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The Permutation Group of 
Affine-Invariant Extended Cyclic Codes 

Thierry P. Berger and  Pascale Charpin 

Abstract- The  extended cyclic codes of length p” , p  a  prime, 
which are invariant under  the aff ine-group acting on  ffpm, are 
called affine-invariant codes.  Following recent results of Berger, 
we present the formal expression of the permutat ion group 
of these codes.  Afterwards we give several tools in order to 
determine effectively the group of a  given code or of some infinite 
class of codes.  W e  next prove, by  studying some examples, that 
our  tools are efficient. In the end,  we give our  main application, 
the permutat ion group of primitive BCH codes def ined on  any  
prime field. 

Index Terms-Automorphism group, permutat ion group, cyclic 
code,  affine-invariant code,  BCH code, pose& antichain. 
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NOMENCLATURE 

k is the alphabet field IF,, q  = pr, p  a prime. 
n = qm’ - 1, N = qm’, m  = rm’, S = [O,pm - 11. 
wq(s) is the q-weight of s E [O,n] (see Definition 3). 
G is the field IF,,,, generally identified with IFpm. 
G* = G\(O); it is the multiplicative group of the field G. 
Q is a primitive element of the field G. 
R is the quotient algebra k[X]/(X?? - 1). 
M  is the group algebra k[{G*, x}]. 
A is the group algebra k[{G, +}I.. 
If C is a cyclic code, its extension is denoted by c. 
Sym (p”) is the symmetric group acting on G. 
Alt (p”) is the alternating group acting on G. 
Per (D) is the permutation group of the code D. 
Aut (D) is the automorphism group of the code D. 
K is a subfield of G of order pe. 
GL (ma/e, p”) is the linear group of G on K. 
AGL (m/e, p”) is the affine group. 
IYL (m/e, p”) is the semi-linear group. 
AI’L(m/e,pe) is the semi-affine group. 
Ok is the kth power of the Frobenius mapping on G. 
(S, <) is a poset (see Definition 7). 
(5’; K~), e  dividing m, is a poset (see Theorem 4). 
cl (j), j E S, is the orbit of j under the multiplication 
by p modulo 7~. 
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I. INTRODUCTION 

I N this paper we consider only primitive cyclic codes-i.e., 
cyclic codes of length pm - 1 over a field of order p’, where 

p is a prime and r a  divisor of m. We will say that such a code 
C is a p’-ary code, whenever Ic is the smallest integer such 
that C is invariant under 8k, the Sth power of the Frobenius 
mapping. The Bose-Chaudhuri-Hocquenghem (BCH) codes 
will always be narrow-sense BCH codes. The extended code is 
usually defined by adding an overall parity check. Henceforth 
the field of order pm, denoted by G, will be the support of the 
extended codes, while G*, its multiplicative group, will be the 
support of the cyclic codes. The permutations of coordinate 
places which send a code C into itself form the permutation 
group of C. Since a permutation acts on the support of C, it 
will be seen as a permutation on G. When the code is binary, 
this permutation group is actually the automorphism group of 
C (see [28, ch. 81). References on coding theory can be found 
in [28]. 

Denote by AGL (m,p) the affine group of G viewed as 
a vector space over its prime field IF,, and by AGL (1, p”) 
the affine group of G-which we view as a subgroup of 
AGL (m, p). Primitive cyclic codes whose extension is in- 
variant under AGL (1, p”) were characterized about thirty 
years ago by Kasami et al. ([22], 1967). They form a class 
including codes of great interest such as BCH codes, gen- 
eralized Reed-Muller (GRM) codes or Reed-Solomon (RS) 
codes. Delsarte later proved more general results, giving a 
condition for a  code to be invariant under a subgroup of 
AGL (m, p). He proved that only p-ary Reed-Muller codes can 
be invariant under AGL (m, p) ([17], 1970), but the problem 
of the complete determination of the automorphism group of 
affine-invariant codes has remained unsolved. 

The study of the automorphism groups of RS codes and 
of their extensions is due to Dtir ([19], 1987). We  gave the 
full automorphism groups of GRM codes in [S] (1993). More 
recently, Berger has proved that the permutation group of any 
affine-invariant code is contained in AGL (m, p) [7], [8]. We  
show here that one can construct a  formal expression for the 
permutation group of any affine-invariant code. This result 
provides the complete determination of the permutation groups 
for a  large class of codes. In the general case, it provides only 
an algorithm that is not always immediately practical. 

The main part of the paper consists of the description of 
several tools designed for the determination of permutation 
groups. On one hand, we want to give algorithms such that, 
up to reasonable lengths, computation of the group becomes 
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easy. On the other hand, our aim is to obtain the permutation 
groups of infinite classes of codes. 

The paper is organized as follows. In Section II, we present 
and explain all definitions and properties we need for the study 
of the permutation groups of affine-invariant codes. The cyclic 
codes are viewed in the group algebra of the multiplicative 
group G*, while the extended codes are viewed in the field 
algebra of G. Then the structure of the support of codes is 
clearly defined and the permutations on it appear as elements 
of the symmetric group of G. There is a general definition of 
permutations of cyclic codes: the polynomial approach (see 
Theorem 1). We  introduce Example 1 to show that it seems 
difficult to apply this approach directly. 

We  then present the affine-invariant codes. These codes are 
those invariant under AGL (1, p”), but they can be invariant 
under a larger subgroup of AGL (rr~, p). This result is due 
to Delsarte [ 171. The next part is based on his work which 
remains crucial to our paper. We  present the work of Kasami 
and its generalization by Delsarte in term of partial orders, 
studying extensively their combinatorial properties, We  briefly 
present background material describing affinc-invariant codes 
by antichains. At the end of Section II, we explain the recent 
results of Berger, giving precisely their consequences. We  also 
present the formal description of the permutation group of an 
affine-invariant code (Theorem 5). 

It is important to notice that our formal expression sheds 
new light on the result of Delsarte. Actually, his result is 
completed as follows: the permutation group of a  given afine- 
invariant code can be fully characterized from combinatorial 
properties of its dejining set. Section III consists of the descrip- 
tion of several tools devoted to the effective determination of 
permutation groups. We  mainly give two methods and both 
are based on the combinatorial structure of the defining set. 

The first one is derived from the work of Delsarte, by 
using the classification of affine-invariant codes by antichains. 
We  show in fact that the permutation group of a  given 
code can be described through relations between only two 
antichains. The second method comes from the polynomial 
representation of permutations given by Theorem 1. It is a  new 
condition equivalent to those of Delsarte, although we obtain 
it independently. This condition is very powerful in proving a 
property related to the BCH bound (see Corollary 5). We  give 
many examples in order to explain these methods in detail 
and to establish their efficiency. Many affine-invariant codes 
have as permutation group the smallest group AGL (1, p”) 
(or AI’L( 1, p”) for the p-ary codes); this is generally the case 
for BCH codes. However, there are a number of exceptions 
and we want to show that also by well-chosen examples. We  
exhibit infinite classes of such codes in Section III-C. In the 
last section, we determine the permutation group of any BCH 
code defined over a prime field. 

II. PRELIMINARIES 

In this paper codes are linear and primitive. Cyclic codes 
are of length n = qm’ - 1 and have symbols from the finite 
field of order 4, q  = pr, denoted by k. The finite field of order 
4 m’, denoted by G, will generally be identified with Fpm. 

We  will denote a primitive root of G by a. Using standard 
terminology of coding theory, a  cyclic code is an ideal C in 
the ring R = Ic[X]/(Xn - l), generated by a polynomial g(X) 
which is the product of minimal polynomials of some &. The 
roots of g(X) are said to be the zeros of the cyclic code C [28, 
ch. 71. Let T  be the subset of the interval [O; n - l] composed 
of those s such that o? is a zero of C. Then we have 

C = {u(X) E Rlu(d) = 0,Vs E T}. (1) 

We  will say that T  is the dejining set of C. The code C is said 
to be trivial when either T  is (0) or T  is the set (0, . . . , n  - l}. 
In this paper we will use another representation of cyclic codes 
and of their extension. We  explain that now. 

A. Primitive Cyclic Codes and their Extension 

We  denote by M  the group algebra k[{G*, x}]. That is the 
group algebra of the multiplicative group G* of the field G, 
over the field k. An element of M  is a formal sum 

xg E k. 
gEG* 

Addition and scalar multiplication are component-wise and the 
multiplication is given by the multiplication in G* 

c xg(s) + c y,(g) = c (x9 + Yg)b) 

and 

gEG* gEG* gEG’ 

c X9(g) X c Y,(g) = c 
gEG* gEG* gEG* 

It is obvious that the following map is an automorphism 
between the algebras R and M  

n-l n-1 

?/::xXiXi~R- Cm”) = c x9(g). 
i=o i=o geG* 

Consider the following k-linear map of M  into G: 

(2) 

where 0 5 s < n. Note that ps(x) = ~(a?), for any x in M  
corresponding to $(a(X)) (see (1)). 

Dejkition 1: Let M  = k[{G*, x}], k = F, and G = 
IF 4mj. Let T  be a subset of [0, n  - I], invariant under the 
multiplication by q (mod n). The cyclic code of length n over 
k, with defining set T, is as follows: 

C = {x E M  1 ps(x) = 0,Vs E T}. 

The code C is said to be a cyclic code in M. We  will say that 
C is a pe-ary code, e 5 r, where e is the least integer such 
that T  is invariant under multiplication by pe.’ Generally C 
will be a q-ary code. 

‘There is another definition that appears in the literature: a code is p” -ary 
provided its definition set is invariant under multiplication by p’. 
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Whenever T  does not contain 0, we e_xtend the code C by 
an overall parity check. We  denote by C the extended code 
of C and define it in the group algebra A = k[{G, +}]. This 
algebra is the group algebra of the additive group of G over 
k. An element of A is a formal sum 

x= c xgxg, xg E k. 

The operations are 

c xgxg + c ygxg = C(xg + Ys)X9 
g@ gEG g@ 

and 

c x,xg x c Ygxg =  c 

g@ gEG gEG 

AS previously (for the algebra M), we consider the k-linear 
map of A into G 

(3) 

where 0 5 s 5 n and 0’ = 1. Note that 

unless s = 0 or s = n. 
Dejnition 2: Let A = k[{G, +}I, k = F,, and G = F,,/. 

Let T  be a subset of [0, n], containing 0 and invariant under 
multiplication by q (mod n)-by convention q.nmodn E n. 
The extended cyclic code 2 with defining set T  is defined as 
follows: 

t? = {x E A ( q&(x) = 0, V’s E T}. 

The code e is said to be an extended cyclic code in A. We  say 
that e  is a peat-y extended cyclic code when C is a pe-ary 
cyclic code. 

We  now recall the definition of two classes of codes 
of A which will often appear in our study-that is, the 
Generalized Reed-Muller (GRM) codes and the extended 
Bose-Chaudhury-Hocquenghem (BCH) codes. 

Definition 3: Let s E [0, n]. The q-weight of s is 

ml-1 

wq(s) = c si 

i=o 

where 
ml-1 

C  Sid 

i=o 

is the q-ary expansion of s. Let v E [l, m’(q - 1) [ and 
p = m’(q - 1) - z/. 

The GRM code of length qm’ over k and of order v is the 
extended cyclic code in A with defining set 

TV = {s E [O,nlIwq(s) < II}. 

Note that binary GRM codes are usually called RM codes. 
More generally, a  GRM code defined on a prime field of order 
p is called a &ary RM code. 

The extended BCH code of length qm’ 
designed distance d is the extended cyclic 
defining set 

u  (3, qs, . ..) qm’-1s) 
SE[O,d-11 

over k and of 
code in A with 

where d is the smallest element of its cyclotomic coset (of 
q  modulo n) and the multiplication is calculated modulo n. 
When m’ = 1, the definitions of GRM and BCH codes are 
equivalent, defining the extended Reed-Solomon (RS) codes 
of length q over k. 

B. Permutation Groups 

Let us denote by 8k the lath power of the Frobenius mapping 
on G-i.e., the map g ++ gPb. Recall that codes have symbols 
from k, a  finite field of order q = pr, r dividing m. Therefore, 
they are invariant under BY. From now on the field G of 
order qm’ will be always identified with the field IFpm, where 
m  = rm’. Let K be the subfield of G of order pe. In this 
subsection, we give the definitions of the permutation groups 
which will appear in the paper. We  also recall and explain 
general results mainly due to Kasami et al. and Delsarte. At 
the end we present the recent results of Berger [7],. [8]. 

1) Dejinitions: We  denote by Sym (p”) the symmetric 
group acting on G; it is the set of permutations of the field G. 
Let c E Sym (p”). Then 0 acts as follows on the elements 
of A 

a : c x,xg - c xgX”W  (4) 
gEG gEG 

Whenever a(O) = 0, the permutation acts on G* and then on 
codewords of M. 

0 : c x,(g) - c xg(d7)). (5) 
gEG* gEG* 

Definition 4: Let C be a code of M  and let e  its extension 
in A. A permutation of C is an element of Sym (p”) which 
leave 0 invariant and sends C into itself. A permutation of e  
is an element of Sym (p”) which send e into itself. 

The permutations group of a  given code is the set of 
its permutations. For binary codes this group equals the 
automorphism group of the code (see the classical definition 
in [28, p. 2381). 

We  denote by Per (Cl (resp., by Per(@) the permutation 
group of C (resp., of C). 

Remark I: Clearly the permutacon group of C is the sub- 
group of the permutation group of C which leaves zero invari- 
ant. Indeed, the coefficient ~0 is the parity-check symbol 

x0 +  c xg =  0. 

gEG* 

Any permutation of G* leaves the position “0” invariant. 
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It is well known that each element g of Sym (p”) admits a 
unique polynomial representation; that is, 

fdx) = c 4)(1- (X - Y)pm-l); fdx) E G[Xl 
gEG 

(6) 

which is computed modulo Xrm - X (see [25, ch. 71). We  
say that fg is the associated polynomial of a; fg is an 
invertible element of G[X]/(Xrm - X), considered as a ring 
for composition of polynomials. From Hermite’s criterion, we 
know that, for any s E [l,pm - 21, the reduction of (f,,(X))” 
modulo XPm - X has degree less than or equal to pm - 2 
[25, Theorem 7.41. That means 

(fg(X))’ modXPm - X = (fV(X))’ modXPm-l - 1. 

Then we have a general theorem a proof of which can be 
found in [6]. 

Theorem I: Let C be a cyclic code with defining set T. 
Let o  E Sym (p”) such that a(0) = 0 and let fU(X) be its 
associated polynomial. 

Then c E Per (C) if and only if for all s in T  the polynomial 
fc(X)’ has all its exponents in T-where fc(X)” is computed 
modulo Xprnel - 1. 

This theorem is a special case of [26, Theorem 3.1.31 which 
applies to any cyclic code, primitive or not. It provides a 
general method for the study of permutation groups of cyclic 
codes. However it is difficult to apply this method except for 
very special codes [6], [26], [27]. We  wish to show that by 
the following example, continued in Example 3. 

Example I: Let C be the BCH code of length 26 on 
IFs, with designed distance d = 4. Its defining set is T  = 
{1,3,9,2,6,18}. L  t e  0 E Per (C) and s E T. According to 
Theorem 1, getting s = 1, we obtain 

fo(X) = alX + azX2 + a3X3 + a6X6 + agXg + algX18. 

If we get s = 2, we obtain for fc(X)2 the polynomial 

- agaisX+a~X2-ala2X3+(a~ - aias)X4-a2asX5 
f a~X6-ala6X7-a2agX8-a3a6Xg$(a~~-alag)X10 
- a2agX11+(a~-a3ag)X12-a6agX15fa~X18 
- araisX1g-a2a1sX20-asarsX21-a~aisX24. 

In this polynomial the coefficients of Xi, i $  T, must be zero. 
We  then have to solve a system of equations and we can do 
that in reality because there are few variables. We  can prove 
that Per(C) is IL (1, 33), but it is clear to us that our method 
has no application in general use. 

De$nition 5: We  denote by K the subfield of G of order 
pe. Then G can be considered as a vector-space of dimension 
m, over K (where m,e = m). For any K we can’define the 
following subgroups of Sym(p”): 

i) The linear group of G on K: 

W&-l 

GL(m,,p”) = {Qg(X) = c f;Xp’“}. 

i=o 

ii) The affine group AGL (m,, p”) is 

me-1 

{d.f~(x) = c fiXpe” + b, b  E G}. 
i=o 

iii) The semi-linear group IL (m,, p”) is 

In I fc7 = (fd”” > 0’ E GL(m,,p”), 0  L j < e} 

iv) The semi-affine group AIL (m,, p”) is 

{g I fc7 = (fdP > 0’ E AGL(m,,p”), 0  I j < e}. 

Note that IL (me,pe) (resp., AI’L (m,, p”)) is the group 
generated by GL (m,, p”) (resp., by AGL (m,,pe)) and by 
the Frobenius mapping 01. 

Remark 2: Let K and K’ be two subfields of G, respec- 
tively, of order pe and pet. Assume that K’ is a subfield of 
K-i.e., e  = te’. Then we have obviously 

and 
GL (me, $1 c GL (met, p”‘) 

rL (me,pe) c rL (me&p”‘) (7) 

where m  = m,e = m&e’. This result holds for the affine 
groups as well. 

Now we are able to define cyclic codes, extended cyclic 
codes, and affine-invariant codes by means of a  property of 
their automorphism group: 

Dejinition 6: A code C of length pm - 1 over IF,, where 
q divides pm is cyclic if and only if its permutation group 
contains 

GL(l,p”) = {~jf~(X) = ax, a  E G*}. 

Let C be the extension of C. Then C is an extended cyclic 
code if and only if its permutation group contains CL (1, p”). 
It is an affine-invariant code if and only if its permutation 
group contains 

AGL(l,p”) = {a 1 f,,(X) = aX + b, a  E G*, b E G}. 

In this paper, we study the permutation groups of primitive 
cyclic codes whose extension is affine-invariant. We  will see 
in Section II-B3 that for these codes to determine Per (C) 
is equivalent to determining Per (C). Among these codes the 
most famous are GRM codes and BCH codes. We  proved in 
[5] that the permutation group of a  q-ary RM code of length 
4 VZ’ is AGL (m’, q). We will treat later the p-ary BCH codes. 

2) Codes Invariant under the GL and AGL Groups: Let C 
be a cyclic code in M  such that its extended code is affine- 
invariant. In accordance with the operations in the algebra A 
and with Definition 6, the code C is an ideal of A. These 
special ideals were mainly studied by Chat-pin [l l]-[13], 
[15] (see also [2] and [lo]). Affine-invariant codes were 
characterized by Kasami et al. in [22]. The authors showed 
that an extended cyclic code is affine-invariant if and only if 
its defining set satisfies certain combinatorial property. This 
property was explained by Charpin in terms of a  partial order 
[14]. We  recall briefly her presentation. 
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Definition 7: Let 5’ = [0, pm - l]. The p-ary expansion of 
s E S is 

77-l 

c SiPi, s; E  [O,p - 11. 

i=o 

We denote by 4 the partial order relation 
follows: 

on S defined as 

Y’s, t E S : s 4 t W  s; 5 ti, i E [0, m  - 11. 

Then we can define the poset (S, 4). 
When s + t, s is said to be a descendant of t and t to be 

an ascendant of s. We  can define a maximal (resp., minimal) 
element of a  subset of S, with respect to -x. Two elements, s 
and t, are not related when s # t and t #  s. An antichain of 
(S, 3) is a  set of nonrelated elements of S. 

Let us define the map 

A : I c S H A(1) = u{s E S, s + t} = u A({t}). 
tEI tEI 

(8) 
In the following, A(,{t}) will be simply denoted by A(t). 

Theorem 2: Let C be an extended cyclic code, with defin- 
ing set T. Then, (? is affine-invariant if and only if A(T) = T. 

Let T  c S. The border of T  is the antichain F  of (S, 4) 
consisting of the minimal elements of the set S \ T. That is 
equivalent to 

F  = {s E S \ T  1 A(s) \ {s} c T}. (9) 

Let e  be an extended cyclic code with defining set T. For 
simplification, we will often say the border of the code C? 
instead of the border of T. Many extended cyclic codes have 
the same border. However, one and only one affine-invariant 
code corresponds to a given antichain. We  give a sketch of 
the proofs of the following theorem and proposition in order 
to clarify the use of antichains later. 

Theorem 3: There is a one-to-one correspondance between 
antichains of (S, 4) and affine-invariant codes of length pm. 
Each antichain is the border of one and only one affine- 
invariant code. 

Proof Let F  be an antichain of (S, 4) and define the 
following subset of S: 

T  = S \ u  {s E S(f 4  s}. 
fEF 

Then the extended cyclic code with defining set T  is the only 
affine-invariant code whose border is F. q  

Proposition I: Let e  be an affine-invariant code with defin- 
ing set T  and border F. Then we have the following properties: 

i) Let M  be the set of maximal elements of T  (with respect 
to <>. Then the set n  - AJ, n = pm - 1, is the border 
of the dual of e. 

ii) The BCH bound of e  is the smallest element of F. 
In the following we will say that M  is the maximal set of c. 

Proof The defining set of the dual of (? is the set of the 
elements n-s, where s is not in T; i) is immediately deduced. 

The BCH bound of (? is the cardinality of the largest interval 
contained in T. Let S be the smallest element of F. By 
definition the interval [0, S[ is contained in T. Suppose now 
that there is an interval [s, t] in T  containing more than S 
elements; clearly S < s. Considering the p-ary expansions of 
S and s, we cannot have S 4 s. So there is a j > 0 such that 

sj < Sj and S; 2 si for i > j. 

Set 

s’ = 2 &pi + 2 sipi. 
i=o i=j+1 

By construction, s’ is an ascendant of S. Moreover, s’ is in 
[s, t], because 

which is less than or equal to S. Since S @  T and A(T) = T  we 
cannot have S 4 u for u  in T; so we have here a contradiction, 
completing the proof of ii). 0  

We  have seen that a code (? is affine-invariant if and only if 
its permutation group contains AGL (1, p”). The following 
theorem, due to Delsarte, gives a necessary and sufficient 
condition for extended cyclic codes to be invariant under 
the group AGL (m/e, p”). Since AGL (1, p”) is contained in 
AGL (m/e,pe), for all e  dividing m, this result is, in fact, 
a  generalization of the result of Kasami et al., as we remark 
later. We  begin by noticing a link between the permutation 
group and the alphabet field, which clarifies the hypothesis of 
the next theorem. 

Lemma I: Let c be an extended q-ary cyclic code with 
defining set T, where q = pT. Assume that z is invariant 
under AGL (m/e, p”), e  dividing m. Then T  divides e. 

Prooj! The Frobenius map ee is contained in AGL 
(m/e,pe). In other words, the code c^ is invariant under 
the permutation 

c x,xg - c xgxgpe 
gEG gEG 

(see Definition 5). So we have, for any x in e and for any s 
in T, $sp, (x) = 0. Then T  is invariant under multiplication 
by pe modulo n. Since e is a q-ary cyclic code, q divides pe, 
completing the proof. 0  

The following theorem is due to Delsarte [17, Theorems 5 
and 61. We  give it with our notation and in terms of partial 
order. For any divisor e of m  we obtain a poset (S, <,), which 
becomes the poset (S, -x) when e = m. 

Theorem 4: Let e  be an extended q-ary cyclic code in A, 
which is affine-invariant. Let e  be a divisor of m  such that q  
divides pe. Then Per (e) contains AGL (m/e, p”) if and only 
if the defining set T  of (? satisfies (De). 

(De) : s E T  and t +& s ==+ t E T  
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where <e is the partial order 

wp (p’“t) < wpe (p’s), k E [0, e  - 11 (10) 

-the multiplication in S is calculated modulo n. 
Remark 3: For e = m, we have wr- (s) = s, for any s in 

S. Then the condition (10) becomes: p”t 5 pks, for all Ic in 
[0, m  - 11. Obviously, it is equivalent to t --: s. We  then obtain 
the condition of Kasami et al. for extended cyclic codes to be 
invariant under AGL (1, p”) (see Theorem 2). 

Remark 4 [17]: A corollary of Theorem 4 is the charac- 
terization the codes of A invariant under AGL (m, p). In this 
case, T  is invariant under multiplication by p and the condition 
(10) becomes: wp (t) 5  wr (s). Thus there is an element 
P of [Lm(p - 111 such that the defining set T  is the set 
{s ]wp (s) < p}, which is the defining set of the p-ary RM 
code of order m(p - 1) - p. Then a nontrivial extended cyclic 
code of A which is invariant under AGL (m, p) is a  p-ary RA4 
code. 

Example 2: Notation is that of Theorem 4. It is not dif- 
ficult to construct an extended cyclic code invariant under 
AGL (m/e,p”). The most evident construction is the follow- 
ing: 

l Choose X E [l,m(p” - 1)/e]. 
l Consider the code whose defining set is 

T  = {s ) sup {w,~(~“s) 1 k E [0, e  - l]} 5  X}. 

Obviously, T  satisfies (De). Note that such a defining set 
is invariant under the multiplication by p modulo pm - 1 (see 
Proposition 3). It defines a p-ary code. 

3) Recent Results of Berger: Recall that the alternating 
group, denoted by Alt (p”), is the subgroup of Sym (p”), 
composed of even permutations. By definition, a  permutation 
group &Y of an affine-invariant code is a subgroup of the full 
symmetric group Sym (p”) which contains the affine group 
AGL (1, p”). These groups were recently classified by Berger 
[7], [S]. Using his results we can be more precise about the 
form of these groups, as we show with the following theorem. 

Theorem 5: Let g  be a permutation group of G. Suppose 
that m  > 2. If G contains the affine group AGL (1, p”) as a 
subgroup, then one of the following assertions holds. 

i) G = Sym (pm). 
ii) p  = 2 and S = Alt(2”). 
iii) There exists a divisor e of m  such that 

AGL (m/e, p”) C 4 s AFL (m/e, p”). 

Proof This theorem is the direct consequence of two 
results. The first one is due to Berger. He proved in [7] that, 
with the hypothesis of the theorem, either 6 is a subgroup of 
AGL (m,p), or there are two possibilities: 

l if p  is odd then 4 = Sym (p”); 
l if p  = 2 then either 6 = Sym (2”) or 6 = Alt (2”). 
Suppose that 4  is a subgroup of AGL (m, p), and let 60 be 

the stabilizer of 0  in 4. Then GO is a subgroup of the linear 
group GL (m, p) and contains the Singer cycle GL (1, p”) 
(i.e., a  cycle of length pm - 1). But Kantor proved in [21] the 
following result: if 40 is a subgroup of GL (m,p) containing 

a Singer cycle, then there exists a divisor e of m  such that 
GL (m/e,pe) is a normal subgroup of 40. 

We  remark that the normalizer of the linear group 
GL (m/e,p”) in Sym (p”) is the semi-linear group I’L 
(m/ejp”), i.e., FL (m/e;pe) is the maximal subgroup of 
Sym (p”) containing GL (m/e,p”) as a normal subgroup. 
This implies 

GL (m/e,rf) C GO C rL (m/e,$) 

and completes the proof. 0  
It is clear that Theorem 5 involves strong results on the 

permutation group of affine-invariant codes. We  have mainly 
the following corollary: 

Corolhry I: Let C be a nontrivial primitive cyclic code 
such that its extended code (? is affine-invariant. Then there 
exists a divisor e of m  such that 

i> GL (m/e,p”> C Per(G) C rL (m/e,pe) 
ii) AGL(m/e,p”) G Per(C) C Al?L(m/e,p”). 

Proof From RemTk 1, the permutation group Per (C) 
is the subgroup of Per (C) which leaves 0 invariant. Then ii) 
implies i). 

In [23, sec. 41, Knapp and Schmidt proved that the only 
codes whose permutation group contains the altematicg group 
are the repetition codes and their duals. So if Per(C) is the 
symmetric group or the alternating group then (? is trivial. 0  

Suppose that e is affine-invariant and let e  be the di- 
visor of m  defined by the theorem above. The quotient 
of AI’L (m/e,pe) by AGL (m/e,pe) is isomorphic to the 
automorphism group of the field of order pe; that is, a  
cyclic group of order e generated-by the Frobenius mapping. 
Therefore, the quotient of Per(C) by AGL (m/e,pe) is a 
subgroup of this gro,up; note that this quotient is clearly 
isomorphic to the quotient of Per (C) by GL (m/e, p”). For the 
determination of this subgroup, it is sufficient to find the least 
integer e such that Be leaves e invariant. This integer ! must 
be a divisor of e. So we have proved that Per(e) (and then 
Per (C)) is characterized as soon as e and ! are determined. 
Note that when the alphabet field is IF,, then e = 1 and we 
only need to determine e. This can be summarized as follows: 

Corollary 2: Let 2  be a nontrivial affine-invariant code of 
A and let e  be the divisor of m  such that 

AGL (m/e,pe) C Per (@ C AFL (m/e,pe). 

Let 1  be the least divisor of m  such that the defining set of 
c is invariant under multiplication by pe modulo n. The per- 
mutation group Per(e) is then generated by AGL (m/e, p”) 
and by Be. 

Example 3: Following Example 1, we consider again the 
BCH code of length 33 - 1  and designed distance 4 over IFa. 
This code is denoted by C; let T  be its defining set. We  want 
to determine Per (C). In accordance with the corollary above 
it is sufficient to know the value of e  and e. 

As C is a ternary code, e = 1. Moreover, m  is here a 
prime, implying e E { 1,3}. If e  = 1 then c is a ternary RM 
code. We  know it is not true because, for instance, 4 6 T  and 
2 E T  have both the same 3-wzight. So e = 3, proving that 
Per(C) = FL (1,27) and Per(C) = AFL (1,27). 
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At the end of this section, we have formally characterized 
the permutation group of any affine-invariant code. In the next 
section we want to develop some tools which allow us to 
determine effectively the group for a given code or for some 
infinite classes of codes. It is important to notice that the 
group of the cyclic code and the group of its extension are 
immediately deduced one from the other. According to the 
context we will determine one or the other group. 

III. PERMUTATION GROUPS OF AFFINE-INVARIANT CODES 

Notation is that of Section II. A cyclic code is a code in 
M  and its extension a code in A. The parameters will be 
specified only when it needs to be done. For a large number 
of affine-invariant p-ary codes (and, for some q-ary codes), 
the permutation group is completely determined by applying 
Theorem 5 and its corollaries; it is actually either the smallest 
group AGL (1, p”), which is AIL (1, p”) for the p-at-y codes, 
or the largest group AGL (m,p) (see Definition 6). This result 
is explained in the following theorem. 

Theorem 6: Recall that q  = pr, r dividing m, and n =, 
Pm - 1. Let C be a q-ary cyclic code, whose exte_nsion C 
is an affine-invariant code. Assuming that C (resp., C) is not 
trivial, we have: 

0 

ii) 

If T  = 1 and m  is a pcme, m  > 1, then either (? is a 
p-ary RM code or Per (C) is AI’L (1, p_“) (resp., Per (C) 
is l?L (1, p”)). In the first case, Per(C) is AGL (m, p) 
(resp., Per(C) is GL (m,p)). 
Suppose that q  = pm, m  2 1. Then Per(e) is 
AGL (1, p”) (resp., Per (C) is GL (1, p”)), which is the 
permutation group of the extended Reed-Solomon code. 

Proof Notation is that of Corollary 1. In both cases, the 
value of e  is obviously deduced from the hypothesis. As e is 
affine-invariant, its permutation group contains AGL (1, p”). 
Note that AFL (m/e, p”) equals AGL (m/e, p”) when e = 1. 

i) Since m  is a prime, a divisor e of m  is either 1 or m. 
When e = 1, the group of e  is AGL (m, p); the only p- 
ary codes which have this group as a permutation group 
are the nontrivial p-ary RM codes (cf. Remark 4). If 
e  = m  then the group of e  is exactly AI’L (1, p”), 
because E is a p-ary code. 

ii) Since c is a pm-ary code, it cannot be a pe-ary code, 
1 < m. So m  divides e. That means e = m  and 
Per (8) = AGL (1, p”). Then any such code has the 
same group as the extended RS code [ 191. 0 

We  deduce immediately the automorphism group of a  large 
class of binary affine-invariant codes. 

Corollary 3: Let m  be a prime. Let c be a binary affine- 
invariant code of length 2”. Suppose that e  is neither trivial 
nor an RM code. Then the automorphism group of e  (resp., 
of C) is AFL (1,2-) (resp., rL (La”)). 

Remark 5: Part i) of Theorem 6 can be generalized as 
follows: if m  = rm’, where m ’ is aprime, and if (? is a pr-ary 
code then the permutation group of C is either AGL (m’, p’) or 
the group generated by AGL (1, pm) and 19~. Indeed, suppose 
that e  is invariant under AGL (m/e,p”). One must have 
T  1 e I m. As m’ is a prime, e is either T  or m. However, this 

more general result does not give precisely the permutation 
group. We  need to vzrify whether e can be r or not. 

Example 4 : Let C be the code of length 26 over IF26 with 
defining set T  = (0, 1,4,5}. Clearly, C is a 26-ary affine- 
invariant code. From Theorem 6, Per (z) is AGL (1, 26). 
Difficulties appear for codes invariant under 0~~ or 03. For 
instance, we now let T  = (0, 1,8,9}. So C is affine- 
invariant and it is a  23-ary code-i.e., T  is invariant under the 
multiplication by 8 or (? is invariant under 6’3. The permutation 
group of e  could contain AGL (2, 23). But we have 

~~(2) = 2, ~~(4) = 4, ~~(8) = 1 
and ws(2”9) = 2k+1, 0 5 Ic 2 2 

proving that 2  <<s 9 with 9 E T  and 2 $ T. Hence T  does 
not satisfy the condition (03) (see Theorem 4). So the group 
Per (e) is generated by AGL (1, 26) and 0s. 

From now on we will restrict our study to the codes which 
are not covered by the theorem above. There are a variety of 
situations, depending of the number of divisors of m  and of the 
alphabet field. Considering together Theorem 4 and Corollary 
2, it appears that the condition of Delsarte could be the best 
way for the compution of the groups. So we begin by an 
extensive study of this condition. 

A. An Extensive Study of Delsarte’s Condition 

Let C be a cyclic code and 2 the extended code. Recall 
that code symbols are from the field of order q, q  = pr. 
However, such a code can be a pe-ary code, with ! < r. In 
other words, e  can be invariant under Be, e < r. We  generally 
suppose that e  is affine-invariant and we want to characterize 
its permutation group. As we claimed in Section II, Per(C) is 
obviously deduced from Per (2). So we want to determine e 
and a divisor e of m  such that e  satisfies ii) of Corollary 1. 
Note that we have implicitly: !lr]m and elelrn. 

In Section II-B2, we defined the border of any affine- 
invariant code G. It is an antichain of the poset (S, +). We  
will represent C by its border and deduce a simplification 
of the condition of Delsarte-i.e., a  corollary of Theorem 4. 
Moreover, the parameter e is a parameter of the border of e, 
as we prove now. 

Proposition 2: Let E be an affine-invariant code, with 
border F. Then (? is invariant under 0, if and only if 
p”F = F. Therefore, i? is a peat-y code if and only if e  
is the smallest integer such that peF = F. 

Proof: Let T  be the defining set of e  and set T’ = S\T. 
Recall that F  is the set of minimal elements of T’, with respect 
to <. Let u  E [l, m  - I]; by definition, s 4 t if and only 
if pus + put. We  want to prove that T  is invariant under 
multiplication by p” if and only if F  is. 

Suppose that T  is invariant under multiplication by p”, then 
T’ satisfies this property too. Hence for any minimal element 
s of T’, pus is also a minimal element of T’. That means that 
F  is a union of cyclotomic cosets of p”. 

Conversely, assume that F  is such a union. Then the set of 
ascendants of pus, s E F, is the set of elements put where t 
is an ascendant of s. So T’ is a union of cyclotomic cosets of 
p”, proving that T  is such a union. 0 
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Corollary 4: Let t? be an affine-invariant code, with defin- 
ing set T  and border F. Let A/f be the set of maximal elements 
of T, with respect to +-i.e., the maximal set of T.Then 2 is 
invariant under AGL (m/e, p”) if and only if it satisfies (Fe). 

(Fe) : for all f E F  there is no s in &I such that f <<e S 

where the relation +& is the partial order defined by (10) in 
Theorem 4. 

Proof We  must prove that the condition (F,) is equiv- 
alent to the condition (De) of Theorem 4. Note that M  is a 
subset of T. 

Assume that e satisfies (De). Let f E F  and suppose that 
there exists S E M  such that f <<e S. From (De), that means 
f E T, a contradiction. 

Conversely, assume that 2 satisfies (F,). Let s E T  and let 
t such that t <e s. In order to prove that (De) is satisfied, 
we must prove that t E T. Suppose that t #  T. By definition 
of the border, there is f in F  such that f -X t. Clearly, f 4  t 
implies wpe (p”f) I wpe(pkt), for any Ic. So f Ke t. On the 
other hand, there exists s E M  such that s < S, which yields 
s +& S. Finally, we have 

which contradicts (F,). Therefore, t E T. 0  
Remark 6: The condition (F,) is of most interest for the 

computation of the group of a  given code. Indeed, it needs 
less operations than the condition (De), especially when the 
code satisfies (De). When the code does not satisfy (De), 
the negative answer is quickly obtained (as our tests proved). 
The border and the maximal set are first computed and they 
are used for testing any divisor e of m. Moreover, in some 
situations, it is possible to prove a general result by means of 
Corollary 4, as the following examples show. 

The use of Corollary 4 necessitates handling p”-weights in 
diverse situations. The following property, given by Delsarte 
in [17], yields many simplifications. 

Proposition 3: Let ‘u = pe, e dividing m. For X E [0, ‘u - l] 
and i E [0, e  - 11, let us define 

LAP”1 = {F: fnodulo ‘u  - 1, 
> 

ifX<w-1 
ifX=v-1. 

If 

m/e-l 
c Sjd 
j=o 

is the vary expansion of s, we have 

W&/e-l 

w,(p%) = c [sjpq. 
j=o 

Note that w,(vs) = w,(s), so that 

{wv(pis)li E [0, e  - 11) = {wv(pi(ps))li E [O, e - I]}. 

Example 5 : Let C be the binary BCH code of length 63 
and designed distance 7. Denote by T  the defining set of the 
extended code e. We  have 

T  = (0) u cl (1) u  cl (3) u  cl (5) 

where cl (i) is the cyclotomic coset of 2  modulo 63 containing 
i. As T  does not contain cl (9), e  is not an RM code. So 
its permutation group is strictly contained in AGL (6,2). The 
border of e  is 

F  = cl (7) u  cl (9) u  cl (21). 

The maximal set of T  is the union of cl (3) and cl (5). It is 
easy to prove that T  satisfies (Fs). Indeed, for s = 3 or 5 

{w23(2"s)1k E [0,2]} = {3,5,6} 

while w23(7) = 7, ~~3(2~.9) = 8, and ~~~(21) = 7. So it 
is impossible to have f 53 S, for some f E F. Hence, the 
automorphism group of C is Al?L (2, 23); the automorphism 
group of C is r,c (2, 23). 

Example 6 : In this example, m  is even and m  2 6. We  
denote by C, the binary BCH code of length 2” - 1  and 
designed distance d = zrnp2 - 1. Let T, be the defining set 
of the extended code C,. Set 

(m--2)/2 
x = c 22i. 

i=o 
By definition, the border of T, contains cl (d); moreover, it is 
easy to check that it contains cl (X). The maximal set of T, is 

m-3 

n/l, = u cl(d- ai) 
i=o 

By using (Fz), we want to determine 
invariant under AIL (m/2, 22). Denote 
{w4(s),w4(2s)}. We  have 

if such a code is 
by W(s) the set 

W(d) = { 3(mL2)} W(X) = {m/a,m} 

and for any s E cl(d - a”), i E [O,m - 31 

W (s) = 2 { 
3(m - 4) m  - 4) 

+1,3( 2 +2} 

Note that W(s) = IV(2s) ( see Proposition 3). Suppose that 
T, satisfies (F2). Then it is impossible to have X <<a s, for 
some s E Mm. Since m/2 5 3( m  - 4)/2 + 1, for all m  > 5, 
that yields 3(m - 4)/2 + 2 < m  (i.e., m  < 8). Therefore, c, 
is not invariant under Al?L (m/2, a2), for any m  > 8. 

Consider now the code Ce: d = 15, X = 21, W(d) = {6}, 
W(X) = {3,6}, and, for any s E n/r,, W(s) = {4,5}. The 
border of T6 is the union of cl (15), cl (21), and cl (27)) where 
W(27) = (6). It is easy to see that any element f of the 
border satisfies : sup W(f) > 6. On the other hand, any 
element s of Mg satisfies: sup W(s) 5 5. Hence Te satisfies 
(Fz), proving that e6 is invariant under AFL (3, 22). As ee 
is not an RM code, the automorphism group of Ed is exactly 
ArL (3,2”). Indeed, Aut (EC) is smaller than AGL (6,2) and 
then cannot contain AFL (2,2”). The automorphism group of 
c6 is rL(3,z2). 
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Example 7: In this example, codes are self-dual, affine- 
invariant, and of length 64 over IF4. Note that self-duality is 
here defined by using the standard inner product: 

< x, Y >= c XgYg. 
gEG 

The border is denoted by F  and the maximal set by &l. We  
denote by c (s) the cyclotomic coset of 4  modulo 63 containing 
s. Set u(s) = (w4(s),w4(2s)); note that U(S) = u(t) for 
any t E c (s). There are at most nine nonequivalent self-dual 
a&e-invariant codes of length 64 over GF (4). This result was 
obtained by determining any antichain, which can be a border 
of such a code [ 161. Among the nine codes there is a GRM 
code, whose permutation group is known to be AGL (3, 22). 
All codes are 2’-ary codes, implying that the only divisors 
of 6  we must take in account are 2 and 6. So there are two 
possibilities: either the permutation group is those of the GRM 
code or it is generated by AGL (1, 26) and 02, the 2th power of 
the Frobenius mapping. We  claim that there is only one code, 
difSerent from the GRM code, which has the same permutation 
group as the GRM code, Moreover, we strongly conjecture that 
this cope is not equivalent to the GRM code. 

The nine borders are given in [16]; they contain few 
elements and these elements appear in several borders. So it 
is easy to write the binary expansion of all elements of the 
nine borders. Since codes are self-dual, the maximal set is 
obviously deduced from the border. That is, M  is the coset 
of 63 - f, f E F. For instance, there is the border c (lo), 
providing M  = c (53). The binary expansions we need are 

10 = (010100) and 53 = (101011). 

We  then compute ~(10) = (4,2) and ~(53) = (5,7), proving 
10 <<2 53. Hence, from Corollary 4, the code whose border is 
c (10) cannot be invariant under AGL (3, 22). We  obtain this 
result for six other codes. Only the GRM code and the code 
with border 

F  = c (11) U c (14) U c (21) u c  (26) 

remain. We  write below the U(S) appearing in F  and in M. 

F  : ~(11) = (5,4) ~(14) = (5,4) 
~(21) = (3,6) ~(26) = (5,4) 

M : ~(52) = (4,5) u(49) = (4,5) 
~(42) = (6,3) ~(37) = (4,5). 

We  can check immediately that for all f E F  there is no 
s E M  such that f <<2 s. From Corollary 4, this code is 
invariant under AGL (3, 22). 

Another extension of the result of Delsarte is the construc- 
tion of codes invariant under AGL (m/r,pr), for a  given 
r dividing m. We  have given in Example 2 an obvious 
construction of such p-ary codes (see also Section III-C2). 
In fact, there is a more general way which is immediate when 
the relation of Delsarte is viewed as a partial order. 

Proposition 4: Assume that m  has a nontrivial divisor r 
and consider the poset (S, <,). Let M(r) be an antichain of 
this poset and set 

T  = u {s E Sjs <<r t}. 
CM(T) 

Then qT = T, q = p’,, and the extended cyclic code on IF, 
whose defining set is T  is invariant under AGL (m/r, q). 

Proof As W ,(S) = We, s Kr t implies qs +& t, 
proving qT = T. Moreover, T  satisfies (DT) by definition; so 
its permutation group contains AGL (m/r, 4). 0  

Example 8: Consider codes of length 22k over ffa. The 
notation c (s) and U(S) is that of Example 7. We  get 

T  = {s E SJs +z2 lo}. 

Since ~(10) = (4,2), the value of U(S), s E T, can only 
be one of the following: (O,O), (1,2), (2, l), (4,2). We  have 
u(5) = (2,4), proving that 5  @  T  (while 10 E T). Hence the 
code e with defining set T  is a 22-ary code. This property im- 
plies that its permutation group cannot contain AGL (m/e, ae) 
for e  odd. From the proposition above, 2 is invariant under 
AGL (k, 22) and this group contains AGL (m/e, ae) for any 
e even. We  can conclude that the permutation group of e  is 
exactly AGL (Ic, 22). Note that e  is not a  22-ary RM code. 
Indeed, wh(10) = 4 and wq(5) = 2, with 10 E T  and 5 6 T. 

B. An Equivalent Condition 

In this section, we propose a new condition for a  code of 
M, whose extended code is affine-invariant, to be invariant 
under GL (m/e, p”). It is a  necessary and sufficient condition 
and then it is equivalent to that of Delsarte. However, our 
proof does not use Theorem 4. Theorem 7 can be viewed as a 
corollary of Theorem 5. As it will be shown through examples, 
this condition is a very efficient tool for the determination 
of the permutation group. For instance, it will allow us to 
determine the group of the p-ary BCH codes (in Section IV). 

Let e  be a divisor of m  and let u  be a permutation which is 
in AGL (m/e, p”) and not in AI’L (m/e, pe), for any e strictly 
greater than e and e ) e  ] m. Denote by B the permutation 
group generated by the affine group AGL (1, p”) and by 0. 
In accordance with Theorem 5, 6 is exactly AGL (m/e,pe). 
From now on 0 will be the permutation ap with associated 
polynomial 

fp(X)=X-pXQ!?EG* 

(for simplification we denote it fp instead of fc,). Note that 
fp cannot be in AFL (m/J, pe), for any e strictly greater than 
e (see Definition 5). 

Lemma 2: Denote by N(/3) the norm of ,0 over IF,. . The 
polynomial fp(X) is a permutation polynomial if and only if 
N(P) # 1. 

Proof: Let u  = pe, m, = m/e, and 
77%,-l 

Q = (P" - l)/(pe - 1) = (P - I)/(v - I) = C  pei. 

i=o 

By definition, the norm of p is ,8& [25, p. 571. Since fp is 
a linearized polynomial, it is a  permutation polynomial if and 
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only if its kernel is (0). That is equivalent to saying that there 
is no g, different from zero, such that pg”-l = 1. 

Recall that a: denotes a primitive root of G. It is clear that 
the oj(+l), j E [l, Q], are the roots of the equation XQ - 1. 
Moreover, the inverse of c~j(~-l) is o’(v-1), k = Q - j. So 
,@ equals 1 if and only if the inverse of ,0 is gV-‘, for some 
g, providing ,f3gwP1 = 1. 0  

Throughout the section, the notation is as we defined above: 
e, w7 Q, P, .fp 

Proofi The code C is a code of M  (Definition l), and 
then 4 divides p” (see Lemma 1). In order to prove the theorem 
we will simply apply Theorem 1 to the permutation polynomial 
fp. As we said at the beginning of this section, the code e 
is invariant under AGL (m/e, p”) if and only if it is invariant 
under the permutation ap, for some p whose norm is 1; in other 
words, if and only if for all s in T, the polynomial (fp(X))‘, 
evaluated modulo X” - 1, has all its exponents in T. 

Suppose first that (11) is satisfied. By writing (fo (X))“, for 
any s in T, Lemma 3: Let ?? be an affine-invariant code with defining 

set T. For any s E T  and for any j E T, there exists at least 
one X, 0 < X < w - 1, such that j + XQ is not a descendant (X - pXw)’ = c (I) (-l)j/?jXs-j+vj (mod X” - 1) 
of s, with respect to 4 (j + XQ is calculated modulo pm - 1). j<s lJ/ 

Proof: Recall that n  = pm - 1. We  get s and j in T. 
= s+j(w-1) (mod n) 

We want to study the set 

W) = {j + XQ modn]O<X<v-1). 

Suppose that j = j’ + cQ, with j’ < Q. Obviously, T(j) = 
T(f). So without loss of generality, we can choose j < Q. 
W ith this hypothesis, the elements j + XQ are less than n. As 
the multiplication is calculated modulo n, to choose j < Q 
makes easier the manipulation of elements j + XQ. From now 
on, in this proof, tl, denotes the lath symbol of the p-ary 
expansion of any t in [0, n]. 

we check immediately that fp is associated with a permutation 
of C. Recall that the binomial coefficient of s and j is not zero 
(modulo p) if and only if j 4  s. 

We  suppose now that e is invariant under AGL (m,, p”); 
i.e., fp is associated with a permutation of 6, for any ,0 whose 
norm is not 1. Let s E T  and j 4  s. We  want to prove that 
s + j(w - 1) is in T  and then we consider the exponents of 
(f~(x))~ above. Suppose there is a j’ such that 

m-1 
s + j’(~ - 1) c s + j(w - 1) modn. 

t= c tkp’“, tk E [o,P - 11. Obviously, that means j’ =; j modQ. Hence the coefficient 
k=O of X”+j(w-l), where the exponent is calculated modulo n, in 

We  will say that T(j) satisjes H(s) if and only if (fP(w)s is 
v-2 , \ 

j+XQ+s, foreveryX, O<X<w-1. (-l)j+iQpj+iQ. 

Suppose that T(j) satisfies H(s). Consider X = (p - 1  - 
jg)pe, for any L E [0, e  - 11. Since j + A& < n, we are sure If this coefficient is not 0  we are sure that s + j(w - 1) is in 

that (j+xQ)e = p- 1. As T(j) satisfies H(s), se = p- 1 and T, and that is independent of the choice of p. It is sufficient 

this equality holds for any e E [0, e  - 11. Now, by definition to exhibit at least one p such that Ap,j is not 0. Suppose that 

of 4, j + XQ + s implies wi(j + XQ) < vis, for any i and for every p, A,,j is 0. Consider the following polynomial: 

for any X. Note that IJXQ = XQ (mod pm - l), since for any 
X E [0, w - l] we have P(x) = uz; (j ;Q) (-l)iQxi' 

m,-1 
XQ = c Xvi. Clearly, Ap,j = (-/?)jP(pQ). But the set of the ,@ (the 

i=o norms of the element /?) consists of elements of the field IF:, 

Hence T(uij) satisfies N(wis), for any i. Using the method 
except 0 and 1. W ith our hypothesis, all these elements must 

above, we can prove that (wis)e = p - 1, for any e E 
be roots of P(X). Since the degree of P(X) is v - 2, we have 

[0, e  - l] and any i E [l,m, - I]. But (wis)e = Sk, with 
here all the roots of P(X). The polynomial 

v-2 
7G = (m, - i)e + e. Finally, we obtain that all coefficients of 
the p-ary expansion of s are equal to p - 1, proving that s = n. 

P’(X) = (xv--l - 1)/(X - 1) = Xx” 
i=o 

An affine-invariant code whose defining set contains n is the 
null-vector, a  contradiction completing the proof. 0  has the same roots and the same degree as P(X). Then P(X) 

Theorem 7: Let C be a nontrivial cyclic code whose ex- is equal to P’(X), up to a scalar multiple. In particular, all 

tended code e is affine-invariant. We  denote by T  the defining coefficients of P(X) are different from 0, implying 

set of C and by e a divisor of m. Then C (resp., @  is invariant j +iQ < s,i E [O,w - a]. 
under the action of GL (m/e, p”) (resp., AGL (m/e, pe)) if and 0 
only if the following condition is satisfied: 

This result contradicts Lemma 3, completing the proof. 
As a corollary of Theorem 7, we can give the form of the 

‘ds~T,j<s+s+j(p”-l)gT (11) BCH bound of any affine-invariant code whose permutation 
group contains AGL (m/e,pe). This result is very powerful, 

where s + j(p” - 1) is calculated modulo n (n = p” - 1). as we will show in Example 9 following the corollary. 
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Corollary 5: Let c be an affine-invariant code with defin- 
ing set T  and BCH bound S. Let e be a divisor of m  and 

6 = &pei: 6; E [O,pe - 11. 
i=o 

If e  is invariant under AGL(m/e,p”), then S;+r 4 S;, for 
any i. 

Proof Recall that the BCH bound of t? is the smallest 
element of its border (see Proposition 1). For any i let the 
p-ary expansion of & be 

e-1 

6i = c &jpj, &,j E  [0,&J - 11. 

j=o 

Note that &+I + S; means &+l,j 5  Si,j, for all j. Suppose 
that there is an i such that &+I fi S;. Then there is a j such 
that S;,j < li;+l,j. Set 

s = 6 + pei+j _  p”(i+l)+j, t = pei+j) 

and s’ = s + t(p” - 1). 

As s < S, s E T. Moreover, we have clearly t + s and 
s’ = S (so s’ @  T). Hence, T  cannot satisfy (11); e  cannot be 
invariant under AGL (m/e, p”). 0  

Example 9: Consider an affine-invariant code t? of length 
23” over IFd, with BCH bound S = 2937. The 2-ary expansion 
of S is 

(1001111011010.. .O). 

Suppose that e  is a 4-ary code. So e could be invariant under 
AGL (m/e,p”), for e  E {2,6, lo} because e must be an even 
divisor of m. W ith the notation of Corollary 5, it is clear that 
Si #  60, in all cases. Indeed, by identifying S; to its 2-ary 
expansion, we have: 

l For e = 2, Sa = 10 and Si = 01. 
l For e = 6, 80 = 100111 and 61 = 101101. 
l For e = 10, SO = 1001111011 and Sr = 010.. .O. 
So the automorphism group of e  is generated by 

AGL (1, 230) and Q4. 

C. Some Examples 

I) Codes with Defining Det {cl (1)) cl (1 + p’)}: As an 
example of application of Theorem 7, we will study the codes 
CA, of length pm - 1, whose defining set is 

Tx=cl(l)ucl(l+px) 

(cl(j) is the orbit of j under multiplication by p). Clearly, 
the extension of such a code is an affine-invariant code. Since 
T,,-x = TX, we assume X is in [l, m/2]. By definition, CA is a 
p-ary code. So the integer e of Corollary 2 is here equals to 1. 

Lemma 4: Let i and j be nonnegative integers such that 
0  5 i < j < m. Then 

pi + pj E TX x=+ {j - i = X or j - i = m  - X}. 

Proof Obviously, pi +pj is in TX if and only if pi +pj 
is in cZ(l + p’). In other words, pi + pj is in TA if and only 
if there is X’ in [0, m  - l] such that 

pi + pj = pX’ + pX+X’ (mod m). 

So either i = X’, providing j = X + i, or j = X’, providing 
i=X+j-m. 0 

Proposition 5: Assume X < m/2. The permutation group 
of CA is the semi-linear group I’L (1, p”), except for the 
following cases: 

1) p  = 2, m  even and X = m/2. The permutation group 
is IL (2, 2m/2). 

2) p  = 2, m  E 0 mod 3, and X = m/3. The permutation 
group is IL (3, am13). 

3) m  z 0 mod4 and X = m/4. The permutation group is 
rL (2,p@). 

These properties hold for the extended codes (!?A, by replac- 
ing I’L by AIL. When parameters are those of l), the dual 
of ex is the extension of the BCH code of designed distance 
2--l - 2(m-2)/2 - 1. When p = 2 the permutation group is 
actually the automorphism group. 

Proof Let e  be any divisor of m. We get e 5 m/2, 
because we know that CA is invariant under GL (1, p”). 
We  want to verify if a  code CA may be invariant under 
GL (m/e,pe)-i.e., if TX satisfies (11). 

For s in cl (l), j 4  s yields j = 0 or s; in both cases 
s + j(p” - 1) is in TX. Consider now s = 1 + p’. Let j be 
such that j -X 1+ px and j $Z (0, s}. So j = 1 or p’. Suppose 
that (11) is satisfied. One must have 

l+pX+(pe-l)~Tx and l+pX+pX(pe-l)~T~. 

That means 

i)pX+peETx and ii)l+pX+“ETx. 

As X 5 m/2 and e <m/2, X+e 5 m; moreover, Xfe <m 
when X # e. We  are going to examine if i) and ii) may be 
satisfied together. There are three cases: 

1) Suppose X > e. By applying Lemma 4, i) implies 
X - e  = X or X - e  = m  - X, which means e = 0 
or X = (m + e)/2, a  contradiction. 

2) If X = e, i) means 2px E TX. That is possible only for 
p  = 2. If p  = 2, ii) implies 1 + 2” E TX and we have: 

l I fX=e=m/2,then1+22X=2mod2m-1and 
2 is in cl (1). So in this case, (11) is satisfied and 
that is the first exception. 

l I f2X<m,Lemma4yields2X=Xor2X=m-X, 
providing the second exception: p  = 2 and e = X = 
m/3. 

3) Now suppose X < e. By applying Lemma 4, i) implies 
e = 2X or e = m. Only e = 2X is of interest. Then 
ii) becomes 1 + p3’ E TX. Applying Lemma 4, ii) is 
satisfied only for X = m/4. We  then obtain the third 
exception: X = m/4 and e = m/2. 
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Consider the first exception. The dual of CX is such that the 
elements which are not in its defining set are 

2m - 1, cl (2m-1 - l), and cl (2m-1 - 2cmp2)12 - 1). 

So it is easy to see that, in this case, the defining set of GX is 
d-l 

U cZ(i),d = ‘p-1 - 2(77-W _ 1 
i=o 

which is the defining set of the extended BCH code of designed 
distance d. q  

.2) Special Infinite Classes: We  have shown, in Example 
2, that one can easily construct a  p-ary affine-invariant code 
whose permutation group is bigger than AIL (1, pm). We  want 
to define precisely these codes by means of their border. 

Proposition 6: Let 8  be an affine-invariant code with defin- 
ing set T  and border F. Denote by M  the maximal set of T  
(see Proposition 1). Let e  be a divisor of m  and set for any 
SES 

W(s) = {wpe (p”s)lk E [0, e  - l]}. 

Then there exists X such that 

T  = {s E S 1 supW(s) I X} 

if and only if i) and ii) are satisfied: 
i) for any f in F, supW(f) > X; 
ii) for any s in M, supW(s) 5 X. 
In this case, e is a p-ary code, invariant under 

AFL (m/e,pe). 
Proof This result is immediately deduced from the def- 

inition of M  and of F  : any element t of T  satisfies t 4 s, for 
some s E M; any element u 6 T  satisfies f 4  u, for some 
f E F. 0 

We  now come back to Example 6, in which an infinite class 
C, of binary BCH cod? was studied. We  proved that the 
automorphism group of Cc is AIL (3, 22). Clearly, i) and ii) 
are satisfied, with X = 5. 

For any m, the maximal set Mm satisfies ii), with X = 
3(m - 4)/2 + 2. We  claim that Cc is the first element of an 
infinite class of binary codes, whose automorphism group is 
Al?L (m/2, a2). That is, the codes D,, m  even and m  2 6, 
with defining set 

where X, is 3(m - 4)/2 + 2. Note that Xs = 5. By definition, 
D, is invariant under AIL (m/2, a”), so that we need only 
prove that D, is not a  binary RM code. It is clear that 
d  = 2m-2 - 1  is the first element of the border of D,. Since 
wz(d)=m-2,ifD, is an RM code it is the RM code of 
order 2. But we have, for instance, p = 2m-1 - 2m-3 - 3  
which satisfies 

W(p) = {3(m - 4)/2,3(m - 4)/2 + 3) and w&L) = m  - 3  

proving that the element p is not in the defining set of D, 
while it is in the defining set of the RM code of order 2. 

In Example 5, we studied another special binary BCH code. 
In this case also i) and ii) are satisfied, with X = 6. Using the 

method above, we can construct an infinite class of binary 
codes whose automorphism group contains AIL (2, 23). It 
is important to notice that there exist afine-invariant p-ary 
codes whose permutation group is bigger than Al?L (1, p”) and 
which cannot be defined through Proposition 6. Some examples 
of such codes appear in Proposition 5. 

3) Afjne-Invariant Codes which are Principal Ideals of 
A: Any ideal I of the algebra A can be represented as a 
sum of principal ideals. These principal ideals form a system 
of generators of I. Moreover, any such system can be reduced 
to a minimal system, whose cardinality is a  constant only 
depending on I [24]. Affine-invariant codes are ideals of A. 
Such a code is a principal ideal if and only if its border contains 
one and only one element. It is because the cardinal@ of 
the border is equal to the cardinal@ of minimal systems of 
generators of the code [ 141. Consider an affine-invariant code 
on k, k = IF, and q = pr, whose border is {f}. As qf = f 
the form of f is as follows: 

m/r-l 
f=X c qi, AE[l,q-11. (12) 

i=o 

It appears that such an affine-invariant code satisfies the 
necessary condition of Corollary 5 (Section III-B) to be 
invariant under AGL(m/e,pe), for any multiple e of T. 
However, we will prove that, for any nontrivial case, this 
property is only possible for e  = m. From Proposition 
2 (Section III-A), a  binary affine-invariant code, which is 
principal, is trivial; it is because 2f = f means f = 0 or 
2” - 1. When k is a prime field, only extended BCH codes 
can be principal [ 151. Since we will treat later such BCH codes, 
we will assume here that k is an extension field; the basis field 
is k = IF,, q  = pr with r > 1. 

Proposition 7: Let t? be an affine-invariant code on k, 
which is a principal ideal of A. We  assume that t?? is not 
trivial. Let & be the smallest integer such that Be leaves e 
invariant. Then the permutation group of 2  is generated by 
the group AGL (1, p”) and Be. 

Proof We  suppose that k = IF,, q  = pr with r > 1. 
When T  = 1, the result is given later by Theorem 8; hence 
this result holds for e  = 1 and any T. When e = m  the result 
comes immediately from Theorem 6. From now on, we assume 
that 1 < C < m. In this proof, an element s E 5’ will be often 
identified with its p-ary expansion (SO, . . . , s,-1). Let {f} be 
the border of e  and T  its defining set. By definition, s is not 
in T  if and only if f 4 s. So it is clear that the maximal set 
M  of T  is composed of the following elements: 

t(j) = c (p - l)pi + (f, - l)pj, where f, > 0. 
z E [O,m-11 a#3 

Let e be a multiple of e  (i.e., pef = f), different from m, and 
2, = pe. In order to prove the theorem we only need to prove 
that (!? is not invariant under AGL (m/e, p”), for any such e. 

We  first suppose that p  > 2 and that there is a j such that 
0  < fj < p - 1. Because of the form of f we can choose j in 
[0, e  - l] and we know that fj = fj+e (see (12)). Now we let 
t = t(j + e) + pj(p” - 1). Then t; = p - 1  for any i different 
from j + e and j; moreover, by using the formula above, we 
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easily obtain tj+e = fj+e and tj = p - 2. Hence f 4  t which 
means t @  T. We  have t(j + e) E T, pj + t(j + e), and 
t(j + e) + pj (p” - 1) @  T. In accordance with Theorem 7, we 
can conclude that e  is not invariant under AGL (m/e,pe). 

Suppose now that f; is either 0 or p- 1, for any i. From (12) 
and since the code is not trivial, we can choose j E [e, 2e - 11 
such that f, = p - 1  and fj-r = 0. By using the formula of 
Proposition 3, we have for any Ic in [0, e  - l] 

wv(pkt(j)) = (m/e - l)(w - 1) + [p”(v - pjee - l)], 

while w,(p”f) = b’“X] . m/e. Now it is easy to check that the 
difference wv(p”t(j)) - w,(p”f) is greater than or equal to 0, 
for all k. Indeed, we have always this kind of situation 

[p’“(v-p+e-l)]=(p-l...) p-1,p:2,p-1..., p-l) 

and 

[p”X] = (A,, . . . , h-2,0, P - 1, A+1 . . L-1) 

where Xi is in (0, p  - l}. Since 2 5 m/e we are sure that our 
differences are greater than or equal to y, with 

y = qp - qpi-l - pi =  pi - zpi-l 

when i > 0, and y = 2(p - 1)~“~l - 1  when i = 0 (the place 
of i is determined by the value of 5). So we have proved 
that f +& t(j). In accordance with Corollary 4, it yields that 
c cannot be invariant under AGL (m/e, p”), completing the 
proof. 0  

IV. THE PERMUTATION GROUP 
OF p-ARY PRIMITIVE BCH CODES 

The automorphism groups of binary BCH codes, of length 
2m - 1, were previously studied by Lu in his thesis by means 
of a  slightly different version of Theorem 1 [26]. The author 
characterized some BCH codes which have an automorphism 
group larger than GL (1, am). Moreover, he conjectured that 
there are no others exceptional BCH codes (see also [27]). In 
this section, we prove that this conjecture is true. Moreover, 
we determine the permutation groups of BCH codes, extended 
or not, when the alphabet field is any prime field. 

We  will denote by g(d), the extended BCH code of 
designed distance d and of length pm over IF,. We  are only 
considering values of d  which are the smallest values (coset 
leaders) in their p  cyclotomic cosets modulo pm - 1. The GRM 
codes of same length over IF,, say the p-ary RM codes, are 
denoted by R(v, m), where 1/ is the order. We  suppose that 
m  > 1, which means that we do not treat here the RS codes 
(see Definition 3). Some, but few, BCH codes are p-ary RM 
codes; we enumerate these exceptions in the following lemma. 

Lemma 5: Assume thaS, B^(d) is not trivial (i.e., d  6 
(1,~~ - 1)). Th e codes B(d) which are p-ary Reed-Muller 
codes are the following: 

1) For anyp and any m, g(p”-l(p- 1) - 1) = R(l,m). 
2) When p = 2 

a) g(3) = R(m - 2,m), for any m; 
b) g(7) = R(2,5), for the length 32. 

3) When p > 2 
a) g(2) = ‘R(m(p - 1) - 2, m), for any m  and any p; 
b) g(5) = R(3,3), for the length 33 (i.e., p  = 3 and 

m  = 3); 
c) B^(p(p-2)-l) = R(2,m),forthelengthp’, p > 3. 

Proof: For any fixed length, an extended BCH code could 
be an RM code if and only if it belongs to the class of BCH 
codes whose designed distance has the following form: 

7-l 
d=x(p-l)pi+kp’, k~[l,p-11, r~[O,m-11. 

i=o 

Indeed, a code g(d) , d  given above, has the same minimum 
distance as the largest RM code it contains; moreover, it is 
the smallest BCH code containing this RM code, which is of 
order m(p - 1) - ,u, p  = ~(p - 1) + Ic, and of minimum 
distance d + 1. Let Td be the defining set of g(d). Note that 
the cases {r = m  - 1 and k = p - 1) and (7 = 0 as well 
as k = 1) correspond to trivial BCH codes. Clearly, d  is the 
smallest element of p-weight ~(p - 1) + k. So the code B^(d) 
equals R(m(p - 1) - p,m) if and only if all elements s, 
satisfying wp(s) = wp(d) - 1, are in Td-i.e., the leader of 
the cyclotomic coset of such an s is less than d. It is easy to 
check that this property is satisfied by each exception indicated 
in the Lemma. Otherwise, one can always exhibit an s which 
contradicts the property. When p = 2, we can suppose m  > 5 
and 7 5 d 5 2”-’ - 1. Then we get 

s=d-2’-2’-2+2r+1r ford>7 

and s = 9 for d  = 7. Assume now that p > 2 and 
2 < d 5 pm-‘(p - 2) - 1. Then we choose s as follows: 

l for r 2  2 and m  2 3: s = d + pj - pj-l - pjv2, where 
j = 7 if Ic < p - 1  and j = r + 1, otherwise (note that 
k is at most p - 3  when 7 = m  - 1); 

l for 7  = 1, m  2 3, and p > 3: s = (p - 3) + (k + 1)p if 
k < p - 1  and s = (p - 2) + (p - 2)p + p2, otherwise; 

l for r = 1, m  > 3, and p = 3: when k = 2, s = 13; 
when k = 1, either m  > 3 and s = 10 or m  = 3 and 
we obtain case 3b). 

l for r = 1, m  = 2: when p = 3 we obtain case 1); if 
p  > 3 and k I p  - 4, s = (p - 3) + (k + 1)p (Ic = p - 3  
is case 3c)); 

l for Q- = 0 (i.e., k > 2 which implies p > 3) and m  2 2: 
s = (k - 2) +p. 0 

We  are going to determine precisely the permutation group 
of any p-q BCH code. From now on we will use the same 
notation. 

Notation: Let e  be a divisor of m  and 

2 5 e < m, m,e = m, 2) = pe. (13) 

For any din [l,pm - 21, d  being the designed distance of any 
p-ary BCH code: 

(14) 
i=o j=o 

where d; E [O,p - 11, Sj E [0, ‘U - 11, d, > 0, 6, > 0 (p-ary 
and v-ary expansions); we will denote by Td the defining set 
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of g(d). Generally, we treat BCH codes which are not trivial 
and not equal to some p-ary RM code. 

The proof of Theorem 8 is very technical because there are 
many different situations. Actually, there are few exceptions 
and we mainly want to prove that a  given BCH code is 
not invariant under AGL (m,, p”), e  dividing m. In order 
to be easily understood, we begin by proving two lemmas; 
moreover, we choose to use the same method, for each case. 
This method, implied by Theorem 7, is as follows: we want 
to exhibit s(d) and t such that s(d) is in Td, t 4  s(d) 
and s(d) + t(v - 1) is not in Td. In almost every case, t 
will be pj, for some j. In order to do so, we often need to 
determine the leader of cl (s)-i.e., the smallest element of 
the the cyclotomic coset of s. Recall that cl (s) is the orbit 
of s under the multiplication by p modulo pm - 1. The p- 
ary expansion of s can be viewed as a sequence of m  p-ary 
symbols ; the p-ary expansion of any element of cl (s) is a  
shift of those of s. 

Lemma 6: Notation is that of (13) and (14). Assume that 
yi E [O,m, - 31 with m, > 3, and set 

x7-1 

Set 

s(d) =  Z(P- lIpi, ifr >  0  

do - 1, otherwise . 

s(d) +p’-l(pe - l), if 7  > 0 
” = s(d) + (p” - l), ifr=O. 

(15) 

Then s(d) E Td and s1 $Z Td. 
Proof By definition s(d) < d, showing s(d) E Td. 

When r #  0, the p-ary expansion of sl has this form 
7-l 

(p-l )“‘, p-1’p-2,~;.~,?,r-f+e,?,.L.,?). 

It is clear that s1 > d, because e > 1 implies Y- - 1  + e > T. 
Moreover, K 5 m, - 3  yields (m - 1) - 7  2 2e, implying 
m  - r - e  > e. Hence the longest sequence of “0” in the 
p-ary expansion of sr is at the end of the word above. Note 
that we are assuming d > 3 when p = 2; so we cannot have 
T  = 1 with p = 2, implying that the first symbol cannot be 
zero. Thereby sr is the leader of its cyclotomic coset. 

Suppose now that r = 0. As B^(d) is not a  p-ary RM code, 
du > 2 implying p > 3. The p-ary expansion of sr is 

(do0 2,?,.; ~‘o’T+;.‘~) , 
e-l m-e-l 

with m-e > 2e; clearly, sr > d and s1 is the leader of cl (~1). 
So in any case, si is not in Td, completing the proof. 0  

Lemma 7: Notation is that of (13) and (14); s(d) is given 
by (15). Assume that K E {m, - 2,m, - l}, m, 2 3, and d 
such that 7  < m  - 2. Moreover, we do not treat this situation 

r=m-3, e=2, p=2, d=2”-‘-1. (16) 

Set 

s2 = s(d) + p7+--)(pe - 1). 

Then s(d) E Td and sa 6 Td. 

Proof: It remains to prove that ss # Td. The p-ary 
expansion of sa is the word 

Obviously, sa > d. We  want to determine the leader of the 
cyclotomic coset of ~2. Note that, by hypothesis, e  < 7 < 
m  - 2. Then m  - r - 2  > 0, which means that there is at least 
one “0” at the end of the word above. 

When r < m  - 3, there is at least two consecutive zeros at 
the end of the word. On the left of the label r + 1, there is 
only one sequence of at most two consecutive zeros; it is “00” 
if and only if e  = 2 and p = 2. So it is clear that sa is the 
leader of cl (~2) unless Q- = m  - 4, e  = 2, and p = 2. But in 
this case the 2-ary expansion of sg is (1, . . . , 1, 0, 0, 1, 0, 0), 
proving that s2 is the leader. 

Suppose now that r = m  - 3-i.e., the word above ends 
in the sequence “010.” When {e > 2} or {e = 2,p > 2}, 
either there is no other zero in the word (p > 2) or we have 
this configuration 

(1,. ‘. ) 1, -,:. . ‘: 1, o,, Y1, 0) 0 
e-1 

where e - 1  2 2 and r + 1 - e  2 1 yield that sa is the leader 
of cl (~2). So it remains to examine the case 7 = m  - 3, e  = 
2, p  = 2, for d  < 2”-2 - 1  (since we do not treat (16)). The 
2-at-y expansion of s2 is here 

(1,. . . , 1, l,O, 0, 1,O). 

Clearly, the leader of cl (sa) has 2-ary expansion 

(l>O, 1, ‘. . , LO, 0) 

proving it is greater than or equal to d, completing the proof. Cl 
Theorem 8 The permutation group of B(d), the extended 

BCH code of designed distance d and length pm, is the semi- 
affine group AIL (1, p”), except for the few cases we describe 
below. 

1) When p = 2, the permutation group is actually the 
automorphism group denoted by Aut( ); we have 

4 
b) 

c> 
4  

The trivial BCH codes g( 1) and g(2m - I), whose 
automorphism group is Sym (2”). 
B_CH codes which-are RM codes. That is, g(3), 
BP m-1 - l), and B(7) when m  = 5. The automor- 
phism group is AGL(m,2). 
For m  even and d = 2m-1 - 2(m-z)12 - 1, 
Aut (g(d)) = AFL (2,2-l”). 
When m  = 6, then Aut (g(7)) = AIL (2, a3) and 
Aut (B^(15)) = AIL (3,2”). 

2) When p is odd, the only exceptions are trivial BCH codes 
and BCH codes which are p-ary RM codes: 
a) Per (g(1)) and Per (B(p” - 1)) are Sym (p”). 
b) Per(B^(2)) and Per (B^(p”-l(p - 1) - 1)) are 

AGL Cm, p). 
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c) For m  = 2, p  > 3, and d = p2 - 2p - 
1, Per(g(d)) = AGL(2,p). 

d) Form = 3andp = 3thenPer(g(5)) = AGL(3,p). 
In any case, when the group of the extended BCH code 

is AGL (resp., AIL) then the group of the BCH code is the 
corresponding group GL (resp., FL). 

Proofi All exceptions were treated before. BCH codes 
which are RM codes are given by Lemma 5. Exception 1.~) is 
given by Proposition 5. Exceptions Id) appeared in Examples 
5 and 6, in Section III-A. Note that the binary exceptions were 
already found by Lu [26]; partial results on binary BCH codes 
were given in [6], [26], [27]. In all these works, results were 
obtained by means of Theorem 1. 

Notation is now that of (13) and (14)11n any situation we 
want to apply Theorem 7, proving that B(d) is not invariant 
under AGL (m,, p”). We  have found s(d) and t such that 
s(d) E Td, t 4  s(d) and s = s(d) + t(p” - 1) not in Td 
in the following cases: 

l K E [0, m, - 31, m, 2 3 (Lemma 6, s is si and t = p’-’ 
or 1). 

l K E {m,-2,m,-l}, m, 2 3 and d such thatr < m-2, 
unless when parameters satisfy (16) (Lemma 7, s is 
32, t z p’-(“-1)). 

In Example 6 we solved the case where parameters satisfy 

then de+, = p - 1  and de < p - 1. From Corollary 5, 8(d) 
cannot be invariant under AGL (m,,$). So we can suppose 
r - e  5 0. We  get 

7-l 

s(d) = c(p - l)pi + (d, - 1)~’ 
i=o 

and 

s = s(d) + ~~-~(p~ - 1). 

Clearly, s(d) E Td and pTee -i s(d); as r - e  5 19, s > d. If 
r = m  - 1, then p > 2 and d, 5  p - 2. The p-ary expansion 
of s is 

(...,p- l...p- l,p- 2,p- l...p- l,d,) 
-- 

e  e 

proving that s is the leader of cl (s). Now suppose that 
7 = m  - 2. When p > 2, s is the leader of cl(s), because 
there is only one zero in its p-ary expansion-the last symbol. 
When p = 2, the 2-ary expansion of s is 

(...,~,O,~;O). 
e-2 e 

(16). So it remains to examine the cases: m, = 2, for 
~<m-2,andm,~2,for~~{m-2,m-1}.Inallthese Clearly, s is the leader of cl (s), when m, 2 3. If m, = 2 the 
cases we will exhibit s(d), t, and s which contradict (11). leader s’ of cl(s) has 2-ary expansion 

1) Assume that m, = 2, 7  < m  - 2, and 6 = 1. Note that 
e  = 2 and r < m  - 2 imply of, = 0. So we have e > 2. Then 
we get for s the element s2 given by Lemma 7. In this case, 

(U, o,w, 0). 
e  e-2 

its p-ary expansion (17) is such that it cannot be a sequence 
“00” before the label r + 1, because e > 2. Moreover, the So s 6 Td if and only if d  _< s’. But d > s’ means 
word cannot begin with a zero, because r 2  e. d  = 2m-1 - 2(m-2)/2 - 1  which is Exception lc), completing 

2) Assume that m, = 2 and K = 0; s(d) is given by (15). the proof when 6’ exists. 
When p > 2 we get t = 1, s = s(d) + pe - 1. The p-ary We  suppose now that 6’ does not exist. So 
expansion of s has this form 

7-l 

(p-2,p-l...,l,O,...) 
-- 

d  = c(p - l)pi + d,p’. 
i=o e e 

proving that s > d and s is the leader of cl (s). So s $Z Td. If p  = 2 then 7 = m  - 2 and g(d) is an RM code (see lb)). 
Suppose now that p = 2. We  can suppose that d  > 3, implying Fromnowonp>2.Whenr=m-2wegets(d)=d-pr, 
e  > 2; moreover, {e = 3 and d = 7) is also an exception, t z pm-1-e f pTpe, and 
When e = 3 and d = 5, then s(d) = 3 and s = 10 (i.e., 
3  + (2” - 1)) which is not in T5, So we assume e > 4 and s = s(d) + t(p” - 1) = d + pm-l -pm-l-’ - P~-~. 
r 2  2. We  get s = s(d) + 2(2” - 1). When d E {5,7}, then 
s(d)=3ands=1+2 e+l. The leader of cl (s) is 1  + 2e-1, s cannot be in Td because there is no zero in its p-ary 
which is greater than 7; hence s # Td. Assuming d > 7, the expansion. When r = m  - 1 we get s(d) = d - p7-r, 
2-ary expansion of s is now t = pree, and 

t-l 

(l,O, 1,. . . > 1 ,0,~‘~,0,1,0,~~~,0). 
-- 

s = s(d) + t(p” - 1) = d + p7 - p’-’ - P~-~. 

e-7+1 e-2 
As B^(d) is not an RM code, d, < p - 2  (so p > 3). In the 

As V- > 3, e  - r + 1 < e - 2; moreover, e  - 2  > 2. So s 2 d p-ary expansion of s, the only symbols which are not p- 1  are 
and s is the leader of cl (s), proving s 6 Td. S - d, + 1, s,-~ = p - 2, and s,-, = p - 2; so all symbols -7- 

3) Assume that 7 E {m - 2, m  - l}, m, 2 2 (here we are greater than d,, proving s $ Td. In both cases (7 = m  - 2  
have: /c. 2  1). We  first suppose that there is a j such that j < 7 or m  - I), we have clearly s(d) E Td and t 4  s(d), completing 
and dj < p - 1. Let 0  be the biggest such j. If B + e < r the proof of the theorem. El 
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