linear isometries of H(n,q) corresponds to the semidirect
product of F;™ and S, F;" x S, = {(v;m) | v : L, = F;,m € S,}, called
the monomial group of degree n over Fy, where the multiplication within this
group is defined by

(v;m)(V';7") = (vvl,wr’) and (vul); = vw;_l(i) (1)

2 This definition can also met as permutationally isometric codes in the literature, see [3].
3 For all u,v € F? we have t(u + v) = t(u) 4 +(v) and ¢(0) = 0.

4 Nicolas Sendrier, Dimitris E. Simos

where F; denotes the multiplicative group of F,. Hence, any linear isometry
¢ can be expressed as a pair of mappings (v;7) € F;" x S,,. Note that, some
authors [3,8,10], describe this group as the wreath product F3 1 Sn. The action
of the latter group in an element of Fy is translated into an equivalence for
linear codes.

Definition 2 Two linear codes C,C’ C Fg will be called linearly or monomi-

ally equivalent, and will be denoted as C o , if there exists a linear isometry
t = (v;o) € F;" xS, that maps C onto (', i.e. C' = (v;0)(C) = {(v;0)(2) |
(71,...,7,) € C} where (v;0)(21,...,2n) = (V1To-1(1), -+, UnTo—1(n))-

If ¢ = p" is not a prime, then the Frobenius automorphism 7 : F, —
g,z — 2P applied on each coordinate of IFj preserves the Hamming distance,
too. Moreover, for n > 3, the isometries of)y which map subspaces onto
subspaces are exactly the semilinear mappings? of the form (v; (, 7)), where
(v;m) is a linear isometry and « is a field automorphism, i.e. & € Aut(F,) (c.f.
[3,14]). All these mappings form the group of semilinear isometries of H(n,q)
which is isomorphic to the semidirect product F;"™ x (Aut(F,) x S,), where

the multiplication of elements is given by

(v; (@, m))(#3 (B, 0)) = (v - alpr); (af, 7o) (2)

Moreover, there is a description of F;™ x (Aut(F;) x S,) as a generalized
wreath product F} 12, (Aut(F,) x Sp), see [3,9,14]. Clearly, the notion of semi-
linear isometry which can be expressed as a group action on the set of linear
subspaces gives rise to the most general notion of equivalence for linear codes.

Definition 3 Two linear codes C,C" C Fy will be called semilinearly equiv-

alent, and will be denoted as C' SLE o , if there exists a semilinear isom-
etry (v;(a,0)) € F;™ x (Aut(F,;) x S,) that maps C onto (', ie. C' =
(v; (a, 0))(C) = {(v; (v, 0)) () | (x4)iez, € C} where (v; (a,0))(x1,...,2,) =

(via(Te-101)); - - - ,’UnOZ(IEU—l(n))).

Finally, we can define the monomial group of C' as MAut(C) := {C =
(v;0)(C) | (v;0) € F;™ xS, } and the automorphism group of C' as Aut(C) :=
{C = (v;(,0))(C) | (v (@, 0)) € F;"™ x (Aut(F,) x S,)} where their elements
map each codeword of C' to another codeword of C, under the respective
actions of the involved groups. For more details, on automorphism groups of
linear codes we refer to [13]. In addition, we remark the following:

1. When F, = FFy the group of linear isometries of H(n,2) is isomorphic to
S,., therefore all notions of equivalence are the same.

2. The group of semilinear isometries of H(n,q) is the same as the group of
linear isometries if and only if ¢ is a prime (since Aut(FF,) is trivial if and
only if ¢ is a prime). Therefore, semilinear equivalence reduces to linear
equivalence for prime fields, and is different for all other cases.

‘o Fy — Fy is semilinear if there exists o € Aut(Fq) such that for all u,v € Fy and

k € Fq we have o(u+v) = o(u) + o(v) and o(ku) = a(k)o(u).

How easy is code equivalence over [Fy? 5

3 Previous work

For efficient computation of codes we represent them with generator matrices.
A k xn matrix G over F, is called a generator matrix for the [n, k] linear code
C'if the rows of G form a basis for C, so that C' = {zG | x € FF'}. In general, a
linear code possess many different bases, and it is clear from linear algebra that
the set of all generator matrices for C' can be reached by {SG | S € GL(q)},
where GLj(g) is the group of all k£ x k invertible matrices over F,.

For any ¢ € S, associate by P, = [p; ;] the n x n matrix such that p; ; =1
if o(i) = j and p;; = 0 otherwise, therefore P, is a permutation matrix.
Note that, the action of 0 € S, on = € Fy agrees with the ordinary matrix
multiplication. The permutation matrices form a subgroup of M, (q), the set
of all n x n monomial matrices over [Fy, that is, matrices with exactly one
nonzero entry per row and column from F,. If M = [m; ;] € M,(q), then
M = DP, where P is a permutation matrix and D = [d; ;| = diag(di,...,d,)
is a diagonal matrix with d; = d; ; = m; jif m; ; # 0and d; ; = 0if¢ # j. There
is an isomorphism between diagonal matrices and IF;", therefore we associate
D, = diag(vy,...,v,) for v = (v;)iez, € F;". Hence, we can map any linear
isometry (v;o) € F;™ x S, to a monomial matrix M,,,) = D, Py € My(q),
and this mapping is an isomorphism between F;" x S,, and M, (q). Therefore,
we can express the equivalence between linear codes in terms of their generator
matrices.

Problem 1 Given two k x n matrices G and G’ over F,, whose rows span
two [n, k] linear codes C' and C’ over F,, does there exist S € GLi(¢) and a
monomial matrix Moy = D, P, € My(q) such that G' = SGD,P,?

We will refer to the decidability of the previous problem, as the LINEAR
CoDE EQUIVALENCE problem. One of our goals is to explore the hardness
of this problem, therefore we deem necessary to briefly mention the most
significant results in terms of complexity, for deciding it, and algorithms, for
solving it.

3.1 Past complexity results

When the linear isometry (v; o) is just a permutation, i.e. D,, is equal to I,
we will call problem 1, as the PERMUTATION CODE EQUIVALENCE problem.
The latter problem, was introduced in [21], who showed that if F, = Fy then
it is harder than the GRAPH ISOMORPHISM, there exists a polynomial time
reduction, but not NP-complete unless P = NP. A different proof of this
reduction is also given in [14]. Recently, the reduction of [21] was generalized
in [12] over any field F,, hence PERMUTATION CODE EQUIVALENCE is harder
than the GRAPH ISOMORPHISM, for any field F,. The latter problem, has
been extensively studied for decades, but until now there is no polynomial-
time algorithm for solving all of its instances. Clearly, (SEMI)-LINEAR CODE

6 Nicolas Sendrier, Dimitris E. Simos

EQUIVALENCE for any F, cannot be easier than the GRAPH ISOMORPHISM,
since it contains the PERMUTATION CODE EQUIVALENCE as a subproblem.

Last but not least, we would like to mention that the McEliece public-
key cryptosystem [18] is related to the hardness of permutationally equivalent
binary linear codes. Towards this direction, another important complexity re-
sult was shown in [6], that the HIDDEN SUBGROUP problem also reduces to
PERMUTATION CODE EQUIVALENCE for any field F,,.

3.2 Related algorithms for code equivalence

Due to its relation to GRAPH ISOMORPHISM, some researchers have tried to
solve the PERMUTATION CODE EQUIVALENCE problem by interpreting graph
isomorphism algorithms to codes. This approach, was followed in [5] using the
fact that ELC orbits of a bipartite graph correspond to equivalence classes of
binary linear codes. Mapping codes to graphs and using the software NAUTY
by B. D. McKay has been used in [19], for binary, ternary and quaternary
codes where the permutation, linear and semi-linear equivalence was consi-
dered, respectively. Moreover, an adaptation of Luks’s algorithm for hyper-
graph isomorphism for solving the PERMUTATION CODE EQUIVALENCE over
any F, was presented in [2], whose complexity is simply-exponential in the
length n of a code C' C Fy. Another approach using bipartite graphs for the
LINEAR CODE EQUIVALENCE problem over small fields was given in [4], where
code equivalence is reduced to a decision problem regarding isomorphism of
binary matrices. Note also, that in this work also the semilinear equivalence
was considered for Fy. Computation of canonical forms for generator matrices
of linear codes for the SEMILINEAR CODE EQUIVALENCE problem® over F,,
when ¢ is small, by formulating the equivalence classes of codes as orbits of a
group action from the left on the set of generator matrices was given in [7].
Finally, we would like to remark that, to the best of our knowledge there is no
efficient algorithm for solving the LINEAR CODE EQUIVALENCE problem for
any field F,.

The support splitting algorithm can be used as an oracle to decide whether
two binary codes are permutationally equivalent [24], as well as to retrieve
the equivalence mapping. The main idea is to partition the support Z,, of a
code C' C F7, into small sets that are fixed under operations of PAut(C'). The
algorithm employs the concept of invariants and signatures, defined below.

Let L, denote the set of all linear codes of length n and dimension k,
and let £ =1{J,, ;~oLnx be the set of all such codes.

Definition 4 An invariant R over a set F is defined to be a mapping R :
L — E such that any two permutation equivalent codes take the same value,

ie. if ¥ ¢ = R(C) = R(C).

5 Same as the LINEAR CODE EQUIVALENCE problem, with the additional application of a
field automorphism in every column of the generator matrix.

How easy is code equivalence over [Fy? 7

For instance, the Hamming weight enumerator is an invariant over the polyno-
mials with integer coefficients. Applying an invariant, for instance the weight
enumerator, may help us to decide whether two codes are equivalent or not.

Definition 5 A signature S over a set I maps a code C' C Fy and an element
i € 7, into an element of F' and is such that for all ¢ € S,, S(C,i) =
S(o(C),0(i)). Moreover, S is called discriminant for C if there exist i,j € Z,,
such that S(C,i) # S(C, j) and fully discriminant if this holds V i, j € Z,.

If S is fully discriminant for C, and C’ = o(C) for o € S,,, we are able to
retrieve o. The support splitting algorithm (SS.A) takes as an argument a gen-
erator matrix G for a code C' and returns a labeled partition IT = {(II;, j) }jez,
of the code support. For any two linear codes C' and C’ with generator ma-
trices G and G', let SSA(G) = {(I1},j)}jez, and SSA(G') = {(II},j)}jez,,-
The fundamental property of SSA is that if

C'=0(C) = VjeTl,, H; = o(I1;) (3)

and implies in particular that the output of SS A is independent of the choice
of G. The converse of relation (3) is not necessarily true, but satisfied in
practice under the assumption that the cells of the output of SSA achieve
the orbits of the elements of the code support w.r.t. the action of PAut(C)
and constitute its finest obtainable partition [16,24]. The main difficulty of
the algorithm, is to obtain a fully discriminant signature, for as many codes
as possible. In [24] it was shown that such a signature, can be built from the
weight enumerator of the hull of a code C, denoted by H(C), and defined as
the intersection of the code with its dual, H(C) = C N C* [1], because the
hull commutes with permutations®, H (o (C)) = o(H(C)), and therefore it is
an invariant for permutation equivalence. The (heuristic) complexity of SS.A
for an [n, k] code C is O(n® + 2"n2logn) where h is the dimension of the hull
[20,24]. In practice, for random codes, the hull has a small dimension with
overwhelming probability [23] and the dominant cost for the average case is
O(n?). Note that, the worst case occurs when the hull dimension is maximal;
weakly self-dual codes (C C C) are equal to their hulls. Then the algorithm
becomes intractable with a complexity equal to O(2¥n2logn).

4 Reduction of linear code equivalence to permutation code
equivalence

Hence, we have in our disposal an algorithm, the support splitting algorithm,
that solves the permutation equivalence in (almost) polynomial time. There-
fore, it is natural to investigate a reduction of the LINEAR CODE EQUIVALENCE
problem as an instance of PERMUTATION CODE EQUIVALENCE. To this end,
we introduce the closure of a linear code. We mention, that a similar approach
was given in [25].

6 No such property exists in general for linear codes when (semi)-linear equivalence is
considered, see also lemma 1.

8 Nicolas Sendrier, Dimitris E. Simos

Definition 6 Let F, = {ag,a1,...,a4-1}, with ap = 0, and a linear code
CC Fy. Define Iq(ﬁ)l as the cartesian product of Z,_1 x Z,. The closure C of
the code C' is a code of length (¢ — 1)n over F, where,

C= {(akxi)(k,i)ez§ﬁ>l | (x:)iez, € C}.

Clearly, we see that every coordinate of the closure C , corresponds to a
coordinate position of a codeword of C' multiplied by a nonzero element of
F,. Since, the index (k,4) € I{gﬁ) of a position of a codeword of the closure
means that £ € Z,_; and ¢ € Z,,, we have taken into account every possible
multiplication of x; with nonzero elements of Fy, and it is easy for someone to

show” the following:

Theorem 1 Let C,C" CFy. If C and C" are linearly equivalent, i.e. C ool

then C and C' are permutationally equivalent, i.e. c o

Theorem 1 is of great importance, because it realizes a reduction from the
LINEAR CODE EQUIVALENCE problem to the PERMUTATION CODE EQUIVA-
LENCE problem. Thus, we are able to decide if the codes C' and C’ are linearly
equivalent by checking their closures for permutation equivalence. Moreover,
if the closures are permutation equivalent there might be an algorithmic pro-
cedure that will allow us to recover the initial isometry between C and C’.
However, as we shall see shortly after, the closure reduces an instance of the
LINEAR CODE EQUIVALENCE problem to exactly those instances that were
hard for the support splitting algorithm for tackling the PERMUTATION CODE
EQUIVALENCE problem over Fy, ¢ > 5.

We would also like to mention that this representation of the closure is not
unique. In particular, it depends on a lexigographical ordering of FFy.

For example, the ordering (a1,1) < ... < (a1,n) < (az,1) < ...(az,n) <

- < (ag-1,1) < ... < (ag-1,n) gives a total order for Fy, and gives rise to
the following closure,

C = {(a1z1,...,01%0, ..., 04q-121, ..., Gq—1%y) | (21,...,2,) € C}.

Note that, such an ordering can always be induced by a permutation of
the symmetric group Sp: acting on Fy defined as Sp: == {p | p : Fq —
F,, p is a bijection and p(0) = 0}.

Moreover, it is natural to ask which permutations can appear as permuta-
tions of the closures since SSA was designed exactly to retrieve the permu-
tation between equivalent codes. If we assume that we are given a primitive
element p of F,, it is well-known that all of its permissible powers generate
the multiplicative group of F, = {p,p?,...,p? 2, p?~! = 1}. Then an ordering
according to a cyclic shift of a power of p will produce a unique closure for

7 The detailed proof of this theorem and all subsequent results will appear in an extended
version of this paper.

How easy is code equivalence over [Fy? 9

the code C' (consider the row echelon form on two generator matrices of the
closures produced by such orderings).

Since, such a closure can always be reached by a composition of permuta-
tions of SFZ’ we define a canonical form for the closure as follows,

Cean = {(x1,pr1 ..., 07221, ..o, T, pTyy .., 09 220 | (21, ...,2,) € O}

If we consider the cyclic group C,—; of order ¢ — 1 there is a natural iso-
morphism between]FZ" XSy, and Cq—1 U, Sy, the semidirect product of n copies
of Cq—1 and Sy, called also the generalized symmetric group and denoted by
S(g—1,n). Its order is (¢ — 1)™n! and its elements are exactly those permuta-
tions that can appear as permutations of permutationally equivalent closures.
This reasoning is sufficient for one to show that for C' C Fy we have MAut(C)
to be isomorphic to PAut(C). In particular, MAut(C) = PAut(C) N SH@%.

Moreover, it further implies tha the converse of theorem 1 also holds, and
by involving the canonical forms of the closures as an intermediate step, after
a non-trivial proof, we can show the following relation for equivalent codes
and their closures.

Theorem 2 Let C,C" C Fyy. Then C and C" are linearly equwalent ie. 0T

", if and only sz and C" are permutationally equivalent, i.e. cEo.

5 Efficiency of the Reduction

The SSA used as an invariant the hull H(C) of a code. In order to explore
possible extensions of SSA we have to determine the quality of the hull of the
closure H(C) C N CL, where the dual of the closure is defined according to
some inner product. We are interested in two families of linear codes over F,
defined by the Euclidean and Hermitian inner product, respectively:

— (¢®) Linear codes over F, with (z,y)p = Yo (@4, Yi)p = dorey Tili =
T1Y1 + ... + Tpyn € Fy. If ¢ is a square, family ¢'' (below) is generally
preferred to ¢®.

— (¢™) Linear codes over Fy, where ¢ is an even power of an arbitrary prime
w, with 7 = 2v? for z € F, (c.f. [22]) and equipped with (z,y)y =
STy = Yor @Y, = 1Yy + ... + 2,7, € F,. Note that, for
x,y € Fy,

(o4 Vi = Vi 4V, g =z,

Now, consider two codewords z,y of the closure C of C C Fy. Then

their inner product is given by (z,y) = <Z a;@; | (x,y) where F, = {ap =

0,a1,...,aq—1}. Using lemma 7.3. of [15] which states that ag, a1,...,aq—1 are
distinct if and only if Eg:é al=0fort=0,1,...,¢ — 2 and Y I, 1 al = -1
for t = ¢ — 1, we can show that,

10 Nicolas Sendrier, Dimitris E. Simos

~ 0 for ¢g>4 _ 0 for ¢>4
z, = and (T, =
@ Ve {— (x,y)p for ¢=3. @ Vo {— (x,y)y for gq=4.

This means, that the closure Cisa weakly self-dual code for every g > 5,
considering both Euclidean and Hermitian duals, which is exactly the hard
instances of SSA. Moreover, for F3 and Fy equipped with the Euclidean and
Hermitian inner product, respectively, the distribution of the dimension of
H(C) follows the distribution of the dimension H(C'), since the closure has
the same dimension as C, and will be on average a small constant, [23], except
in the cases where C' is also a weakly self-dual code.

It is worth mentioning that these are exactly the same cases where the
hull of a code could be used as an invariant for (semi)-linear equivalence,
because the duals of linear and semilinear codes remain equivalent with the
same isometry of the original codes only in F3 and F4, due to the following
relation (see [13,24]):

Lemma 1 Let C CFy, and (v;(0,a)) € F;"™ x (Aut(Fy) x Sp). Then

(i) (v;(o,a))(C)F = (v (o ,a))(L) where C* is w.r.t. {,)g.
(ii) (v; (0,))(C)* = (T; (0, @) (CL) where C+ is w.r.t. {,)u.

Then, a signature for an extension of SSA can be built from the weight
enumerator of the 7 (C). The LINEAR CODE EQUIVALENCE problem can be
decided (and solved) in polyonomial time using SS.A only in F3 and Fy, as long
as the hull of the given code is small (the worst-case being a weakly self-dual
code). Tt does not seem possible to extend this result to larger alphabet. We
conclude by posing the following conjecture.

Congecture 1 For a given ¢ > 5, the (SEMI)-LINEAR CODE EQUIVALENCE
problem over F, is hard for almost all instances.

Note that, there is a similar negative complexity result due to Dirk Vertigan
[26]. The result is given for graphs, but, translated for codes, it states that
evaluating the (homogeneous) weight enumerator polynomial of a linear code
over F, for ¢ > 5 on any point of the complex unit circle is always difficult
except for a constant number of trivial points. The evaluation of the weight
enumerator in those points essentially provide the code cardinality. There is
an additional point easy to evaluate for ¢ € {2,3,4}. The evaluation in this
point essentially provides the cardinality of the hull of the code. For ¢ = 4
the hull is defined according to the hermitian inner product. There is possibly
more than just a coincidence here, but the connection with code equivalence
is not obvious to establish. Doing so would certainly be enlightening.

How easy is code equivalence over [Fy? 11

6 Conclusion

In this paper, we explored the hardness of the CODE EQUIVALENCE problem
over ;. We showed that an extension of SSA for solving the latter prob-
lem when ¢ € {3,4} is possible, in (almost) polynomial time, however for
q > 5 its complexity growth becomes exponential for all instances. Moreover,
we conjectured that, for ¢ > 5, CODE EQUIVALENCE is hard for almost all
instances. Our argument, is supported by some impossibility results on the
Tutte polynomial of a graph which corresponds to the weight enumerator of a
code. On the bright side, the negativity of our claim, might lead to some inter-
esting features for applications. For example, in cryptography, zero-knowledge
protocols have been designed in the past, based on the hardness of the PER-
MUTATION CODE EQUIVALENCE problem [11]. Moreover, the relation of the
automorphism groups of the code and its closure might be of cryptographic
interest. The context of the framework built in [6] suggests that codes with
large automorphism groups resist quantum Fourier sampling as long as permu-
tation equivalence is considered. It would thus be intriguing to investigate, if
this result can also be extended for the linear and semilinear code equivalence.

References

1. Assmus, E.F.J., Key, J.D.: Designs and their Codes, Cambridge Tracts in Mathematics,
vol. 103. Cambridge University Press (1992). Second printing with corrections, 1993

2. Babai, L., Codenotti, P., Grochow, J.A., Y.Qiao: Code equivalence and group isomor-
phism. In: Proceedings of the T'wenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’11, pp. 1395-1408. STAM (2011)

3. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.:
Error-Correcting Linear Codes: Classification by Isometry and Applications, Algorithms
and Computation in Mathematics, vol. 18. Springer, Berlin, Heidelberg (2006)

4. Bouyukliev, I.: About the code equivalence. Ser. Coding Theory Cryptol. 3, 126-151

2007

5.]()anie)lsen, L.E., Parker, M.G.: Edge local complementation and equivalence of binary
linear codes. Des. Codes Cryptography 49, 161-170 (2008)

6. Dinh, H., Moore, C., Russell, A.: Mceliece and niederreiter cryptosystems that resist
quantum fourier sampling attacks. In: Proceedings of the 31st annual conference on
Advances in cryptology, CRYPTO’11, pp. 761-779. Springer-Verlag, Berlin, Heidelberg

2011

7. %euln)er7 T.: The automorphism groups of linear codes and canonical representatives of
their semilinear isometry classes. Adv. Math. Commun. 3, 363-383 (2009)

8. Fripertinger, H.: Enumeration of linear codes by applying methods from algebraic com-
binatorics. Grazer Math. Ber. 328, 31-42 (1996)

9. Fripertinger, H.: Enumeration of the semilinear isometry classes of linear codes.
Bayrether Mathematische Schriften 74, 100-122 (2005)

10. Fripertinger, H., Kerber, A.: Isometry classes of indecomposable linear codes. In: Pro-
ceedings of the 11th International Symposium on Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, AAECC-11, pp. 194-204. Springer-Verlag, London, UK

1995

11. (Girau)lt, M.: A (non-practical) three-pass identification protocol using coding theory. In:
J. Seberry, J. Pieprzyk (eds.) Advances in Cryptology AUSCRYPT ’90, Lecture Notes
in Computer Science, vol. 453, pp. 265-272. Springer Berlin Heidelberg (1990)

12. Grochow, J.A.: Matrix lie algebra isomorphism. Tech. Rep. TR11-168, Electronic Col-
loquium on Computational Complexity (2011). Also available as arXiv:1112.2012. To
appear, IEEE Conference on Computational Complexity, 2012.

12

Nicolas Sendrier, Dimitris E. Simos

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Huffman, W.C.: Codes and groups. In: V. Pless, W.C. Huffman (eds.) Handbook of
Coding Theory, pp. 1345-1440. Elsevier, North-Holland, Amsterdam (1998)

Kaski, P., Ostergard, P.R.J.: Classification Algorithms for Codes and Designs, Algo-
rithms and Computation in Mathematics, vol. 15. Springer, Berlin, Heidelberg (2006)
Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Applica-
tions, vol. 20, 2nd edn. Cambridge University Press (1997)

Loidreau, P., Sendrier, N.: Weak keys in McEliece public-key cryptosystem. IEEE Trans.
Inform. Theory 47, 1207-1212 (2001)

MacWilliams, F.J.: Error-correcting codes for multiple-level transmission. Bell. Syst.
Tech. J. 40, 281-308 (1961)

McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Tech.
Rep. DSN Progress Report 4244, California Institute of Technology, Jet Propulsion
Laboratory, Pasadena, CA (1978)

Ostergard, P.R.J.: Classifying subspaces of hamming spaces. Des. Codes Cryptography
27, 297-305 (2002)

Overbeck, R., Sendrier, N.: Code-based cryptography. In: D. Bernstein, J. Buchmann,
E. Dahmen (eds.) Post-Quantum Cryptography, pp. 95-145. Springer (2009)

Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inform.
Theory 43, 1602-1604 (1997)

Rains, E.M., Sloane, N.J.A.: Self-dual codes. In: V. Pless, W.C. Huffman (eds.) Hand-
book of Coding Theory, pp. 177-294. Elsevier, North-Holland, Amsterdam (1998)
Sendrier, N.: On the dimension of the hull. SIAM J. Discrete Math. 10(2), 282—293
(1997)

Sendrier, N.: Finding the permutation between equivalent linear codes: The support
splitting algorithm. IEEE Trans. Inform. Theory 26, 1193-1203 (2000)

Skersys, G.: Calcul du groupe d’automorphisme des codes. détermination de I’ equiva-
lence des codes. These de doctorat, Université de Limoges (1999)

Vertigan, D.: Bicycle dimension and special points of the Tutte polynomial. Journal of
Combinatorial Theory, Series B 74, 378-396 (1998)

