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Studying the Locator Polynomials of Minimum 
Weight Codewords of BCH Codes 

Daniel Augot, Pascale Charpin, and Nicolas Sendrier 

Abstract-Only primitive binary cyclic codes of length n = 
2m - 1 are considered. A BCH-code with designed distance 6 is 
denoted B(n,6) .  A BCH-code is always a narrow-sense BCH- 
code. A codeword is identified with its locator polynomial, 
whose coefficients are the symmetric functions of the locators. 
The definition of the code by its zeros-set involves some proper- 
ties for the power sums of the locators. Moreover, the symmet- 
ric functions and the power sums of the locators are related to 
Newton's identities. First presented is an algebraic point of view 
in order to prove or disprove the existence of words of a given 
weight in a code. The main tool is symbolic computation soft- 
ware to explore Newton's identities. The principal result is the 
true minimum distance of some BCH-codes of length 255 and 
511, which were not known. In a second part, the minimum 
weight codewords of the codes B(n,2* - 1) are studied. It is 
proven that the set of the minimum weight codewords of the 
BCH-code B(n, 2"'-' - 1) equals the set of the minimum weight 
codewords of the punctured Reed-Muller code of length n and 
order 2, for any m. Several corollaries of this result are given. 

Index Terms-Cyclic code, BCH-code, Reed-Muller code, 
locator polynomial, Newton's identities. 

I. INTRODUCTION 
N this paper, we treat primitive binary cyclic codes. We I are going to introduce a method for finding the true 

minimum distance of these codes. 
We will first recall the usual definitions in Section 11, as 

introduced in [ 111. We can have an algebraic description of 
the codewords in a cyclic code, by studying their locator 
polynomials. This investigation of the locator polynomial of a 
codeword is achieved via the Newton's identities. 

In Section 111, we will show how to use the Newton's 
identities. In fact, we explore the identities in a progressive 
manner, using symbolic computation software. We have two 
options: either trying to establish a contradiction, or trying to 
find an effective solution of the Newton's identities. This 
method enables us to complete the table of the minimum 
distance of the BCH codes of length 255, and to extend our 
knowledge of BCH codes of length 5 1 1. Some of the longer 
proofs are given in Appendixes A, B, and C. 

In Section IV, we give a description of the set of the 
minimum weight codewords of the BCH codes of length 
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2" - 1 and designed distance 2 m - 2  - 1 (Theorem 6). We 
prove that the locator polynomials of such codewords are, in 
fact, linearized polynomials. We obtain this result by study- 
ing Newton's identities associated to the minimum weight 
codewords of the BCH-codes of designed distance 2 h  - 1, 
h E [2, m - 11. Certain properties yield a complete charac- 
terization when h = m - 2. When h # m - 2 ,  our proof 
involves an algorithm for constructing cyclic codes whose 
minimum weight codewords have linearized locator polyno- 
mials. 

11. PRESENTATION AND NOTATIONS 

Throughout this section we recall the usual conventions 
and notation as used in [ 11 J .  

A. The BCH Codes and Their Minimum Distance 
Let n = 2" - 1. We denote by GF (q )  the Galois field of 

order q, where q = 2" and denote by a a primitive nth root 
of unity in GF (q). Any cyclic code C of length n can be 
defined by its generator polynomial whose roots are called 
the zeros of the code C. Thus, we say that the defining set of 
C is the set 

I ( C )  = { i E [ o . - .  n - ~ ] I c r ' i s a z e r o o f ~ ) .  (1) 

We denote by cl(s) the cyclotomic class of s modulo n: 

c l (s )  = {s,2~,2~~,...,2"-~smodn}. (2) 

If a' is a zero of C then a'' is also a zero of C ,  so I (C)  is 
a union of cyclotomic classes cl(s). 

Thus, we can define the primitive narrow-sense BCH code 
of length n of designed distance 6, denoted by B ( n ,  a), as 
the cyclic code of length n whose defining set is the union of 
the cyclotomic classes cl(l), c1(2), * ,  cl(6 - 1). This "de- 
signed distance" terminology is used because of the well- 
known BCH-bound theorem. 

Theorem 1: If the defining set of the cyclic code C 
contains a set of 6 - 1 consecutive integers (0 is treated 
consecutive to n - l),  then the minimum distance of C is at 
least 6. 

So the code B( n, 6) has minimum distance at least 6. We are 
not satisfied by such a result. Generally the designed distance 
is equal to the minimum distance, but we have 
no systematic way of finding the true minimum distance. 
Of course there exist many other bounds for cyclic codes 
(J. H. van Lint and R. M. Wilson give an in-depth treatment 
of the subject in [13]), but these are not necessarily tight 
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bounds. It is a difficult problem to find the true minimum 
distance of long BCH codes. 

The problem one encounters when looking for the true 
minimum distance is to work with the structure of the finite 
field GF (4) itself. This structure deeply influences the prop- 
erties of cyclic codes, and bounds obtained from the proper- 
ties of the defining set of a cyclic code do not reflect this 
underlying algebraic structure of GF ( 4). 

B. Mattson-Solomon Polynomial and Locator 
Polynomial 

Definition 1: The Mattson-Solomon polynomial of the 
word x = ( xo, xl,  * - e ,  x,- is the polynomial A E 

GF (q)[ZI: 
i = n  

A ( z )  = A i z n P i ,  
i =  1 

where 
j = n -  1 

(3) 

(4) 

Remark: 

0 = A: 
Ai+, = A ,  

So there is only one significant Ai  for every cyclotomic 

Definition 2: The locator polynomial a( 2) of a word x is 
class. 

i = W  

i =  1 
a(2 )  = J-J (1 - x ; z ) ,  ( 5 )  

where the X i  are the elements of GF (4) which are not zeros 
of the Mattson-Solomon polynomial of x. They are called 
the locators of x. 

Definition 3: The elementary symmetric functions of the 
locators X I ,  X , ;  - e ,  X w  are the a,: 

ai = ( - l ) i  c x k l x k 2  " *  xk,  
1 S k I < k 2 . . .  < k j c w  

i f O < i s w  
a, = 1. 

We have 
i = W  

i = O  
a(2)  = a,Z'. (6) 

The inversion formula of (3) (cf. [ll] p. 240) implies that 
A ( a j )  = x j .  Hence, the zeros of the locator polynomial are 
the inverses of the locations of the nonzero coordinates of x. 

In the case of binary codes, locators become very interest- 
ing, since binary words can be identified by their locators, 
and so by their locator polynomial. 

We have the following property. 
Proposition 1: Let x be a word of length n of weight w, 

with locators X I ,  X ,  , - , X w .  Then x is in the cyclic code 
with defining set {ai l ,  a i 2 ,  * * * , ai/], if and only if the fol- 
lowing power sum symmetric functions of its locators are 
zero: 

(7) A .  = A .  = = A , , = O .  
' I  '2 

Recall that the kth power sum symmetric function of 
X , , . . . ,  X w  is 

i = W  

i =  1 
A , =  c X F  (8) 

and is the kth coefficient of the Mattson-Solomon polyno- 
mial of x. 

The following relations known as Newton's identities 
allow us to study the elementary symmetric functions, know- 
ing the power sum symmetric functions. 

Proposition 2: Let X , ,  X , ;  e ,  X w  be indeterminates 
over a field K, a, the elementary symmetric functions of the 
X i  and Ai  the power sum symmetric functions of the X i .  
Then, we have the following relations: 

i = r -  1 

i= 1 
r I w ,  I,: A ,  + A,_,U, + ra, = 0, 

(9) i =  w 
r > w ,  I,:  A ,  + A,-,a, = 0. 

i=  1 

C. The Locator Polynomial and BCH Codes 

([11, ch. 9, Lemma 4 p. 2601). 
From the Newton's identities, we have the following result 

Lemma 1: Let 
i = W  

i = O  
a(2 )  = a;z' (10) 

be a polynomial over GF (2 "). Then a( 2) is the locator 
polynomial of a codeword x of B( n ,  6), if and only if 

a) a(2) divides 2" - 1. 
b) iE[l, 6 - 11, i odd 

So we can try to find the true minimum distance of a code 
B( n ,  6) by finding locator polynomials which satisfy condi- 
tions a) and b) of Lemma 1. 

D. The Codes B(n, 2 ,  - 1) and Linearized Polynomials 

Then 1(Z) is a linearized polynomial, if and only if 

a, = 0. 

Definition 4: Let I(2) be a polynomial over GF (2"'). 

i = l  

i = O  
I ( Z )  = aiZ2'. (11) 

The interesting point about linearized polynomial is the fol- 
lowing proposition ([ll, ch. 4 p. 1191). 

Proposition 3: I (  2) E GF (2 ")[ 21 is a linearized polyno- 
mial if and only if its zeros (eventually in an extension of 
GF (2")) form a vector space over GF (2). 

Now we can prove as follows that the codes B(n,  6), 
6 = 2, - 1 have minimum distance 6. 

a) Let H be a k-dimensional subspace of GF (2") over 
GF (2). 

b) Then the polynomial: l(2) = IIren(Z - z )  is a lin- 
earized polynomial. 

c) It is easy to check that the polynomial a ( Z )  = U y E H  
y+o(l - y Z )  satisfies conditions a) and b) of Lemma 1. 

Definition 5: The punctured Reed-Muller code of length 
n and order k, denoted by B ( k ,  m)* (cf. [ l l ,  p. 383]), is 
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the cyclic code of length 2"' - 1 with the following defining 
set: 

z ( g ( k , m ) * )  = { i E [ l - . -  n -  l ] I w z ( i )  < m - k } ,  

where wz(i)  is the weight of the binary representation of i .  
It is well known that the locators of any minimum weight 

codeword of the punctured Reed-Muller code of length 
2"' - 1 and order m - k, together with zero, form a k- 
dimensional GF (2)-subspace. So their locator polynomials 
have the following form: 

(12) 

r=k 

r = O  
u(z) = C T z k - z , ~ 2 k - 2 ' .  (13) 

In Section IV, we will use such a characterization of the 
minimum weight codewords of codes Lh? ( k ,  m)*. 

III. THE MINIMUM DISTANCE OF SOME BCH CODES 

Let C be any cyclic code of length n. GF(2"') is the 
smallest field containing the nth roots of unity. 

We consider Newton's identities (cf. (9)) written in term of 
w locators X , ,  X z  , - * * , X,. Note that for a cyclic code C ,  
A,  is replaced by 0, for all i in the defining set of C. 

We call this set of equations, Newton's identities for  the 
code C and for the weight w. 

We call a set of 14, 's  and u,'s that verify these identities, 
such that the polynomial U (  z )  = Cy=ou,z' is square-free 
and splits in GF(2"'), a solution of this system. 

Thus, the existence of solutions to Newton's identities for 
a code C and a weight w is equivalent to the existence of 
codewords of weight w in C. 

We, therefore, have two ways of exploring the identities: 

0 either we prove the absence of a solution, so that there is 

0 or we find a solution, and this solution gives us a 

We use symbolic computation software to carry out this 
exploration, enabling us to manipulate the equations in their 
most general form (some of these have hundreds of terms). 
The method we use in both cases can roughly be described as 
follows. 

1) We write down Newton's identities for a given code 
and a given weight. 

2) We introduce into the equations the simplifications for 
the particular code in question. 

3) We examine the equations one after another, trying 
either to express an indeterminate in terms of others, or 
to find a simple equation involving a small number of 
indeterminates. 

Up to now we have not been able to make this exploration in 
a fully automatic manner; a user interface is necessary to 
make a proper choice at the critical stages of the search. 
There are many possible decisions at Step 3), including the 
decision to discard too large an equation, and it is difficult to 
make this choice efficiently within a program. 

However, whenever possible we have implemented succes- 

no codeword of this weight in the code, 

codeword of the given weight. 

sive refinements to our program, which now does most of 
these choices automatically. 

We will use the following properties of the A ,'s. 

0 A: = A z j  and A;+,, = A , ,  so there is exactly one 
relevant A, for each cyclotomic class. 

0 = A, where m' is the cardinal of the cyclotomic 
class of i (this is a consequence of the previous prop- 
erty). 

0 If a codeword is shifted, each A ;  is multiplied by ai 
where a! is the nth root of unity chosen for the defini- 
tion of the code. So, since A, # 0, if n and w are 
relatively prime one can suppose that A = 1.  

A .  The Minimum Distance is Known for All Narrow-Sense 
Primitive Binary BCH Codes of Length 255 

Theorem 2: All the narrow-sense primitive binary BCH 
codes of length 255 have their minimum distance equal to 
their designed distance except 

0 B(255,61), which has minimum distance 63, 
0 B(255,59), which has minimum distance 61. 

Proof: From [4]-[6], [ l l ] ,  we know that all narrow- 
sense primitive BCH codes of length 255 reach the BCH 
bound except B(255,61) and B(255,59). 

For both of these codes we are able to produce words of 
weight 6 + 2. Indeed 

0 B(255,61) 3 B(255,63), and the latter code has mini- 
mum weight 63, 

0 for B(255,59), Dornstetter gives in [5] a word of 
weight 61. 

Since the minimum distance of primitive BCH codes is 
odd, all we have to prove is that there are no codewords of 
weight 61 (resp. 59) in the code B(255, 61) (resp. 
B(255,59)). These results were obtained from a MAPLE 
program; traces of the computations are given in Appendixes 
A and B. 0 

B. The Minimum Distance is Known for Most 
Narro w-Sense Primitive Binary BCH Codes 
of Length 511 

the BCH bound. 
We found another code whose minimum distance exceeds 

Theorem 3: The code B(5 11,123) has minimum distance 
d = 127. 

Proof: 

a) B(511, 123) is included in the punctured Reed-Muller 
code 9 ( 4 , 9 ) *  (cf. Definition 5 ) ,  and so has no code- 
word of weight 125, since 125 = 1 mod4 [ l l ,  Corol- 
lary 13, p. 4471; 

b) B(511, 127) C B(511, 123), and B(511, 127) reaches 
the BCH bound. 

From a) and b), we deduce easily that the minimum distance 
of B(511, 123) is 123 or 127. 
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We show in Appendix C that there is no word of weight 
123. 0 

For codes of length 51 1 we also carried out another kind of 
search from Newton’s identities: finding particular solutions 
by restricting the field of search. We introduced the follow- 
ing simplifications in the equations: all the Ai’s and ai’s are 
equal to 0 or 1. From the following lemma, this is exactly the 
same as looking for the idempotents of given weight. 

Definition 6: The support of a word x E GF (4)“ is the 
set of its nonzero positions. We denote it by supp (x). 

Note that the support of a word of a cyclic code is the set of 
exponents of its locators. 

Lemma 2: Let C be a binary cyclic code of length n ,  and 
let GF(2m) be the smallest field containing an nth root of 
unity. Let x be a word of C. The following assertions are 
equivalent: 

a) x is an idempotent, 
b) the support of x is the union of cyclotomic classes (in 

c) the coefficients of the locator polynomial of x (the ai’s) 

d) the power sum symmetric functions of x (the Ai’s) are 

GF (2”, 

are in GF (2), 

in GF (2). 

Proofi 

we have x = x2. For any i ,  

iEsupp(x) = . ~ ~ E s u P P ( x ~ )  = supp(x) .  

So if i ~ s u p p ( x )  then cl(i) C supp(x). 
The roots of the locator polynomial a ( z )  are the 
inverses of the locators, so the set of the expo- 
nents of the roots is the union of cyclotomic 
classes and therefore, a( z )  E GF (2)[ 21. 
If the ai’s are given and are in GF (2), then by 
induction, using Newton’s identities, all the A j ’ s  
are in GF (2). 
Let A be the Mattson-Solomon polynomial of x. 
We have [ll,  Theorem 22, p. 2401: 

x 2  = x (as polynomial) * A * A 
= A (component wise product). 

Since A; = A, for all j ,  we have A * A = A ,  and thus, 

This lemma is useful in two ways: it gives a way to find 
the idempotents from Newton’s identities and a way to 
describe very simply an idempotent by giving its support as a 
union of cyclotomic classes. 

We are able to find idempotents of given weight in some 
codes. For this search we give values in GF(2) for some of 
the nonzero Ai’s (8 of them for instance), and then the set of 
equations usually becomes easy to solve. It is possible to 
implement this exploration in a fully automatic manner. 

Theorem 4: The code B(5 1 1, 6) contains idempontents of 
weight 6 or 6 + 1 for 

x2 = x. 0 

6 = 19,39,45,53,57,79,83,91,103. 

Proof: We look for codewords with power sum sym- 
metric functions in GF (2). From Lemma 2, these words are 
idempotents, and they are fully described by the cyclotomic 
classes partitioning their supports. 

We give here, for a designed distance 6, the support of a 
codeword x of weight 6 or 6 + 1: 

19, w ( x ) . =  19, 

cl(0) U cl(23) U cl(91), 

39, w ( x )  = 39, 

cl(63) U cl(87) U cl(117) 

U cl(127) U c1(219), 

45, W ( X )  = 45, 

53, w ( x )  = 54, 

cl( 17) U cl(37) U cl(57) U cl(93) U cl( 103), 

cl(17) U cl(31) U cl(41) U cl(45) 

U cl( 103) U d(  117), 

57, a(.) = 57, 

cl(29) U cl(43) U cl(51) U d(55)  

U cl(61) U cf(63) U cf(219), 

79, w ( x )  = 79, 

cl(0) U cl(3) U cl(13) U cl(39) 

U cl(41) U cl(61) U cf(73) 

U cl(77) U cl( 107) U cl( 117) U cl(219), 

83, W ( X )  = 84, 

cl( 11) U d(  15) U cl(23) U cl(43) 

U cl(53) U cl(79) U d( 123) 

U cl(183) U d(  191) U cl(219), 

91, W ( X )  = 91, 

cl(0) U cl(7) U cl(13) U cl(25) 

U cl(37) U cl(41) U cl(59) U cl(61) 

U cl( 117) U cl( 175) U cl(239), 

103, O ( X )  = 103, 

cl(0) U cf(7) U cl(13) U cl(19) 

U cl(27) U cl(31) U cf(87) 

U cl(91) U cl(95) U cl(191) 

U cl(219) U cl(223) U cl(255). 
Since the true minimum distance d is odd, showing that a 
word has weight 6 + 1 is sufficient to prove that d = 6. 0 

Remarks: 

0 The weight of an idempotent cannot be an arbitrary 
integer, this integer has to be a sum of the cardinalities 
of some cyclotomic classes. For instance in GF (512) we 
have one class with one element, 2 classes with 3, and 

I .  - I 
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57 with 9. So the weight of an idempotent is a multiple 
of 9 plus 0, 1 ,  3, 4, 6 or 7 (each class can be used 
once). For instance, 29 cannot be the weight of an 
idempotent. 

0 We did not find an idempotent for every possible weight, 
but this is not surprising; the surprise is that we did find 
some. Since the set of idempotents and the set of mini- 
mum weight words are (very) small, their intersection 
should be empty most of the time. 

Some other minimum distance are known for length 5 1 1 .  
Table I gives a list of them as well as the way they were 
found. We try to give as reference the first author known to 
us who explicitly gives the code and its true minimum 
distance. 

IV. THE MINIMUM WEIGHT CODEWORDS OF THE 

BCH-CODES B(2" - 1 ,  2h  - 1) 

We denote by B ( h ) ,  h E [2, m - 11, the BCH-code of 
length 2" - 1 and designed distance 2h  - 1.  Since B ( h )  
contains the minimum weight codewords (mwc's) of the 
punctured RM-code 9 ( m  - h ,  m)*, its minimum distance 
is exactly 2h  - 1 (see Section II). However, the complete set 
of the mwc's of B ( h )  is not known, except for the trivial 
cases: 

B(2) = W ( m  - 2 ,  m)*,  B ( m  - 1) = W ( 1 ,  m)* 

and 
B(3) = 9 ( 2 , 5 ) *  

(By identifying the defining sets). Thus, we suppose in 
general that 

h ~ [ 3 , m - 2 ]  and m > 5 .  

In this section, we want to give some answers to the 
following question: Is there a mwc of B(h)  which is not in 
W ( m  - h,  m)*? On the other hand, it is natural to conjec- 
ture that for each h ,  there exists a cyclic code C # 9 ( m  - 
h ,  m)*, which is included in B ( h )  and has for mwc's the 
mwc's of 9 ( m  - h ,  m)*. 

Let C be a binary cyclic code of length n = 2" - 1 .  We 
denote by Mw(C) the set of the mwc's of C. We say that C 
has the property (RM h ) ,  h E [3, m - 21, if and only i f  

(RM,): W ( m  - h ,  m)* c C E  B ( h )  and 

M W ( C )  = MW( @ ( m  - h ,  m ) * ) ,  

where the first inclusion is strict. 
We shall prove (cf. Theorem 6) that the codes B(m - 2) 

have the property (RMm-2). We obtain this result by explor- 
ing Newton's identities of an mwc of a code B( h) ,  h E [3, m 
- 21; we study this general case and derive the result for 
h = m - 2. Moreover we can then provide an algorithm 
constructing cyclic codes which have the property (RM,) for 
a given h. 

Let x be a mwc of B ( h ) .  We have seen that X E  W ( m  - 
h,  m)*, if and only if its locator polynomial has the form 
u ( z )  = x:=ou2h-2Jz2h-2' (Cf. (13)). Thus, we have the 
following reinterpretation of the property (RH h ) .  

TABLE I 
BCH CODES OF LENGTH 5 1 1 

n k 6 d  in n k 6  d in 

511 502 3 3 [7] 511 241 73 
493 5 5 [7] 238 75 

' 4 8 4 7  7 229 77 

466 11 11 [7] 211 83 
457 13 13 [6] 202 85 
448 15 15 193 87 

184 91 439 17 17 " 
430 19 19 * 175 93 
421 21 21 [12] 166 95 
412 23 23 [7] 157 103 
403 25 25 [6] 148 107 
394 27 27 [7] 139 109 
385 29 2 29 - 130 111 
376 31 31 [7] 121 117 
367 35 35 [12] 112 119 
358 37 t 37 - 103 123 
349 39 39 * 94 125 
340 41 2 4 1  - 85 127 

76 171 331 43 2 4 3  - 

322 45 45 * 67 175 
313 47 47 [7] 58 183 
304 51 2 5 1  - 49 187 
295 53 53 * 40 191 
286 55 55 [I] 31 219 
277 57 57 28 223 
268 59 t 59 - 19 239 
259 61 t 61 - 10 255 
250 63 63 [7] 

475 9 9 [,7,1 220 79 

73 
r 75 
r 77 
19 
83 
t 85 
r 87 
91 
95 
95 
103 
r 107 

111 
111 
119 
119 
127 
127 
127 
171 
175 
183 
187 
191 
219 
223 
239 
255 

# d = 6 + 2 .  
# # d = 6 + 4. 
* New result obtained by Newton's identities. 
** New result obtained by an exhaustive search. 

Theorem 5: For each h E [2, m - 11, define: 

Jh = { 2 h  - 2 ' l j ~  [0 ,  h ] }  

Let x be a codeword of weight 2h - 1 and let u ( 2 )  = 
Z):iluiZ' be the locator polynomial of x. Then x is a 
codeword of 9 ( m  - h,  m)*, if and only if U, = 0 for all 

Note that O E J ,  and that j E J h  - (0) implies j L 2h- ' ;  

Lemma 3 191: Let h ~ [ 2 ,  m - 11, io = 2 h  - 1 and T E  

a) r#  Jh * w2(r + io) < h.  
b) rEJh * w2(r + io)  = h.  

Let S = [l ,  n], n = 2" - 1 .  From now on we assume 
that any mwc x of B ( h )  is defined by its locators 
X I ,  - * e ,  Xi,. The corresponding power sum symmetric func- 
tions A,, k E S, and the elementary symmetric functions U,, 
r E [0, io] are related by the Newton's identities Zk, k E S .  
By definition uo = 1 ; since x E B( h)  we know that 

i Jh. 

recall the following property of Jh due to Kasami et al. 

[l, io[. Then, 

0 A, = 0, for k~ [l, io[ ,  
0 r odd and r < io * U, = 0, 
0 Ai, cannot be zero, since the minimum distance of 

Then identities I, are satisfied for k < io; identity Zi, yields 
ai, = A In accordance with Theorem 5 ,  we shall study the 

B(h)  is exactly io. 
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following hypothesis H, : 

H r : r € [ 1 , i O [  and r # J h * u r = O  and A i 0 + , = 0 .  

We know that H, is true for r odd (cf. Lemma 1) .  Recall the 
form of identity Zi0+,: 

r 

' i 0+r :  + Aio+r -kak  = O .  ( 1 5 )  
k =  1 

The following lemma means that the code B ( h )  has the 
property (RM,), if and only if H, is true for all r E [2,  io [ ,  
io = 2h - 1 .  This result still holds for any cyclic code C 
which contains 9 ( m  - h,  m)* and is contained in B ( h ) .  
We now proceed by induction on r to show that H, is true. 

Lemma 4: Let r be even. Suppose that Hr. is true for all 
r' E [l , r[.  Then we have 

lio+r: Aio+r + A i 0 U r  = 0.  

Proof: We examine the term Aio+r-kuk in (15) ,  for 
k e  [ l ,  r[:  

0 if k # Jh then Hk implies U, = 0; 
0 if kEJh then k 1 2h-1; hence r - k < 2 h - ' ,  which 

means that r - k is not in Jh;  applying H r P k ,  we 

Remark: We know that the locator polynomials of the 
mwc's of 9 ( m  - h,  m)* satisfy ai = 0 for i # Jh. From 
Lemma 4, we obtain another property: 

obtain AiO+r-k = 0. U 

Example 1: The BCH-codes of designed distance 7 ,  i.e., 
h = 3 ,  io = 7 ,  and J ,  = {0,4,6,7} .  Recall that the defin- 
ing-sets of 9 ( m  - 3 ,  m)* and B(3) are 

S,  = { s E S I O ~ ( S )  < 3 }  and 

Z(B(3))  = cl(1) U cI(3) U ~ 1 ( 5 ) ,  

respectively. Since U, = 0 for r odd, Lemma 1 implies that 
B(3) has the property (RM,) if and only if a2 = 0; we have 
seen that H I  is always true; from Lemma 4, u2 = 0 if and 
only if A, = 0. In other words: B(3) has the property 
(RM,) if and only if each mwc of B(3) is such that A, = 0. 
We conjecture that, in general, B(3) does not have the 
property (RM,). For mE{6,7 ,8 ,9} ,  we have obtained 
(with a computer) a mwc of B(3) which is not in 9 ( m  - 

Let T = c49) U Z(B(3)). Since 4 9 )  = 2, T c S 3 .  NOW, 
we examine a code' C whose defining-set T is such that 
T E T C S3,  where the right inclusion is strict. Thus C 
contains 9 ( m  - 3 ,  m)* and is contained in B(3). Moreover 
each codeword of C is such that its power sum symmetric 
function A ,  equals zero. If m E { 6,7} ,  it is easy to see that 
T equals S,. When m > 7 ,  17 is in S, and not in T. In 
conclusion, we have the following. 

1 )  Assume that m > 7. Then a cyclic code C with defin- 

3,  m)*> 

ing-set T satisfying: 

has the property (RM,). Conversely, we conjecture that 
a code C which has the property (RM,), satisfies the 
above property. 

2) If m I 7 ,  it is impossible to construct a code C which 
has the property (RM ,) . 

Now we will distinguish the two cases: r I 2 h - 1  and 

Lemma 5: Assume that r e  [2,  2 h - 1 ] ,  r even, and that 
r > 2hp ' .  

Hr. is true for all r' < r. Then identity 12io+3r becomes 

' 2 i 0 + 3 r :  A2 i0+3r  + A?o+rur + Ai0+3rui0  = o, 
io - 1 

i f r > -  
3 

and 

io - 1 

3 
i f r s - .  

Proof: io = 2 h  - 1.  Note that 2i0 + 3r < 2h+1 + 
3.2h-' < 2" - 1, since h < m - 1. Then the identity 
Z2io+3r is defined. Its general form is 

i o -  1 

l 2 i O + 3 r :  A2 i0+3r  + A2;0+3r -kuk  + Ai0+3rui0 = O' 
k =  1 

(19)  

Suppose that H,, is true for r' < r and consider the term 
A2io+3r-kuk.  If k is odd, then U, = 0. If k is even, let 
r - k = 2k'; we have 

A 2 ( i o + r ) + r - k u k  = A?o+r+k'uk,  L 1 ,  ' O f '  

Then, 

k' > 0 * k < r U, = 0, from Hk ( k  cannot be in 
Jh,  since r I 2 h - 1 ) .  
k' < 0 and r + k' # 0 =. r + k' < r * Aio+r+kp = 0 
(if r + k' > 0 apply Hr+k, otherwise io + r + k' is 
an element of the defining set of B( h)) .  
r + k' = 0 is obtained when it is possible to have 
k = 3r; since k < io, this condition implies r I (io - 

In conclusion, identity Z2io+3r reduces to (17) if r > ( io  - 
1) /3  and to (18)  otherwise. 

Lemma 6: r even and io = 2h  - 1 ,  h ~ [ 3 ,  m - 21. As- 
sume that r E [2 h -  ', io[ and r # Jh; suppose that Hr, is true 
for all r' < r .  Then identity Z2(jo+r) becomes 

1 ) / 3 .  

Zz( ;o+r ) :  A ; o + r  + A i 0 + 2 r u i 0  = 0. (20) 

Proof: Note that 2i0 + 2r I 4i0 - 2 I 2h+2 - 6 < 
2" - 1 .  Hence, an identity Z2io+2r is defined. Its general 
form is 

i o - ]  . 
' 2 ( i O + r ) :  A?o+r + ' 2 ( i O + r ) - k u k  + Aio+2ruio = O .  (21)  

k =  1 

Suppose that H,. is true for r' < r;  consider for k even, the 
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hypothesis, and k < m - 4. Now the 2-ary expansion of io + r + r' is 

Hence, if r - k' $ Jh then Ai,+r-k, = 0 (from HrWkt ) .  
Suppose that r - k' E Jh; then there is an integer j E [ 1, h - 
11 such that r - k' = 2 h  - 2'. Now we have two possibili- 
ties. 

m - 5  + (1 + r j + f j + J 2 j  
j=k+l  

(by convention a sum from a to b, with a > b, equals 0). So 

zero. We can apply a): the defining set of B(h)  contains 

') 2k' If $ Jh then ' k  = O ;  if Jh there is a we can see that the ( k  - 1)th term and the kth term are 
j' ~ [ l ,  h - 11 such that k = 2 h  - 2'; thus, r = 2 h  
+ 2h-1  - 2' - 2 I - l ;  if j < h - 1 we obtain r > 2h 2(io + + r,) = 2io + 3r. Now we have 
- 1; if j = h - 1 we obtain r e  Jh; so in all cases we 
have a contradiction to the hypothesis on r .  

2) 2k '  2 r * r - k' 5 k' I (2h - 2)/2. Then r - k' 
cannot be in Jh; that contradicts the hypothesis on 
r - k'. 

io + 3 r  2m-2 - 1 + 3.2m-3 

- - 2"-1 + 2"-3 - 1 < 2m - 1. (22) 

We consider the 2-ary expansion of io + 3r :  

Lemma 7: Assume that h = m - 2. Recall that the k-  1 

defining-set of B(m - 2) is denoted by I ( B ( m  - 2)) and 
that io = 2 h  - 1. The following properties are satisfied. 

be the 2-ary 

is k < m and j $ { k ,  k' = k + l(mod m ) }  such that 

io + r + 2 r  = 2' + (1 + 1 + 0 ) 2 ~  
j = O  

+ ( 1  + 1 + 1 ) 2 k + '  a) Let s E [0,2" - 11 and let 
expansion of s. Then s E Z( B( h) ) ,  if and only if there m - 4  

j=k+2 
+ (1 + f j  + f jP1)2j  

s k  = skt  = s.  = 0. 
b) Let r ~ [ 2 , ; ~ - ' [ ,  r even such that io + r$Z(B(h)) .  + (1 + fm-4)2m-3. 

The kth term and the ( k  + 1)th term are zero. Moreover, Then 

C) Let rE]2h-1, io[, f even and r $  Jh.  Then there is an c) BY hypothesis, 2m-I - 1 < io + 2f  < 2" - 1. We 
element of the c y c ~ o t o ~ c  class of io + 2 r  (modulo 
2 m  - l),  which can be written as 

consider another element of the cyclotomic class of io + 2 r :  

2(i0 + 2 r )  - (2"-1) = io + E ,  

E > 4(2m-3 + 1) + 2m-2 - 2" * E > 4 - 2"-* > -io B(m - 2). 
b) Let r' = r/2. By hypothesis, the 2-ary expansion of 

io, r and r' are and 

m-3 m-4  m-5 € = r + 3('- 2-2) * E < r - 3.  
io = 2 j ,  r = rj2j, r' = rj+12j. Suppose that E E Jh. Then there is a j E [O ,  m - 21 such that 

j = O  j =  1 j = O  

4r + 2-2 - 2" = 2m-2 - 2' = 2"-2 - 2 ' 4 ,  
Note that io + r + r' < 2"-2 + 3.2m-4 - 1 2m-'. Let 
k be the smallest j such that f j  -++ 0.  suppose that f k +  = 0 
or that k = m - 4. We have 

which implies f E Jh, contradicting the hypothesis. We have 
0 proved that E cannot be in Jh. 

k- 1 

io + r = C 2' + (1 + 1 ) 2 ~  + zk+ '  
Now we are able to prove that the code B(m - 2) has the 

property (RMm-2). 
j = O  Theorem 6: The minimum weight codewords of the 

BCH-codes of length 2 - 1 and designed distance 2 m - 2  - 1 
are those of the punctured RM-code of the same length and 
order 2. 

Proof: The notations are as previously defined; more- 
over assume that h = m - 2. We shall prove that, for this 
particular value of h,  H,  is true for all r E [ l ,  io[. If r is 

m-4 
+ (1 + r j ) 2 j +  2-3 . 

Then the 2-ary expansion of io + r is such that its kth term 
and its ( k  + 1)th term are zero. From a), that means io + r 
E Z( B( h)) ,  which contradicts the hypothesis. Thus rk+ = 1 

j=k+2 
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odd, we know that H, is true; we suppose that H,. is true 
for all r' E [2,  r [  and we want to prove that H, is true. 

If io + reZ(B(h))  then Ajo+,  = 0 (by definition of 
B( h)); A cannot be zero, since the designed distance io of 
B ( h )  is exactly its minimum distance. Thus, Lemma 4 
implies a, = 0; then H, is true. So we suppose now that r is 
even and that io + r $ Z( B( h)). We consider two cases. 

1) Assume that r E [2, 2,-'[. Then r cannot be in J,. Let 
p be the smallest element of [io + 1, 2i0[, such that 
p $ Z( B( m - 2)).  From Lemma 7a), we have 

(m - 2 ) / 2  
22k  = (2m - 1)/3, if m is even, 1 k=O 

= 1 + 2(2m-'  - 1)/3, if m isodd. 

If we suppose that io + r$Z(B(m - 2)), then io + r 
2 p.  If m is even then 

+ 2  

3 '  

2m-2 
. 2 " -  1 2 m - 2  + 1 =  p - ' O = - -  3 

and if m is odd then 

2m-1- 1 

3 

+ 1  

+ 1  p - i o = 1 + 2  - 2m-2 

2m-2 
= 1 +  

3 

Hence, in all cases, r > (io - 1)/3. From Lemma 5, 
the identity Z2j0+3r is reduced to (17). From Lemma 
7b), A2i0+3, = A ;,+,, = 0. Then 

12;,+3,: A~,+,u, = 0 and Zjo+r :  A;,+, + A,,u, = 0, 

which yields A;,+, = 0 and a, = 0, i.e., H, is true. 
2) Assume that r e  [2 , - ' ,  io[. If r E  J, then H, is true. 

So we suppose that r $ J,. From Lemma 7c), there is 
an E ,  -io < E < r and E $ J,, such that io + E is an 
element of the cyclotomic class of io + 2 r ;  thus, 

-io < E c 0 =) io + E E Z ( B ( ~ ) )  * 

0 < E < r =$ A;,+€ = 0, (from H,) * Ai,+2r = 0. 

From Lemma 6, the identity Z2( i0+r)  reduces to 

= 0 
A i 0 + 2 r  = 09 

= 0. 
From Lemma 4, this yields a, = 0, i.e., H, is true. In 
accordance with Theorem 5 ,  we have proved that B(m - 2) 
has the property (RMm-2). Remark that 9 ( 2 ,  m)* is strictly 
contained in the code B(m - 2 ) ;  for instance 2"'-' - 2g+ '  
+ 2 g  - 1, for 0 < g < m - 1, is in the defining set of 

0 
Let x E B ( m  - 2) such that o(x) = 2"-* = p;  let X = 

{ XI, * e ,  X,} be the set of locators of x. It is well known 
that the extended BCH-codes and the Reed-Muller codes are 
invariant under the affine group ([8], [ 2 ] ) ;  this means that, 
for each ~ E G F ( ~ ~ ) ,  the locators {XI + g , . . . ,  X ,  + g}  

9 ( 2 ,  m)* but not in Z(B(m - 2)). 

are those of a codeword in the extension of the code B(m - 
2). In particular, we can state 

X = X ,  + (0 )  U X', 

X' = { ~ 2 + X , , * - , X , + X , } ,  

where X' is the set of the locators of a codeword x' of 
B(m - 2). Moreover x' is a mwc of B(m - 2). Hence, 
Theorem 6 implies the following corollary. 

Corollary 1: Let x e B ( m  - 2 )  be such that o(x) = 
. Then x is a codeword of the punctured RM-code 

9 ( 2 ,  m)*, i.e., the set of the locators of x is an ( m  - 2)- 
dimensional affine subspace of GF (2 "'). 

It is well known that the automorphism group of the binary 
punctured Reed-Muller codes is the general linear group, 
denoted by GL (2,  m)  ( [ l l ] ,  p. 400); moreover the punctured 
RM-codes are generated by their mwc's ([11, p. 3811). 
Hence, a code C which has the property (RM,) is such that 
its automorphism group is contained in GL(2, m ) .  Moreover, 
such a code cannot be generated by Mw( C), since 3? ( m  - 
h ,  m)* is strictly contained in it. 

Corollary 2: m > 5 .  The automorphism group of the 
BCH-code B(m - 2) is contained in GL(2, m).  The code 
generated by the set of the minimum weight codewords of 
B(m - 2) is strictly contained in B(m - 2).  

The property (RM,) is studied in Example 1, and Theorem 
6 gives a general result for the property (RMm-2). From 
now on, we are interested in the definition of cyclic codes 
which have the property (RM,), for h E [4, m - 31, m > 6. 
We study the property (RM,) by explaining the hypotheses 
on the mwc's of the codes B(h) .  The main idea is that 
Newton's identities yield certain conditions on the power sum 
symmetric functions of these codewords. In accordance with 
Theorem 5 and Lemma 4, we can state a sufficient condition 
for a cyclic code to have the property (RM,). 

2m-2 

Corollary 3: Let us define 

U, = { S E  [io + 1 , 2 i o [ 1 s $ ~ ( ~ ( h ) ) ,  w2(s) c h ) .  (23) 

Let C be a cyclic code such that its defining set T satisfies 

Z ( B ( h ) )  U T, c T E  { S E S I W ~ ( S )  < h } .  (24) 

If 92 ( m  - h ,  m)* is strictly contained in C, then C has the 

Proof: Suppose that C # 9 ( m  - h ,  m)*. Then the 
second inclusion in (24) is strict. From Lemma 3, the ele- 
ments of T, are of the form s = io + r with r $ J,,. Then 
any mwc of C is a mwc of B ( h )  which satisfies Ai,+, = 0 
for all r $  J, (with r e  [l, io[). Applying Lemma 4, we 
prove by induction that H, is true for all r .  Then C has the 

The following conjectures are reinforced by results we 

propew ( R M h ) .  

property (RMh)* 0 
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have obtained with a computer. For h E [4, m - 31, m > 6: 

1) the codes B(h) do not have the property (RM,), 
2) there exists a cyclic code C ,  the definition set of which 

is strictly contained in Z(B(h)) U T,, which has the 

We give later some examples which prove that the second 
conjecture is true for m = 7 and m = 8. We use the fact 
that the proof of Theorem 6, applied to the general case 
h # m - 2, provides an algorithm constructing a cyclic code 
which has the property ( R M , ) ,  for a given m. In the 
following, C is a cyclic code such that 92 (m - h, m)* C C 
C B(h);  T denotes its defining set. The proof of the pro- 
posed algorithm is obvious: using the results of Lemmas 4, 
5, and 6, we construct T such that H, is true for all 
r E [ 1 ,  io)[; if r is such that Newton's identities, given by 
(17) or (18) or (20), do not imply Ai,+, = 0, then we add 
io + r in T. 
Algorithm Constructing T 

property (RMh)- 

1) T = Z(B(h)); r = 0; io = 2, - 1 ;  
2) r = r + 2; IF r > io THEN go to 8); 
3) IF io + rE T THEN put U, := 0 and GO T o  2); 
4) IF r < 2,- ' ,  examine the identity Z2r,+3r:  

IF z2ro+3r: ATo+,.U, = 0 THEN GO TO 7) 
ELSE PUT T := T U cl(io + r )  and GO TO 7); 

5) IF r E J h  THEN GO TO 2); 
6) IF r > 2h-1 ,  examine the identity Z2(10+r):  

ELSE PUT T : =  T U  cl(io + r ) ;  
7) PUT U, := 0 and AT:+, := 0, for j~ [0, m - 11; GO TO 

2); 
8) END. 

Example 2: m = 7; h = 4; thus io = 15 and J4 = 
{ 0,8 ,12 ,14} .  The code B( h) is the BCH-code of length 127 
and designed distance 15. In accordance with Corollary 3, we 
have & = cl(19) U cI(21). Using the algorithm, we obtain 
that the code C with defining set T = Z(B(4)) U c1(19), 
satisfies (RM,). 

IF z2(,o+r): A:o+r = 0 THEN GO TO 7) 

Example 3: m = 8. 

h = 4. The code B(4) is the BCH-code of length 255 
and designed distance 15. We have 

& = ~1(17)  U cl(19) U d(21)  U cl(25). 

The algorithm produces: T = Z(B(4)) U cl(17) U 
cl(19). 
h = 5; J5 = {0 ,16 ,24 ,28 ,30 ,31} .  The code B(5) is 
the BCH-code of length 255 and designed distance 3 1. 
We have 

T5 = cl(37) U ~ l ( 3 9 )  U d(43)  U cl(45) 

U cl(51) U cl(53). 

The algorithm produces: T = Z(B(5)) U d(37) U 
cl(39). 

APPENDIX A 
B(255,61) HAS MINIMUM DISTANCE > 61 

We consider Newton's identities 1, for 0 < r 5 n = 255, for the 
code B(255,61), and for the weight 6 = 61. We want to prove that 
there exists no codeword of weight 6. 

The nonzero power sum symmetric functions of the code are 

A91, A l l l ,  A119* 

Since 255 and 61 are relatively prime we can suppose A,, = 1 (the 
shift corresponds to a multiplication of each A i  by a'). 

In the case of a narrow-sense primitive BCH code, and for a 
weight equal to the designed distance, Newton's identities Z, (9) for 
odd r from 6 + 2 to 26 - 1 form a triangular linear system giving 
the ai's for even i as polynomials depending on the nonzero Ai's.  
Here the system consists of the following 30 equations: 

I,,: A,, + U, = 0 

Z65: A6,u2 + U, = 0 

167: A,,u4 + U, = 0 

169: A,53U6 + 0 8  = 0 

171: -4,308 + 010 = 0 

Z7,: A,3u,o + UI2 = 0 

175: A63012 + 014 = 0 

177: A63U14 + (11.5 = 0 

z79: 1 + A63u16 + U18 = 0 

181: 0 2  + A63u18 + 020 = 0 

183 : 04 + A 6 3  020 + 0 2 2  = 0 

185: A85 + 06 + A,j3U22 + U24 = 0 

187: A 8 7  + A8502 + + A63024 + 026 = 0 

189: A87Uz + A8sU4 + U10 + A63U26 + 028 = 0 

191: A 9 1  + A8704  + A8506  + 0 1 2  + A63U28 + U30 = 0 

193: A487 + A 9 l u 2  + A8706 + z485U8 + 0 1 4  + A63030  + 032 = 0 

'9.5: + A487'2 + + + A85'10 + u16 

+A63032 + 034 = 0 

'97: + A487'4 + + A87'10 + A85'12 + '18 
+A,,u3, + u3, = 0 

'99: + '487'6 + + A87'12 + A8.5'14 + uZO 
+A63u36 + U38 = 0 

'101: + A487'8 + A91'10 + + + 
+A63038 + U40 = 0 

z103: + A487'10 + A91'12 + + A85'18 + u24 

+A,,u, + U,, = 0 

'10.5: A9.5'10 + A487'12 + A91'14 + A87'18 + A8.5'20 + %6 

+A63u42 + U, = 0 
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which gives us the following values for the ai's: 

The other values are uo = 1, by definition, and U, = 0 for odd i ,  
given by the first 6 identities. 

After replacement of the u,'s by their values, the remaining 
equations are sorted in terms of increasing size of the number of 
monomials: 

186, 190, 188, 194, 198, 192,202,  123, 184, 189, 191, 196, 
206,254, 127, 195,200,210,  135, 193, 187, 199,214, 125, 
131,204,252,  197,222,203,238,  129, 139,208,250,  143, 
201,218, 133, 137 ,226 ,230 ,246 ,248 ,  234, 185,212,242,  
207, 141, 181,216,236,244,  151, 183,205,220,232,  147, 
224, 159, 179,211,240,  149, 175, 155, 145, 157,209, 173, 
163, 167,228,  153, 171,215,253,251,  165, 169, 161, 177, 
213 ,223 ,239 ,247 ,249 ,243 ,217 ,235 ,237 ,245 ,219 ,221 ,  
229 ,231 ,233 ,227 ,225 ,241 .  

We will proceed as follows. 

We successively check the equations in the order given 
above, up to a "solvable" one. 

0 After solving one equation, we restart from the begin- 
ning. 
(At each stage we substitute all the known Ai's in the 
current equation, and we simplify it as much as possible.) 

We give here, in order of resolution, all the "solvable" 
equations, and the way we used them: 

1186: A887 + A&A:3 + A85AZ; + Alg67A463 + A;,A& 

+ A i 7 A g  + A% + At5 = 0 

* A , ,  := Ai7 + Ai5A& + A85A563 + Ai7A63 

+ + As63 
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which gives us the following values for the ai's: 

I I -~ I 
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The other values are a, = 1, by definition, and a, = 0 for odd i ,  
given by the first identities. 

After replacement of the a,’s by their values, the remaining 
equations will be sorted in increasing size (number of monomials) 
order: 

180, 188, 196, 192, 186, 184,204,200, 190,252, 189, 119, 
178, 182, 187,212, 121, 194,208,220,236, 198, 125, 185, 
244, 191, 193,202,248, 197,216,228,224, 123, 133, 195, 
129,206,232,250,240,205, 137, 141,201, 181, 183,246, 
254,218, 127, 199,210, 173, 179,203, 157,253, 131,214, 
177, 149, 171,234,249, 139, 145, 153,222,242,230, 135, 
251, 169,238,245, 155, 165,213,221,209,207,237,241, 
217,226, 147, 175, 161, 143,243, 163, 151,211, 167,247, 
233,235,219, 159,229,225,239,227,215,231,223. 

We will proceed as follows. 

0 We successively check the equations in the order given 
above, up to a “solvable” one; 

0 After solving one equation, we restart from the begin- 
ning. 
(at each stage we substitute all the known A,’s ,  and we 
show the most simple equation possible.) 

We will first show that A,,  # 0. 
Suppose that A,, = 0. Then 

119,: Ai5 = 0 * A,, := 0 ,  

Izo8: Ai7 = 0 * Aa7 := 0 ,  
1236: 1 = 0, 

so A61 # 0. 
We give here, in order of resolution, all the “solvable” 

equations, and the way we used them: 

1180: A:1A,,A& + A85A& + A461Ag1 + A;: 

+ A i 1 A i 5  + A $ A 8 ,  + A E A ; ,  + A ;  = 0 

*A91 := A,,A,,A63 + AZYA85A23 + A21A87 + 
+Ak;’Ai, + A361A85 + A264A487 

IIM: A L A &  + A8,7A61A;3 + Ai,A6,Az3 + Ai7A&A463 

+ Ai5 + A::’ + A:3 + Ak;,Az3 

+ A::OAi7 + A& Ai5A463 = 0 

*A,,  := Ak;6Ai5 + A27Ai7As3 + A r A , , A : ,  + A87A23 

+A,lA8,A& + AEA463 + A:fA23 + Ai;1A;7 

I,,,: A:, = 0 * A ,  = 0 

Izo0: 1 = 0. 0 

APPENDIX C 
B(511,123) HAS MINIMUM DISTANCE > 123 

We consider Newton’s identities for 0 < i 5 n = 511 for the 
code B(511,123), and for the weight 6 = 123. We want to prove 
that there exists no codeword of weight 6. 

The nonzero power sum symmetric functions of the code are 

A1719 A1759 A187. 

A223. A239, A255. 

Since 511 and 123 are relatively prime we can suppose A123 = 1. 
We will give an abbreviated proof for this code (the complete 

proof is too long to present here). 
We will first solve the linear triangular system giving the ai’s for 

even i as polynomials depending on the nonzero Ai’s. The ai’s for 
odd i are null. We consider that the ai’s have been substituted in the 
equations. 

Furthermore we will suppose A,,, # 0 (when A,,, = 0, we 
found a contradiction). 

We give here the equations we used for the resolution, and the 
way we used them: 
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