ON BINARY CYCLIC CODES WITH MINIMUM DISTANCE $d = 3$

P. Charpin, A. Tietäväinen, and V. Zinoviev

We consider binary cyclic codes of length $2^m - 1$ generated by a product of two or several minimal polynomials. Sufficient conditions for the minimum distance of such a code to be equal to three are found.

1. Introduction

Denote the finite field of order q, $q = 2^m$, $m \geq 4$, by \mathbb{F}_q. Let γ be a primitive element of \mathbb{F}_{2^m} and $m_i(x)$ be the minimal polynomial of γ^i over \mathbb{F}_2. We assume that $0 \leq i < j \leq 2^m - 2$ and that i and j, $0 \leq i < j \leq 2^m - 2$, are not in the same cyclotomic coset modulo $n = 2^m - 1$. Denote the binary cyclic code of length n with generator $m_i(x)m_j(x)$ by $C_{i,j}(m)$ or, briefly, by $C_{i,j}$. The minimum distance of $C_{i,j}$ is denoted by $d_{i,j} = d_{i,j}(m)$.

It is well known [1] that the case $(i,j) = (1,3)$ corresponds to the 2-error-correcting BCH codes. The following pairs (i,j) also define codes with minimum distance five (of course, there are many equivalent pairs): $(1,2^t + 1)$ if $\gcd(t,m) = 1$ (see [1, Sec 15.4]); $(1,2^{2t} - 2^t + 1)$ for odd m if $\gcd(t,m) = 1$ (see [2, 3]) and for even m if $\gcd(t,m)$ is odd (see [2]) and if $\gcd(t,m) = 1$ (see [4]). On the other hand, it was proved in [5] that for fixed t ($t \equiv 3 \pmod{4}$, $t \geq 4$) there is no infinite family of codes $C_{1,t}(m)$ with minimum distance 5. It is natural to try to characterize all pairs (i,j) that give codes with a certain minimum distance d, where $d = 2, 3, 4, or 5$. If $d = 2$, this can easily be done (see Lemma 1). However, in all other cases the task is certainly much more difficult. In this paper we consider the case $d = 3$.

We consider also (binary cyclic) codes C_{i_1, \ldots, i_t}, whose generating polynomial is the product of one or several minimal functions $m_{i_1}(x), \ldots, m_{i_t}(x)$. We find sufficient conditions (Theorems 1 and 2) for the cyclic code C_{i_1, \ldots, i_t} to have minimum distance $d = 3$. We also find lower bounds on the number of codewords of weight three (Theorems 3 and 4). The codes C_{i_1, \ldots, i_t} are investigated in a more detailed way. In the case $t = 2^n(n^2 - 1)$ we give necessary and sufficient conditions that d_{i_1, \ldots, i_t} equals three (Theorem 5). The results of this paper were in part announced in [6].

As usual, we identify the vector $c = (c_0, \ldots, c_{n-1}) \in \mathbb{F}_2^n$ and the polynomial

$$c(x) = \sum_{t=0}^{n-1} c_t x^t \in \mathbb{F}_2[x]/(x^n + 1).$$

A vector c is an element of $C_{i,j}$ if and only if

$$c(\gamma^i) = c(\gamma^j) = 0.$$ \hspace{1cm} (1)

Thus, $d_{i,j} \leq 3$ if there is a trinomial $c(x) = 1 + x^a + x^b$, $1 \leq a < b < n$, such that Eqs (1) are valid.

We begin with a simple example (mentioned in [7] for the case $(i,j) = (1,7)$). Let m be even. Then 3 divides $2^m - 1$. Denote $(2^m - 1)/3$ by u. Then γ^u (denote it by $\beta = \gamma^u$) is a primitive element of \mathbb{F}_4 and,
therefore, the minimal polynomial of β is $1 + x + z^2$. If we choose $c(x) = 1 + z^u + z^{2u}$, we see that Eqs. (1) are valid for all i and j which are not divisible by 3. Thus, we have proved the following result.

Proposition 1. Let $m, m > 2$, be even and $i, j, 1 \leq i < j \leq 2^m - 2$, be arbitrary integers. If $\gcd(i, 3) = \gcd(j, 3) = 1$, then the code $C_{i,j}$ of length $2^m - 1$ has distance $d_{i,j} \leq 3$.

In the sequel, we generalize this observation for the case where m has an arbitrary divisor $g \geq 2$. This approach gives a way of characterizing some infinite classes of codes with minimum distance $d \geq 3$.

2. General results

First, we characterize the codes $C_{i,j}$ with minimum distance $d_{i,j} = 2$.

Lemma 1. Let $i, j, 0 \leq i < j \leq 2^m - 2$, be arbitrary integers that do not belong to the same cyclotomic coset modulo $2^m - 1$. Then the binary cyclic code $C_{i,j}$ of length $n = 2^m - 1$ with generating polynomial $g(x) = m_i(x)m_j(x)$ has distance $d_{i,j} = 2$ if and only if $\gcd(n, i, j) > 1$.

Proof. Since γ is a primitive nth root of unity, $d_{i,j} = 2$ if and only if there exist k and ℓ, $0 \leq \ell < k < n$, such that

$$\gamma^{ki} = \gamma^{\ell i}, \quad \gamma^{kj} = \gamma^{\ell j}$$

or, equivalently,

$$(k - \ell)i \equiv (k - \ell)j \equiv 0 \pmod{n}$$

Both congruences are valid if and only if $n/\gcd(n, i, j)$ divides $k - \ell$. Therefore, such k and ℓ exist if and only if $\gcd(n, i, j) > 1$.

Definition. Denote by $K_g(r)$ the cyclotomic coset of r modulo $2^g - 1$, i.e.,

$$K_g(r) = \{ r2^k \pmod{2^g - 1} : k = 0, 1, \ldots, g - 1 \}$$

For any integer $i, 0 \leq i \leq 2^m - 2$, we say that i belongs to $K_g(r)$ if an integer $j, j = 0, 1, \ldots, g - 1$, exists such that $r2^j \equiv r \pmod{2^g - 1}$.

Theorem 1. Let $i, j, 0 < i < j < 2^m - 1$, be arbitrary integers that do not belong to the same cyclotomic coset modulo $2^m - 1$. Let g be an arbitrary divisor of m. If there exists an integer r, $0 < r < 2^g - 1$, where $\gcd(r, 2^g - 1) = 1$, such that both i and j are in $K_g(r)$, then the binary cyclic code $C_{i,j}$ of length $2^m - 1$ generated by the polynomial $g(x) = m_i(x)m_j(x)$ has minimum distance $d_{i,j} \leq 3$. If, moreover, $\gcd(n, i, j) = 1$, then $d_{i,j} = 3$.

Proof. If γ is a primitive nth element of $\mathbb{F}_q, q = 2^m$, then $[8]$ the element $\beta = \gamma^u$, where $u = (2^m - 1)/(2^g - 1)$, is a primitive element of \mathbb{F}_{2^g}. Let k be an integer in the interval $[1, 2^g - 2]$ such that

$$1 + \beta + \beta^k = 0.$$

Define

$$c(x) = 1 + x^{u(1/r)} + x^{u(k/r)}, \quad (2)$$

where the quotients $1/r$ and k/r are calculated in the ring $\mathbb{F}_2[x]$ of integers modulo $2^g - 1$ and, therefore, lie in the interval $[1, 2^g - 2]$. We claim that $c(x)$ is a codeword of $C_{i,j}$. To check this, it suffices to show that both γ^i and γ^j are roots of the polynomial $c(x)$. Indeed, since $i \in K_g(r)$, nonnegative integers k and ℓ exist such that

$$i = \ell(2^g - 1) + 2^k r.$$

Thus,

$$c(\gamma^i) = 1 + \gamma^{u(1/r)} + \gamma^{u(k/r)} = 1 + \beta^{(1/r)} + \beta^{(k/r)}$$

$$= 1 + \beta^{2^k r(1/r)} + \beta^{2^k r(k/r)} = 1 + \beta^{2^k} + \beta^{2^{2k}} = (1 + \beta + \beta^k)^{2^k} = 0.$$

288
Similarly we can show that \(c(\gamma^k) = 0 \). Thus, we have proved that \(c(x) \) of type (2) belongs to \(C_{1,i,j} \) and, therefore, the minimum distance of this code is \(d \leq 3 \). If now \(\gcd(n, i, j) = 1 \), then by Lemma 1 the code \(C \) has distance \(d > 2 \), whence it follows that \(d = 3 \). \(\Delta \)

Note that Proposition 1 is a particular case \((g = 2)\) of the first statement of Theorem 1.

As follows from the proofs, the statements given above (i.e., Lemma 1 and Theorem 1) can be generalized to the case where the code \(C \) is generated by a polynomial \(g(x) \) which is a product of several minimal functions. In particular, the following generalization of Theorem 1 is valid.

Theorem 2. Let \(i_1, \ldots, i_n, 0 < i_1 < \cdots < i_n < 2^m - 1 \), be arbitrary integers that belong to distinct cyclotomic cosets modulo \(2^m - 1 \). Let \(g \) be an arbitrary divisor of \(m \). If there exists an integer \(r, 0 < r < 2^g - 1 \), where \(\gcd(r, 2^g - 1) = 1 \), such that all integers \(i_1, \ldots, i_n \), are in \(K_3(r) \), then the binary cyclic code \(C_{i_1, \ldots, i_n} \) of length \(2^m - 1 \) generated by the polynomial \(g(x) = m_{i_1}(x) \cdots m_{i_n}(x) \) has minimum distance \(d_{i_1, \ldots, i_n} \leq 3 \). If, moreover, \(\gcd(n, i_1, \ldots, i_n) = 1 \), then \(d_{i_1, \ldots, i_n} = 3 \).

We emphasize that Theorems 1 and 2 give only sufficient conditions that the binary cyclic code \(C = C_{i_1, \ldots, i_n} \) has minimum distance \(d_{i_1, \ldots, i_n} = 3 \). For such a code \(C \), we now try to estimate the number of codewords of weight three (denote it by \(B_3 \)). We need some notations. Let \(I(r) \) be the set of all integers \(i \) in \([1, n - 1]\) such that \(i \in K_3(r) \) (see Definition). Clearly, \(I(r) \) is a join of cosets modulo \(n \). Denote by \(J(r) \) a set of representatives of these cosets and denote by \(C_{J(r)} \) the binary cyclic code of length \(n \) generated by the polynomial

\[
g_{J(r)}(x) = \prod_{i \in I(r)} m_i(x).
\]

Theorem 3. Let \(i_1, \ldots, i_n, 0 < i_1 < \cdots < i_n < 2^m - 1 \), be arbitrary integers, \(g \) be an arbitrary divisor of \(m \), and an integer \(r, 0 < r < 2^g - 1 \), where \(\gcd(r, 2^g - 1) = 1 \), be such that \(\{i_1, \ldots, i_n\} \subseteq J(r) \). Then \(B_3 \) for the binary cyclic code \(C_{i_1, \ldots, i_n} \) of length \(2^m - 1 \) satisfies the inequality

\[
B_3 \geq B = (2^m - 1)(2^g - 2)/6.
\]

For the code \(C_{J(r)} \), i.e., if \(\{i_1, \ldots, i_n\} = J(r) \), the inequality in (3) turns into the equality.

Proof. Let \(u = (2^m - 1)(2^g - 1) \). Then the order of the element \(\beta = \gamma^u \) is \(2^g - 1 \) and, therefore, \(\beta \) is a primitive element of the field \(\mathbb{F}_{2^m} \), of order \(2^g \), the latter being a subfield of \(\mathbb{F}_{2^n} \).

For each integer \(a, 1 \leq a \leq 2^g - 2 \), there is exactly one integer \(b \) in the interval \([1, 2^g - 2]\) such that

\[
1 + \beta^a + \beta^b = 0,
\]

and, of course, \(b \neq a \). Thus, there are exactly \((2^g - 2)/2\) pairs \((a, b), 1 \leq a < b \leq 2^g - 2\), such that the trinomial

\[
c(x) = 1 + x^{au/r} + x^{bu/r}
\]

(where the quotients \(a/r \) and \(b/r \) are calculated in the ring \(\mathbb{Z}_{2^m - 1} \)) is a codeword of any such code \(C = C_{i_1, \ldots, i_n} \). Hence, we have found \((2^g - 2)/2\) weight-3 codewords of type (5) that belong to \(C \). From any such codeword we obtain, by shifting, \(n = 2^m - 1 \) codewords of the type

\[
x^t c(x) = x^t + x^{at+u(r)} + x^{bt+u(r)}, \quad t = 0, 1, \ldots, 2^m - 2
\]

Thus, we have obtained the set of \((2^m - 1)(2^g - 2)/2\) codewords of weight 3. But it is easily seen from the construction that each word is obtained exactly three times. Thus, the number \(B_3 \) of codewords of weight three in \(C_{i_1, \ldots, i_n} \) satisfies the inequality (3).

Assume now that \(C = C_{J(r)} \). Consider an arbitrary weight-3 word of this code with locators \(\{\gamma^a, \gamma^b\} \). Then, by the definition,

\[
1 + \gamma^{au(2^g - 1)+r} + \gamma^{bu(2^g - 1)+r} = 0
\]

for any \(\ell \in [0, u - 1] \), \(u = (2^m - 1)/(2^g - 1) \). Therefore, by adding to any such equation (which corresponds to the case \(\ell = 0 \)), we obtain

\[
\gamma^{a\ell} \left(\gamma^{au(2^g - 1)} + 1 \right) + \gamma^{b\ell} \left(\gamma^{bu(2^g - 1)} + 1 \right) = 0
\]

289
for any \(\ell \). Thus, the polynomial

\[
Q(x) = \gamma^x(x^u + 1) + \gamma^x(x^v + 1)
\]

has as its roots all \(u \) elements of the type \(\lambda_\ell = (\gamma^x)^{2^u - 1} = \beta^\ell \), where \(\ell \in [0, u - 1] \). Since each such element \(\lambda_\ell \) is a non-root of unity, the polynomial \(x^u + 1 \) (which has as its roots all those \(u \) elements \(\lambda_\ell \)) should divide \(Q(x) \). So the remainder \(R(x) \) of \(Q(x) \) modulo \(x^u + 1 \) must be the zero polynomial. We have

\[
R(x) = \gamma^a(x^a + 1) + \gamma^b(x^b + 1),
\]

where \(a' < u, b' < u, a' \equiv a \) (modu), and \(b' \equiv b \) (modu). The equation \(R(x) = 0 \) is satisfied if and only if one of the following conditions holds:

(i) \(\gamma^x = \gamma^x \) and \(a' = b' \);

(ii) \(x^a = 1 \) and \(x^b = 1 \).

Condition (i) is impossible, because \(\gamma^x + \gamma^x \) equals 1. So, (ii) holds, proving that \(a' = b' = 0 \). Therefore, \(u \) divides \(a \) and \(b \). Hence, any weight-3 codeword of the code \(C_{k(x)} \) (up to a shift \(t \)) is of the form (6)

Therefore, the number \(B_3 \) (of weight-3 codewords in \(C_{k(x)} \)) satisfies \(B_i \), i.e., corresponds to the equality in (3).

It is difficult to determine the number of codewords of weight three for an arbitrary code \(C_{i_1, \ldots, i_s} \). We give here a statement which is a generalization of Theorem 3.

Theorem 4. Let \(i_1, \ldots, i_s, 1 \leq i_1 < \ldots < i_s \leq 2^m - 2 \), be arbitrary integers. Let \(\{g_1, \ldots, g_s\} \) be distinct divisors of \(m \) such that \(\gcd(g_i, g_j) = 1 \) for any \(1 \leq h < \ell \leq k \). If there exist \(k \) integers \(r_h \), where \(1 \leq r_h \leq 2^{2^{k_h}} - 2 \), \(\gcd(r_h, 2^{2^k} - 1) = 1 \), such that

\[
\{i_1, \ldots, i_s\} \subseteq K_{g_h}(r_h)
\]

for any \(h (h = 1, \ldots, k) \), then the number \(B_3 \) of codewords of weight three in \(C_{i_1, \ldots, i_s} \) satisfies the inequality

\[
B_3 \geq \frac{2^m - 1}{6} \sum_{h=1}^k (2^{2^{k_h}} - 2).
\]

Proof. Recalling the arguments that we used in the proof of Theorem 3, we see that for any \(h, h \in \{1, \ldots, k\} \), in \(C = C_{i_1, \ldots, i_s} \), there are exactly \((2^m - 1)(2^{2^k} - 2)/6 \) weight-3 codewords of the form

\[
c_h(x) = x^1 + x^{u_3}(a_1/r_h^u) + x^{u_3}(a_2/r_h^u),
\]

where \(u \in \{0, 1, \ldots, 2^m - 2\} \), \(u_h = (2^m - 1)/(2^{2^k} - 1) \), the integers \(a_1 \) and \(a_2 \), \(1 \leq a_1 < a_2 \leq 2^{2^k} - 2 \), are defined by the equation

\[
1 + \beta_h^{a_1} + \beta_h^{a_2} = 0
\]

(here \(\beta_h = \gamma_h^{a_1} \) is a primitive element of the field \(\mathbb{F}_{2^{2^k}} \), and the quotients \(a_1/r_h \) and \(a_2/r_h \) are calculated in the ring of integers modulo \(2^{2^k} - 1 \). Therefore, to prove Theorem 4, it suffices to show that \(c_h(x) \) does not coincide with a codeword of another type, say, of type \(c_2(x) \) (which corresponds, for instance, to a divisor \(g_2 \in \{g_1, \ldots, g_s\} \) of \(m \)),

\[
c_2(x) = x^u + x^{u_3}(a_1/r_h^u) + x^{u_3}(a_2/r_h^u), \quad h \neq \ell.
\]

Assume the contrary, i.e., \(c_h(x) = c_2(x) \). Then the quotients of the locators of \(c_h(x) \) and \(c_2(x) \) are, respectively, \(\gamma^{a_1} \) and \(\gamma^{a_2} \). Since \(\gcd(u_h, u_3) = (2^m - 1)/\gcd(2^{2^k} - 1, 2^{2^k} - 1) = 2^m - 1 \), they are equal to 1, which provides a contradiction.

Example 1. Let \(m = 6 \). Then the divisors of \(m \) are the numbers 2 and 3. Since 1, 11, and 23 belong to both the coset \(K_2 \) and the coset \(K_3 \), all the (binary cyclic) codes \(C_{1,11}, C_{1,23}, C_{1,1}, C_{1,12}, C_{1,23} \) and \(C_{1,11} \) have minimum distance \(d = 3 \) by Theorem 2. Then, by Theorem 4, we have \(B_3 \geq 84 \). In this case, this bound is attained for all codes mentioned above.
3. The codes $C_{1,t}$

In this section, we consider cyclic codes $C_{1,t}$ of length $n = 2^m - 1$ with roots γ and γ^t, where an integer t is not a power of 2. Note that if n is a prime, then any code $C_{i,j}$ is equivalent to some code $C_{1,t}$. The code $C_{1,t}$ has a codeword of weight three if and only if there are two distinct nonzero elements α_1 and α_2 of \mathbb{F}_{2^n} which satisfy

$$\alpha_1^t + \alpha_2^t + (\alpha_1 + \alpha_2)^t = 0.$$

Since $C_{1,t}$ is cyclic, we can take $\alpha_1 = 1$. Thus, we have the following result.

Proposition 2. The code $C_{1,t}$ has minimum distance $d_{1,t} = 3$ if and only if the polynomial

$$U_t(z) = 1 + z^t + (1 + z)^t$$

has at least one root in $\mathbb{F}_{2^n} \setminus \{0, 1\}$.

Proof. By Theorem 1, we know that if $t = (2^g - 1)\ell + 2^k$ for some $k < g$, where g divides m, then $C_{1,t}$ has minimum distance $d_{1,t} = 3$. Here we want to generalize this result and also to obtain sufficient conditions that $d_{1,t} > 3$. Moreover, we want to present some cases where the bound on B_2 given in Theorem 4 is attained.

Example 2. For some t, the minimum distance is at least 4 when m is odd. Take, for example, $t = 13$. Then the polynomial

$$U_{13}(x) = x(1 + x)(x^2 + x + 1)^5$$

has roots in $\mathbb{F}_{2^n} \setminus \{0, 1\}$ if and only if m is even. Thus, according to Proposition 2, $d_{1,13} \geq 4$ if and only if m is odd.

Example 3. The next case, $t = 21$, is a little more complicated. We have

$$U_{21}(x) = x(1 + x)(x^2 + x^3 + 1)(x^6 + x^4 + x^3 + x + 1)(x^6 + x^5 + x^3 + x^2 + 1).$$

Hence, the minimum distance of $C_{1,21}$ is at least 4 if and only if 6 does not divide m. Note that this last case is not covered by Theorem 1.

Now, we have two observations. First, $U_t(x)$ is a product of minimal polynomials over \mathbb{F}_2. This is because

$$U_t(\beta^2) = 1 + \beta^t + (1 + \beta^t)^t = (1 + \beta^t + (1 + \beta)^t)^2 = (U_t(\beta))^2,$$

and, therefore, whenever β is a root of $U_t(x)$, the element β^2 is a root, too. Second, we have the following statement.

Proposition 3. Let m be a prime and t be an integer such that $1 < t < m + 3$. Then the code $C_{1,t}$ of length $2^m - 1$ has minimum distance $d \geq 4$.

Proof. The polynomial $U_t(x)$ has degree $t - 1$. Moreover, the elements 0 and 1 are roots of $U_t(x)$. Therefore, $U_t(x)$ may be represented in the form $U_t(x) = (x^2 + x)V_t(x)$, where the degree of $V_t(x)$ is $t - 3$. If an element $\beta \in \mathbb{F}_{2^n}$ exists such that $V_t(\beta) = 0$, then the minimal polynomial of β divides $V_t(x)$ and should have degree m. This contradicts the last assumption of the proposition.

Furthermore, we have the following fact.

Proposition 4. Let g and $t \geq 3$ be arbitrary integers such that $2^g < t$ and assume that the equivalence

$$t \equiv 2^k \pmod{2^g - 1}$$

holds for some integer k, $k \geq 1$. Then the polynomial $x^{2^k} + x$ divides $U_t(x)$, i.e., all elements of the field \mathbb{F}_{2^g} are roots of $U_t(x)$.

Proof. Let β be a nonzero element of \mathbb{F}_{2^g}, i.e., $\beta^{2^g-1} = 1$. Then we have

$$U_t(\beta) = 1 + \beta^t + (1 + \beta)^t = 1 + \beta^{2^k} + (1 + \beta)^{2^k} = 0.$$

\triangle
Proposition 5. Let $u, v, 1 \leq v < u$, be arbitrary integers and let $t = 2^u \pm (2^v - 1)$. Then

\[
U_t(z) = \begin{cases}
(z^{2^u} + z) (z^{2^v} + z) / (z^2 + z) & \text{if } t = 2^u + 2^v - 1, \\
(z^{2^u} + z) \left(\frac{z^{2^{u+v}} + z}{z^2 + z} \right)^2 & \text{if } t = 2^u - 2^v + 1.
\end{cases}
\tag{7}
\]

\textbf{Proof.} First consider the case $t = 2^u + 2^v - 1$. The condition $t \equiv 2^u \pmod{2^u - 1}$ and Proposition 4 imply that

\[(z^{2^u} + z) \mid U_t(z).\]

Similarly, from the condition $t \equiv 2^v \pmod{2^v - 1}$ we obtain that

\[(z^{2^v} + z) \mid U_t(z).\]

Define

\[L(z) = \frac{(z^{2^u} + z)(z^{2^v} + z)}{z(z + 1)}.\]

It is clear that the degree of $L(z)$ is equal to $t - 1$, i.e., it is exactly the degree of $U_t(z)$. This means that if $\gcd(u, v) = 1$, then we have proved that $L(z) = U_t(z)$. Assume now that $\gcd(u, v) > 1$ and consider the derivative of $U_t(z)$:

\[U_t'(z) = z^{t-1} + (1 + z)^{t-1}.\]

Let $\beta \in (F_{2^u} \cap F_{2^v}) \setminus \{0, 1\}$, i.e., the conditions $\beta^{2^u-1} = 1$ and $\beta^{2^v-1} = 1$ hold simultaneously. Then, if β is neither 0 nor 1,

\[U_t'(\beta) = \beta^{2^u-1+2^v-1} + (1 + \beta)^{2^u-1+2^v-1} = 1 + 1 = 0.\]

Set

\[W(z) = \frac{\gcd(z^{2^u} + z, z^{2^v} + z)}{z(z + 1)}.\]

Then we have proved that $(W(z))^2 \mid L(z)$. Therefore, in each case $L(z) = U_t(z)$.

Let now $t = 2^u - 2^v + 1$. Similarly to the previous case, the condition $t \equiv 2^u \pmod{2^u - 1}$ and Proposition 4 imply that $z^{2^v} + z$ divides $U_t(z)$. Since $t = 2^u(2^{u-v} - 1) + 1$, we have $t \equiv 1 \pmod{2^u - 1}$, and therefore $z^{2^{u-v}} + z$ also divides $U_t(z)$. Now let us show that $U_t(z)$ is actually divisible by the polynomial

\[\left(\frac{z^{2^{u-v}} + z}{z^2 + z} \right)^2.\tag{8}\]

This last condition is equivalent to the fact that for any element $\beta \in F_{2^{u-v}} \setminus \{0, 1\}$ the polynomial $(z + \beta)^{2^v}$ divides $U_t(z)$. Now represent $U_t(z)$ in the following form:

\[U_t(z) = 1 + z^t + (1 + z)^t = 1 + z^{2^u(2^{u-v} - 1)}z^t + \frac{(1 + z)^t}{(z + 1)^2^{v-1}(1 + z)}(1 + z).
\]

Now, replacing z^{2^v} in the expression above by the element β^{2^v}, we can find the remainder, say, $R_t(z)$, of the division of $U_t(z)$ by $(z^{2^v} + \beta^{2^v})$. Since $\beta^{2^{u-v} - 1} = 1$, we have

\[R_t(z) = 1 + \beta^{2^v}z^{2^{u-v} - 1}z + (1 + \beta^{2^v})^{2^{v-1} - 1}(1 + z) = 1 + z + (1 + z) = 0.
\]

Thus, $U_t(z)$ is divisible by the polynomial (7). On the other hand, it is easy to see that the polynomials z^t and $(1 + z)^2$ do not divide $U_t(z)$. Now the second equality of (7) follows by comparing the degrees of both polynomials.

Using Proposition 5, we can now formulate the necessary and sufficient conditions for the code $C_{1, t}$, where $t = 2^u \pm (2^v - 1)$, to have minimum distance $d = 3$. Also, these two classes of codes are interesting in the sense that the lower bound on B_3 in Theorem 4 is exact.
Theorem 5. Let \(u, v, 1 \leq u < v \), be arbitrary integers and let \(t = 2^u \pm (2^v - 1) \). Denote
\[
\delta_t = \begin{cases}
\gcd(m,u) & \text{if } t = 2^u + 2^v - 1, \\
\gcd(m,u-v) & \text{if } t = 2^u - 2^v + 1,
\end{cases}
\]
and \(\delta_t = \gcd(m,v) \). Then the code \(C_{1,t} \) has minimum distance \(d_{1,t} \geq 4 \) if and only if \(\delta_1 = \delta_2 = 1 \), and \(d_{1,t} = 3 \) otherwise. For the number \(B_3 \) of this code we have the following expression:
\[
B_3 = \frac{2^m - 1}{6} \left(2^{d_1} + 2^{d_2} - 2^{d_3} - 2 \right),
\]
where \(\delta_3 = \gcd(\delta_1, \delta_2) \).

Proof. First, consider the case \(t = 2^u + 2^v - 1 \). If \(\delta_1 = \delta_2 = 1 \), then the polynomial
\[
U_t(x) = (x^{2^u} + x)(x^{2^v} + x)/(x^2 + x)
\]
has no roots in the field \(\mathbb{F}_{2^m} \) distinct from 0 and 1, and therefore \(d_{1,t} \geq 4 \). Otherwise, \(C_{1,t} \) contains codewords of weight three. Since we know all the roots of \(U_t(x) \), we can write down the exact expression for the number \(B_3 \) in \(C_{1,t} \). If \(\delta_1 > 1 \) but \(\delta_2 = 1 \) (and, therefore, \(\delta_3 = 1 \)), then the polynomial \(U_t(x) \) has \(2^{d_1} - 2 \) roots (which are elements of \(\mathbb{F}_{2^{d_1}} \)) distinct from 0 and 1. Recalling the arguments that we have used for the proof of Theorem 3, we obtain in this case the following expression:
\[
B_3 = \frac{2^m - 1}{6} \left(2^{d_1} - 2 \right),
\]
which coincides with (10) for the case \(\delta_2 = \delta_3 = 1 \). Let now \(\delta_1 > 1 \) and \(\delta_2 > 1 \), but \(\delta_3 = 1 \). Then the polynomial \(U_t(x) \) has \(2^{d_1} - 2 \) roots (elements of \(\mathbb{F}_{2^{d_1}} \)) distinct from 0 and 1 and \(2^{d_2} - 2 \) roots (elements of \(\mathbb{F}_{2^{d_2}} \)) distinct from 0 and 1. Since the intersection of these fields is only the subfield \(\mathbb{F}_2 = \{0,1\} \), in this case the polynomial \(U_t(x) \) has \((2^{d_1} - 2) + (2^{d_2} - 2) \) different roots distinct from 0 and 1. This gives that the number of codewords of weight three is
\[
B_3 = \frac{2^m - 1}{6} \left(((2^{d_1} - 2) + (2^{d_2} - 2) \right),
\]
which exactly agrees with the lower bound of Theorem 4. Thus, for this case that bound is exact. Let now all \(\delta_i > 1 \), \(i = 1, 2, 3 \). This means that the intersection of \(\mathbb{F}_{2^{d_1}} \) and \(\mathbb{F}_{2^{d_2}} \) is a subfield \(\mathbb{F}_{2^{d_3}} \). Therefore, in this case the polynomial \(U_t(x) \) has
\[
(2^{d_1} - 2) + (2^{d_2} - 2) - (2^{d_3} - 2)
\]
different roots, which gives the corresponding expression for \(B_3 \). The case \(t = 2^u - 2^v + 1 \) is quite similar. The fact that \(U_t(x) \) is divisible by the polynomial (10), i.e., that \(U_t(x) \) has multiple roots, does not influence the number of weight-3 codewords corresponding to the divisor \(\delta_1 \) of \(m \). The derivation of the expression for \(B_3 \) is similar to the previous case \(\Delta \).

4. The case \(g = 3 \)

In this section, we treat the case \(g = 3 \), i.e., the case where codes are of length \(n = 2^m - 1 \), and 3 divides \(m \). Let \(C = C_{1,t_2} \), to be a binary cyclic code generated by the polynomial \(g(x) = m_1(x) \) \(m_1(x) \), where the integers \(t_i, 0 < i_j < n \), are in distinct cyclotomic cosets modulo \(n \). All such integers \(t_i \) (representatives of the cyclotomic cosets modulo \(n \)) belong to one of three cyclotomic cosets modulo \(t_i \), namely, \(K_3(0), K_3(1) \), and \(K_3(2) \). As above, denote by \(J(r) \) the set of all such integers \(t_i \) that belonging to \(K_3(r) \), where \(r = 0, 1, 3 \).

Proposition 6. Let 3 divide \(m \). Let integers \(t_1, \ldots, t_3 \) (representatives of distinct cyclotomic cosets modulo \(n = 2^m - 1 \)), where \(\gcd(n, t_1, \ldots, t_3) = 1 \), be such that \(\{t_1, \ldots, t_3\} \subseteq K_3(r), r \in \{1, 3\} \). Then
(a) the cyclic code \(C = C_{1,1,4} \) has minimum distance \(d = 3 \);
(b) the number \(B_3 \) for \(C \) satisfies the inequality \(B_3 \geq 2^m - 1 \);
(c) these codewords are the trinomials \(c_h(x) = 1 + x^{(h/r)} + x^{u(3/r)} \) and all their cyclic shifts, where \(h \in \{1, 2\}, u = (2^m - 1)/7 \), and the quotients \(h/r \) and \(3/r \) are calculated in the ring \(\mathbb{Z}_7 \).

Proof. By Theorem 2, the code \(C \) has minimum distance three. Let \(\gamma \) be a primitive element of the field \(\mathbb{F}_{2^m} \). Then \(\beta = \gamma^u \), where \(u = (2^m - 1)/7 \), is a primitive element of the field \(\mathbb{F}_8 \), the latter being a subfield of \(\mathbb{F}_{2^m} \). Since
\[
x^2 + 1 = (x^3 + x + 1) (x^3 + x^2 + 1) (x + 1),
\]
the minimal polynomial of \(\beta \) over \(\mathbb{F}_2 \) is \(m_1(x) = 1 + x^h + x^3 \), where \(h \) is either 1 or 2. Assume, for instance, that it is \(m_1(x) \), i.e., \(1 + \beta + \beta^3 = 0 \), and let
\[
f(x) = 1 + x^{(1/r)} + x^{(3/r)},
\]
where the division is made in the ring \(\mathbb{Z}_7 \). Then the polynomial \(c(x) = f(x^u) \) is a codeword of the code \(C = C_{1,1,4} \), for any \(i_1, \ldots, i_4 \), from the set \(J(r) \). In particular, \(c(x) \) is a codeword of the code \(C_{J(r)} \) (see the proof of Theorem 3). If \(r = 1 \), then \(c(x) = 1 + x^u + x^{3u} \). The condition \(i \in J(1) \) means that \(i = 7i_1 + i_2 \), where \(i_2 \in K_3(1) \) (i.e., \(i_2 = 2^i \)). Therefore, for such \(i \) we have
\[
c(y) = 1 + \gamma^{i_2u} + \gamma^{3i_2u}
= 1 + \beta^{i_2} + \beta^{3i_2}
= (1 + \beta + \beta^3)^{i_2} = 0.
\]

If \(r = 3 \), then \(c(x) = 1 + x^{(1/3)} + x^{2u} \). Since \(\beta^{1/3} = \beta^3 \), we have \(c(x) = 1 + x^u + x^{5u} \). With the help of cyclic shifts by \(2u \) positions, we obtain
\[
c'(x) = x^{2u} c(x) = 1 + x^{2u} + x^{3u}.
\]
Similarly, the condition \(i \in J(3) \) means that \(i = 7i_1 + i_2 \), where \(i_2 \in K_3(3) \) (i.e., \(i_2 = 2^2 \)). Therefore, we have
\[
c'(y) = 1 + \gamma^{2i_2u} + \gamma^{3i_2u}
= 1 + \beta^{2i_2} + \beta^{3i_2}
= (1 + \beta^6 + \beta^9)^{i_2}
= (1 + \beta + \beta^3)^{2i_2} = 0.
\]

Thus, we have proved that the polynomial \(1 + x^u + x^{3u} \) and all its cyclic shifts are codewords of a code \(C_{i_1, \ldots, i_4} \), where \(\{i_1, \ldots, i_4\} \) is any (nonempty) subset of \(J(1) \), while the polynomial \(1 + x^{2u} + x^{3u} \) and all its cyclic shifts are codewords of a code \(C_{i_1, \ldots, i_2} \), where \(\{i_1, \ldots, i_2\} \) is any (nonempty) subset of \(J(3) \). So for any such code \(C \) we have \(B_3 \geq 2^m - 1 \). For the code \(C_{J(r)} \), where \(r \in \{1, 3\} \), this number is exactly the maximal possible number (see Theorem 3). \(\triangle \)

For the code \(C_{3,5} \), the divisibility of \(m \) by 3 is a necessary and sufficient condition for \(d_{3,5} = 3 \). For the proof we apply the method used in [9].

Proposition 1. The code \(C_{3,5} \) of length \(2^m - 1 \) has distance \(d_{3,5} = 3 \) if and only if 3 divides \(m \). In this case, its minimum-weight codewords are exactly all \(B_3 = 2^m - 1 \) codewords of weight three of the code \(C_{J(3)} \). If 3 does not divide \(m \), the code \(C_{3,5} \) has minimum distance \(d_{3,5} \geq 4 \).

Proof. Note that \(C_{3,5} \) cannot have minimum distance two because \(\text{gcd}(3, 5) = 1 \). Therefore, we assume that there is a codeword \(c(x) \) of weight three in \(C_{3,5} \) given by its locators \(\{X_1, X_2, X_3\} \). Define the locator polynomial of \(c(x) \) as
\[
s(x) = \prod_{i=1}^3 (1 - X_i z) = 1 + \sigma_1 x + \sigma_2 x^2 + \sigma_3 x^3,
\]
where

\[
\sigma_1 = X_1 + X_2 + X_3 + X_1 X_2 + X_1 X_3 + X_2 X_3
\]
\[
\sigma_2 = X_1 X_2 + X_1 X_3 + X_2 X_3 - X_1 - X_2 - X_3
\]
\[
\sigma_3 = -1.
\]
<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>g</th>
<th>B₃</th>
<th>r</th>
<th>J(r), Representatives of Cosets</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>63</td>
<td>6</td>
<td>2</td>
<td>21</td>
<td>1</td>
<td>1, 5, 7, 11, 13, 23, 31</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>63</td>
<td>1</td>
<td>9</td>
<td>1, 9, 11, 15, 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5, 13, 27, 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>8</td>
<td>2</td>
<td>85</td>
<td>1</td>
<td>1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 43, 47, 53, 55, 59, 61, 85, 91, 95, 119, 127</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>595</td>
<td>1</td>
<td>17, 19, 23, 31, 47, 53, 61, 91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>11, 13, 29, 37, 43, 59, 119, 127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>9</td>
<td>3</td>
<td>511</td>
<td>1</td>
<td>1, 9, 11, 15, 23, 25, 29, 37, 39, 43, 51, 53, 57, 79, 85, 93, 95, 107, 109, 123, 127, 183, 191, 219, 239</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5, 13, 17, 19, 27, 31, 41, 45, 47, 55, 59, 61, 73, 75, 83, 87, 103, 111, 117, 125, 255, 171, 187, 223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5115</td>
<td>1</td>
<td>33, 35, 39, 47, 63, 95, 101, 109, 125, 219, 157, 159, 171, 187, 343, 221</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17, 37, 43, 55, 79, 99, 105, 117, 127, 167, 179, 189, 375, 347, 223, 251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>9, 41, 49, 51, 71, 103, 111, 165, 173, 175, 191, 351, 235, 237, 253, 439</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>259</td>
<td>15, 23, 27, 29, 61, 77, 85, 89, 91, 123, 147, 151, 511, 213, 215, 247, 495</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and its power sum symmetric functions

\[S_k = X_1^k + X_2^k + X_3^k, \quad k \in \{0, 1, \ldots, n-1\}. \]

It is known that the elements \(\sigma_1 \) and functions \(S_k \) are related by the Newton identities. This means that they satisfy the relations

\[
\begin{align*}
S_1 + \sigma_1 &= 0, \\
S_3 + S_2 \sigma_1 + S_1 \sigma_2 + \sigma_3 &= 0, \\
S_5 + S_4 \sigma_1 + S_3 \sigma_2 + S_2 \sigma_3 &= 0.
\end{align*}
\]

Taking cyclic shifts of the codeword \(c(z) \), we can assume \(S_1 = 1 \). Furthermore, by the definition of \(C_{3,5} \), we have \(S_3 = S_5 = 0 \). Thus, by (11) we obtain

\[\sigma_1 = S_1 = 1, \quad \sigma_2 = 0, \quad \sigma_3 = 1 \]
(recall that $S_3 = S_3^2$) Then $\sigma_\epsilon(z) = 1 + z + z^3$ is the unique locator polynomial up to a cyclic shift for a codeword of weight three. But this polynomial splits in the field of order 2^m if and only if 3 divides m. Therefore, $C_{3,4}$ has minimum distance $d_{3,5} = 3$ if and only if 3 divides m. Otherwise, $d_{3,5} \geq 4$. The number B_3 for this code equals n (i.e., the number of different cyclic shifts of the polynomial $\sigma_\epsilon(z) = 1 + z + z^3$).

5. A table of codes with $d \leq 3$

To illustrate the results of the previous sections, we give a table of binary cyclic codes of length $n = 2^{2r} - 1$ with minimum distance $d \leq 3$ (Table 1). For any divisor g of m and for any coset representative g modulo $2^r - 1$, where r and $2^r - 1$ are coprime, a complete list $J(r)$ of representatives of cosets modulo n is given. Any cyclic code C_f generated by the polynomial

$$m_j = \prod_{i \in I} m_i(x),$$

where I is any nonempty subset of $J(r)$, has minimum distance $d \leq 3$. If it satisfies the conditions of Lemma 1, then $d = 2$. The number $B_3 \geq r$, where B is defined by (3) and is given in the table, can be evaluated according to Theorems 3, 4, and 5.

The authors are indebted to N. Sendrier [10] for checking some numerical results with his own programs.

REFERENCES