INFORMATION THEORY AND CODING THEORY

ON BINARY CYCLIC CODES WITH MINIMUM DISTANCE d = 3

P. Charpin, A. Tietäväinen, and V. Zinoviev

UDC 621 391 15

We consider binary cyclic codes of length 2^m-1 generated by a product of two or several minimal polynomials. Sufficient conditions for the minimum distance of such a code to be equal to three are found.

1. Introduction

Denote the finite field of order q, $q = 2^m$, $m \ge 4$, by \mathbb{F}_q . Let γ be a primitive element of \mathbb{F}_{2^m} and $m_i(x)$ be the minimal polynomial of γ^i over \mathbb{F}_2 . We assume that $0 \le i < j \le 2^m - 2$ and that i and j, $0 \le i < j \le 2^m - 2$, are not in the same cyclotomic coset modulo $n = 2^m - 1$. Denote the binary cyclic code of length n with generator $m_i(x)m_j(x)$ by $C_{i,j}(m)$ or, briefly, by $C_{i,j}$. The minimum distance of $C_{i,j}$ is denoted by $d_{i,j} = d_{i,j}(m)$.

It is well known [1] that the case (i,j) = (1,3) corresponds to the 2-error-correcting BCH codes. The following pairs (i,j) also define codes with minimum distance five (of course, there are many equivalent pairs): $(1,2^l+1)$ if $gcd(\ell,m) = 1$ (see [1, Sec 15.4]); $(1,2^{2\ell}-2^\ell+1)$ for odd m if $gcd(\ell,m) = 1$ (see [2, 3]) and for even m if $m/gcd(\ell,m)$ is odd (see [2]) and if $gcd(\ell,m) = 1$ (see [4]). On the other hand, it was proved in [5] that for fixed t ($t \equiv 3 \pmod 4$), $t \ge 4$) there is no infinite family of codes $C_{1,i}(m)$ with minimum distance 5. It is natural to try to characterize all pairs (i,j) that give codes with a certain minimum distance d, where d = 2, 3, 4, or 5. If d = 2, this can easily be done (see Lemma 1). However, in all other cases the task is certainly much more difficult. In this paper we consider the case d = 3.

We consider also (binary cyclic) codes C_{i_1,\dots,i_s} whose generating polynomial is the product of one or several minimal functions $m_{i_1}(x),\dots,m_{i_s}(x)$. We find sufficient conditions (Theorems 1 and 2) for the cyclic code C_{i_1,\dots,i_s} to have minimum distance d=3. We also find lower bounds on the number of codewords of weight three (Theorems 3 and 4). The codes $C_{1,t}$ are investigated in a more detailed way. In the case $t=2^u\pm(2^v-1)$ we give necessary and sufficient conditions that $d_{1,t}$ equals three (Theorem 5). The results of this paper were in part announced in [6]

As usual, we identify the vector $c = (c_0, \dots, c_{n-1}) \in \mathbb{F}_2^n$ and the polynomial

$$c(x) = \sum_{\ell=0}^{n-1} c_{\ell} x^{\ell} \in \mathbb{F}_2[x]/(x^n+1)$$

A vector c is an element of $C_{i,j}$ if and only if

$$c(\gamma^i) = c(\gamma^j) = 0. (1)$$

Thus, $d_{i,j} \leq 3$ if there is a trinomial $c(x) = 1 + x^h + x^b$, $1 \leq h < b < n$, such that Eqs. (1) are valid. We begin with a simple example (mentioned in [7] for the case (i,j) = (1,7)). Let m be even. Then 3 divides $2^m - 1$. Denote $(2^m - 1)/3$ by u. Then γ^u (denote it by $\beta = \gamma^u$) is a primitive element of \mathbb{F}_4 and,

Translated from Problemy Peredachi Informatsii, Vol. 33, No. 4, pp. 3-14, October-December, 1997. Original article submitted June 18, 1996.

therefore, the minimal polynomial of β is $1 + x + x^2$. If we choose $c(x) = 1 + x^u + x^{2u}$, we see that Eqs. (1) are valid for all i and j which are not divisible by 3. Thus, we have proved the following result.

Proposition 1. Let m, m > 2, be even and $i, j, 1 \le i < j \le 2^m - 2$, be arbitrary integers. If gcd(i,3) = gcd(j,3) = 1, then the code $C_{i,j}$ of length $2^m - 1$ has distance $d_{i,j} \le 3$.

In the sequel, we generalize this observation for the case where m has an arbitrary divisor $g \ge 2$. This approach gives a way of characterizing some infinite classes of codes with minimum distance $d \ge 3$.

2. General results

First, we characterize the codes $C_{i,j}$ with minimum distance $d_{i,j} = 2$.

Lemma 1. Let $i, j, 0 \le i < j \le 2^m - 2$, be arbitrary integers that do not belong to the same cyclotomic coset modulo $2^m - 1$. Then the binary cyclic code $C_{i,j}$ of length $n = 2^m - 1$ with generating polynomial $g(x) = m_i(x)m_j(x)$ has distance $d_{i,j} = 2$ if and only if gcd(n, i, j) > 1.

PROOF. Since γ is a primitive nth root of unity, $d_{i,j} = 2$ if and only if there exist k and ℓ , $0 \le \ell < k < n$, such that

$$\gamma^{ki} = \gamma^{\ell i}, \qquad \gamma^{kj} = \gamma^{\ell j}$$

or, equivalently,

$$(k-\ell)i \equiv (k-\ell)j \equiv 0 \pmod{n}$$

Both congruences are valid if and only if $n/\gcd(n,i,j)$ divides $k-\ell$. Therefore, such k and ℓ exist if and only if $\gcd(n,i,j) > 1$. Δ

Definition. Denote by $K_g(r)$ the cyclotomic coset of r modulo $2^g - 1$, i.e.,

$$K_g(r) = \{r2^k \pmod{2^g - 1} : k = 0, 1, \dots, g - 1\}$$

For any integer i, $0 \le i \le 2^m - 2$, we say that i belongs to $K_g(r)$ if an integer j, $j = 0, 1, \dots, g - 1$, exists such that $i2^j \equiv r \pmod{2^g - 1}$.

Theorem 1. Let $i, j, 0 < i < j < 2^m - 1$, be arbitrary integers that do not belong to the same cyclotomic coset modulo $2^m - 1$. Let g be an arbitrary divisor of m. If there exists an integer $r, 0 < r < 2^g - 1$, where $\gcd(r, 2^g - 1) = 1$, such that both i and j are in $K_g(r)$, then the binary cyclic code $C_{i,j}$ of length $2^m - 1$ generated by the polynomial $g(x) = m_i(x)m_j(x)$ has minimum distance $d_{i,j} \le 3$. If, moreover, $\gcd(n, i, j) = 1$, then $d_{i,j} = 3$.

PROOF. If γ is a primitive element of \mathbb{F}_q , $q=2^m$, then [8] the element $\beta=\gamma^u$, where $u=(2^m-1)/(2^g-1)$, is a primitive element of \mathbb{F}_{2^g} . Let b be an integer in the interval $[1,2^g-2]$ such that

$$1 + \beta + \beta^b = 0$$

Define

$$c(x) = 1 + x^{u(1/r)} + x^{u(b/r)}, (2)$$

where the quotients 1/r and b/r are calculated in the ring \mathbb{Z}_{2^g-1} of integers modulo 2^g-1 and, therefore, lie in the interval $[1, 2^g-2]$. We claim that c(x) is a codeword of $C_{i,j}$. To check this, it suffices to show that both γ^i and γ^j are roots of the polynomial c(x). Indeed, since $i \in K_g(r)$, nonnegative integers k and ℓ exist such that

$$i = \ell(2^g - 1) + 2^k \tau$$

Thus,

$$c(\gamma^{i}) = 1 + \gamma^{ui(1/r)} + \gamma^{ui(b/r)}$$

$$= 1 + \beta^{i(1/r)} + \beta^{i(b/r)}$$

$$= 1 + \beta^{2^{k}r(1/r)} + \beta^{2^{k}r(b/r)}$$

$$= 1 + \beta^{2^{k}} + \beta^{b2^{k}}$$

$$= (1 + \beta + \beta^{b})^{2^{k}} = 0$$

Similarly we can show that $c(\gamma^j) = 0$. Thus, we have proved that c(x) of type (2) belongs to $C_{i,j}$ and, therefore, the minimum distance of this code is $d \leq 3$. If now gcd(n, i, j) = 1, then by Lemma 1 the code C has distance d > 2, whence it follows that d = 3. \triangle

Note that Proposition 1 is a particular case (g = 2) of the first statement of Theorem 1.

As follows from the proofs, the statements given above (i.e., Lemma 1 and Theorem 1) can be generalized to the case where the code C is generated by a polynomial g(x) which is a product of several minimal functions. In particular, the following generalization of Theorem 1 is valid.

Theorem 2. Let i_1, \ldots, i_s , $0 < i_1 < \ldots < i_s < 2^m - 1$, be arbitrary integers that belong to distinct cyclotomic cosets modulo $2^m - 1$. Let g be an arbitrary divisor of m. If there exists an integer r, $0 < r < 2^g - 1$, where $\gcd(r, 2^g - 1) = 1$, such that all integers i_1, \ldots, i_s are in $K_g(r)$, then the binary cyclic code C_{i_1,\ldots,i_s} of length $2^m - 1$ generated by the polynomial $g(x) = m_{i_1}(x) - m_{i_s}(x)$ has minimum distance $d_{i_1,\ldots,i_s} \leq 3$. If, moreover, $\gcd(n,i_1,\ldots,i_s) = 1$, then $d_{i_1,\ldots,i_s} = 3$.

We emphasize that Theorems 1 and 2 give only sufficient conditions that the binary cyclic code $C = C_{i_1,\dots,i_r}$ has minimum distance $d_{i_1,\dots,i_r} = 3$. For such a code C, we now try to estimate the number of codewords of weight three (denote it by B_3). We need some notations. Let I(r) be the set of all integers i in [1, n-1] such that $i \in K_g(r)$ (see Definition). Clearly, I(r) is a join of cosets modulo n. Denote by J(r) a set of representatives of these cosets and denote by $C_{J(r)}$ the binary cyclic code of length n generated by the polynomial

$$g_{J(r)}(x) = \prod_{i \in J(r)} m_i(x).$$

Theorem 3. Let i_1, \ldots, i_s , $0 < i_1 < \ldots < i_s < 2^m - 1$, be arbitrary integers, g be an arbitrary divisor of m, and an integer r, $0 < r < 2^g - 1$, where $\gcd(r, 2^g - 1) = 1$, be such that $\{i_1, \ldots, i_s\} \subseteq J(r)$. Then B_3 for the binary cyclic code C_{i_1, \ldots, i_s} of length $2^m - 1$ satisfies the inequality

$$B_3 \ge B = (2^m - 1)(2^g - 2)/6. \tag{3}$$

For the code $C_{J(r)}$, i.e., if $\{i_1, \ldots, i_s\} = J(r)$, the inequality in (3) turns into the equality.

PROOF. Let $u = (2^m - 1)/(2^g - 1)$. Then the order of the element $\beta = \gamma^u$ is $2^g - 1$ and, therefore, β is a primitive element of the field \mathbb{F}_{2^g} of order 2^g , the latter being a subfield of \mathbb{F}_{2^m} .

For each integer a, $1 \le a \le 2^g - 2$, there is exactly one integer b in the interval $[1, 2^g - 2]$ such that

$$1 + \beta^a + \beta^b = 0, \tag{4}$$

and, of course, $b \neq a$. Thus, there are exactly $(2^g - 2)/2$ pairs (a, b), $1 \leq a < b \leq 2^g - 2$, such that the trinomial

$$c(x) = 1 + x^{u(a/r)} + x^{u(b/r)}$$
(5)

(where the quotients a/r and b/r are calculated in the ring \mathbb{Z}_{2^g-1}) is a codeword of any such code $C = C_{i_1,\dots,i_s}$. Hence, we have found $(2^g-2)/2$ weight-3 codewords of type (5) that belong to C. From any such codeword we obtain, by shifting, $n=2^m-1$ codewords of the type

$$x^{t}c(x) = x^{t} + x^{t+u(a/r)} + x^{t+u(b/r)}, \quad t = 0, 1, \dots, 2^{m} - 2$$
 (6)

Thus, we have obtained the set of $(2^m - 1)(2^g - 2)/2$ codewords of weight 3. But it is easily seen from the construction that each word is obtained exactly three times. Thus, the number B_3 of codewords of weight three in C_{i_1,\dots,i_s} satisfies the inequality (3).

Assume now that $C = C_{J(r)}$. Consider an arbitrary weight-3 word of this code with locators $\{1, \gamma^a, \gamma^b\}$. Then, by the definition,

$$1 + \gamma^{a(\ell(2^g - 1) + r)} + \gamma^{b(\ell(2^g - 1) + r)} = 0$$

for any $\ell \in [0, u-1]$, $u = (2^m - 1)/(2^g - 1)$. Therefore, by adding to any such equality the first equation (which corresponds to the case $\ell = 0$), we obtain

$$\gamma^{ar} \left(\gamma^{a\ell(2^g-1)} + 1 \right) + \gamma^{br} \left(\gamma^{b\ell(2^g-1)} + 1 \right) = 0$$

for any ℓ . Thus, the polynomial

$$Q(x) = \gamma^{ar}(x^a + 1) + \gamma^{br}(x^b + 1)$$

has as its roots all u elements of the type $\lambda_{\ell} = (\gamma^{\ell})^{2^{g}-1} = \beta^{\ell}$, where $\ell \in [0, u-1]$. Since each such element λ_{ℓ} is a uth root of unity, the polynomial $x^{u}+1$ (which has as its u roots all these u elements λ_{ℓ}) should divide Q(x). So the remainder R(x) of Q(x) modulo x^u+1 must be the zero polynomial. We have

$$R(x) = \gamma^{ar}(x^{a'}+1) + \gamma^{br}(x^{b'}+1),$$

where a' < u, b' < u, $a' \equiv a \pmod{u}$, and $b' \equiv b \pmod{u}$. The equation R(x) = 0 is satisfied if and only if one of the following conditions holds:

- (i) $\gamma^{ar} = \gamma^{br} \text{ and } a' = b';$ (ii) $x^{a'} = 1 \text{ and } x^{b'} = 1.$

Condition (i) is impossible, because $\gamma^{ar} + \gamma^{br}$ equals 1 So, (ii) holds, proving that a' = b' = 0. Therefore, u divides a and b. Hence, any weight-3 codeword of the code $C_{J(r)}$ (up to a shift t) is of the form (6) Therefore, the number B_3 (of weight-3 codewords in $C_{J(r)}$) equals B, i.e., corresponds to the equality in

It is difficult to determine the number of codewords of weight three for an arbitrary code C_{i_1,\dots,i_r} . We give here a statement which is a natural generalization of Theorem 3.

Theorem 4. Let $i_1, \ldots, i_s, 1 \leq i_1 < \ldots < i_s \leq 2^m - 2$, be arbitrary integers. Let $\{g_1, \ldots, g_k\}$ be distinct divisors of m such that $gcd(g_h, g_\ell) = 1$ for any $1 \le h < \ell \le k$. If there exist k integers r_h , where $1 \le r_h \le 2^{g_h} - 2$, $\gcd(r_h, 2^{g_h} - 1) = 1$, such that

$$\{i_1,\ldots,i_s\}\subseteq K_{g_h}(r_h)$$

for any h (h = 1, ..., k), then the number B_3 of codewords of weight three in $C_{i_1,...,i_k}$ satisfies the inequality

$$B_3 \geq \frac{2^m - 1}{6} \sum_{h=1}^k (2^{g_h} - 2).$$

PROOF Recalling the arguments that we used in the proof of Theorem 3, we see that for any $h, h \in$ $\{1,\ldots,k\}$, in $C=C_{i_1,\ldots,i_s}$ there are exactly $(2^m-1)(2^{g_k}-2)/6$ weight-3 codewords of the form

$$c_h(x) = x^t + x^{t+u_h(a_1/r_h)} + x^{t+u_h(a_2/r_h)}$$

where $t \in \{0, 1, \dots, 2^m - 2\}$, $u_h = (2^m - 1)/(2^{g_h} - 1)$, the integers a_1 and a_2 , $1 \le a_1 < a_2 \le 2^{g_h} - 2$, are defined by the equation

$$1 + \beta_h^{a_1} + \beta_h^{a_2} = 0$$

(here $\beta_h = \gamma_h^{u_h}$ is a primitive element of the field $\mathbb{F}_{2^{g_h}}$), and the quotients a_1/r_h and a_2/r_h are calculated in the ring of integers modulo $2^{g_k} - 1$ Therefore, to prove Theorem 4, it suffices to show that $c_h(x)$ does not coincide with a codeword of another type, say, of type $c_{\ell}(x)$ (which corresponds, for instance, to a divisor $g_{\ell} \in \{g_1, \ldots, g_k\} \text{ of } m),$

$$c_{\ell}(x) = x^{v} + x^{v+u_{\ell}(b_{1}/r_{\ell})} + x^{v+u_{\ell}(b_{2}/r_{\ell})}, \quad h \neq \ell.$$

Assume the contrary, i.e., $c_h(x) = c_\ell(x)$. Then the quotients of the locators of $c_h(x)$ and $c_\ell(x)$ are, respectively, γ^{uh} and $\gamma^{u\ell}$. Since $lcm(u_h, u_\ell) = (2^m - 1)/gcd(2^{gh} - 1, 2^{g\ell} - 1) = 2^m - 1$, they are equal to I, which provides a contradiction Δ

Example 1. Let m=6. Then the divisors of m are the numbers 2 and 3. Since 1, 11, and 23 belong to both the coset $K_2(1)$ and the coset $K_3(1)$, all the (binary cyclic) codes $C_{1,11}$, $C_{1,23}$, $C_{11,23}$, and $C_{1,11,23}$ have minimum distance d=3 by Theorem 2. Then, by Theorem 4, we have $B_3 \geq 84$. In this case, this bound is attained for all codes mentioned above

3. The codes $C_{1,t}$

In this section, we consider cyclic codes $C_{1,t}$ of length $n=2^m-1$ with roots γ and γ^t , where an integer t is not a power of 2. Note that if n is a prime, then any code $C_{i,j}$ is equivalent to some code $C_{1,t}$. The code $C_{1,t}$ has a codeword of weight three if and only if there are two distinct nonzero elements α_1 and α_2 of \mathbb{F}_{2^m} which satisfy

$$\alpha_1^t + \alpha_2^t + (\alpha_1 + \alpha_2)^t = 0.$$

Since $C_{1,t}$ is cyclic, we can take $\alpha_1 = 1$. Thus, we have the following result.

Proposition 2. The code $C_{1,t}$ has minimum distance $d_{1,t}=3$ if and only if the polynomial

$$U_t(x) = 1 + x^t + (1+x)^t$$

has at least one root in $\mathbb{F}_{2^m} \setminus \{0,1\}$.

PROOF. By Theorem 1 we know that if $t = (2^g - 1)\ell + 2^k$ for some k < g, where g divides m, then $C_{1,t}$ has minimum distance $d_{1,t} = 3$. Here we want to generalize this result and also to obtain sufficient conditions that $d_{1,t} > 3$. Moreover, we want to present some cases where the bound on B_3 given in Theorem 4 is attained.

Example 2. For some t, the minimum distance is at least 4 when m is odd. Take, for example, t = 13 Then the polynomial

$$U_{13}(x) = x(1+x)(x^2+x+1)^5$$

has roots in $\mathbb{F}_{2^m} \setminus \{0, 1\}$ if and only if m is even. Thus, according to Proposition 2, $d_{1,13} \ge 4$ if and only if m is odd.

Example 3. The next case, t = 21, is a little more complicated. We have

$$U_{21}(x) = x(1+x)(x^6+x^3+1)(x^6+x^4+x^3+x+1)(x^6+x^5+x^3+x^2+1)$$

Hence, the minimum distance of $C_{1,21}$ is at least 4 if and only if 6 does not divide m. Note that this last case is not covered by Theorem 1.

Now, we have two observations. First, $U_t(x)$ is a product of minimal polynomials over \mathbb{F}_2 . This is because

$$U_t(\beta^2) = 1 + \beta^{2t} + (1 + \beta^2)^t = (1 + \beta^t + (1 + \beta)^t)^2 = (U_t(\beta))^2,$$

and, therefore, whenever β is a root of $U_t(x)$, the element β^2 is a root, too. Second, we have the following statement.

Proposition 3. Let m be a prime and t be an integer such that 1 < t < m+3. Then the code $C_{1,t}$ of length 2^m-1 has minimum distance $d \ge 4$.

PROOF The polynomial $U_t(x)$ has degree t-1. Moreover, the elements 0 and 1 are roots of $U_t(x)$. Therefore, $U_t(x)$ may be represented in the form $U_t(x) = (x^2 + x)V_t(x)$, where the degree of $V_t(x)$ is t-3. If an element $\beta \in \mathbb{F}_{2^m}$ exists such that $V_t(\beta) = 0$, then the minimal polynomial of β divides $V_t(x)$ and should have degree m. This contradicts the latter assumption of the proposition Δ

Furthermore, we have the following fact.

Proposition 4. Let g and $t \geq 3$ be arbitrary integers such that $2^g < t$ and assume that the equivalence

$$t \equiv 2^k \pmod{2^g - 1}$$

holds for some integer $k, k \ge 1$ Then the polynomial $x^{2^g} + x$ divides $U_t(x)$, i.e., all elements of the field \mathbb{F}_{2^g} are roots of $U_t(x)$.

PROOF Let β be a nonzero element of \mathbb{F}_{2^g} , i.e., $\beta^{2^g-1}=1$ Then we have

$$U_t(\beta) = 1 + \beta^t + (1 + \beta)^t = 1 + \beta^{2^k} + (1 + \beta)^{2^k} = 0.$$
 \triangle

Proposition 5. Let u, v, $1 \le v < u$, be arbitrary integers and let $t = 2^u \pm (2^v - 1)$. Then

$$U_t(x) = \begin{cases} (x^{2^u} + x) (x^{2^v} + x) / (x^2 + x) & \text{if } t = 2^u + 2^v - 1, \\ (x^{2^u} + x) \left(\frac{x^{2^{u-v}} + x}{x^2 + x}\right)^{2^v} & \text{if } t = 2^u - 2^v + 1. \end{cases}$$
(7)

PROOF. First consider the case $t = 2^u + 2^v - 1$. The condition $t \equiv 2^v \pmod{2^u - 1}$ and Proposition 4 imply that

$$(x^{2^n}+x)\mid U_t(x).$$

Similarly, from the condition $t \equiv 2^u \pmod{2^v - 1}$ we obtain that

$$(x^{2^*}+x)\mid U_t(x).$$

Define

$$L(x) = \frac{(x^{2^*} + x)(x^{2^*} + x)}{x(x+1)}.$$

It is clear that the degree of L(x) is equal to t-1, i.e., it is exactly the degree of $U_t(x)$. This means that if gcd(u, v) = 1, then we have proved that $L(x) = U_t(x)$ Assume now that gcd(u, v) > 1 and consider the derivative of $U_t(x)$:

$$U'_t(x) = x^{t-1} + (1+x)^{t-1}$$

Let $\beta \in (\mathbb{F}_{2^*} \cap \mathbb{F}_{2^*}) \setminus \{0,1\}$, i.e., the conditions $\beta^{2^*-1} = 1$ and $\beta^{2^*-1} = 1$ hold simultaneously. Then, if β is neither 0 nor 1,

$$U_t'(\beta) = \beta^{2^{\mathsf{w}}-1+2^{\mathsf{w}}-1} + (1+\beta)^{2^{\mathsf{w}}-1+2^{\mathsf{w}}-1} = 1+1=0.$$

Set

$$W(x) = \frac{\gcd(x^{2^{*}} + x, x^{2^{*}} + x)}{x(x+1)}$$

Then we have proved that $(W(x))^2 \mid L(x)$. Therefore, in each case $L(x) = U_1(x)$.

Let now $t = 2^u - 2^v + 1$. Similarly to the previous case, the condition $t \equiv 2^u \pmod{2^v - 1}$ and Proposition 4 imply that $x^{2^v} + x$ divides $U_t(x)$. Since $t = 2^v(2^{u-v} - 1) + 1$, we have $t \equiv 1 \pmod{2^{u-v} - 1}$, and therefore $x^{2^{u-v}} + x$ also divides $U_t(x)$. Now let us show that $U_t(x)$ is actually divisible by the polynomial

$$\left(\frac{x^{2^{x-y}}+x}{x^2+x}\right)^{2^y} \tag{8}$$

This last condition is equivalent to the fact that for any element $\beta \in \mathbb{F}_{2^{\kappa-1}} \setminus \{0,1\}$ the polynomial $(x+\beta)^{2^{\kappa}}$ divides $U_t(x)$ Now represent $U_t(x)$ in the following form:

$$U_t(x) = 1 + x^t + (1+x)^t = 1 + x^{2^{\nu}(2^{\nu-\nu}-1)}x + (1+x)^{2^{\nu}(2^{\nu-\nu}-1)}(1+x)$$

Now, replacing x^{2^*} in the expression above by the element β^{2^*} , we can find the remainder, say, $R_t(x)$, of the division of $U_t(x)$ by $(x^{2^*} + \beta^{2^*})$ Since $\beta^{2^{*-*}-1} = 1$, we have

$$R_t(x) = 1 + \beta^{2^{v}(2^{u-v}-1)}x + \left(1 + \beta^{2^{v}}\right)^{2^{u-v}-1}(1+x) = 1 + x + (1+x) = 0$$

Thus, $U_t(x)$ is divisible by the polynomial (7). On the other hand, it is easy to see that the polynomials x^2 and $(1+x)^2$ do not divide $U_t(x)$. Now the second equality of (7) follows by comparing the degrees of both polynomials. \triangle

Using Proposition 5, we can now formulate the necessary and sufficient conditions for the code $C_{1,t}$, where $t=2^u\pm(2^v-1)$, to have minimum distance d=3. Also, these two classes of codes are interesting in the sense that the lower bound on B_3 in Theorem 4 is exact.

Theorem 5. Let $u, v, 1 \le v < u$, be arbitrary integers and let $t = 2^u \pm (2^v - 1)$. Denote

$$\delta_1 = \begin{cases} \gcd(m, u) & \text{if } t = 2^u + 2^v - 1, \\ \gcd(m, u - v) & \text{if } t = 2^u - 2^v + 1, \end{cases}$$
(9)

and $\delta_2 = \gcd(m, v)$. Then the code $C_{1,t}$ has minimum distance $d_{1,t} \ge 4$ if and only if $\delta_1 = \delta_2 = 1$, and $d_{1,t} = 3$ otherwise. For the number B_3 of this code we have the following expression:

$$B_3 = \frac{2^m - 1}{6} \left(2^{\delta_1} + 2^{\delta_2} - 2^{\delta_3} - 2 \right), \tag{10}$$

where $\delta_3 = \gcd(\delta_1, \delta_2)$.

PROOF. First, consider the case $t = 2^u + 2^v - 1$. If $\delta_1 = \delta_2 = 1$, then the polynomial

$$U_t(x) = (x^{2^x} + x)(x^{2^v} + x)/(x^2 + x)$$

has no roots in the field \mathbb{F}_{2^m} distinct from 0 and 1, and therefore $d_{i,t} \geq 4$. Otherwise, $C_{1,t}$ contains codewords of weight three Since we know all the roots of $U_t(x)$, we can write down the exact expression for the number B_3 in $C_{1,t}$. If $\delta_1 > 1$ but $\delta_2 = 1$ (and, therefore, $\delta_3 = 1$), then the polynomial $U_t(x)$ has $2^{\delta_1} - 2$ roots (which are elements of $\mathbb{F}_{2^{\delta_1}}$) distinct from 0 and 1. Recalling the arguments that we have used for the proof of Theorem 3, we obtain in this case the following expression:

$$B_3 = \frac{2^m - 1}{6} \left(2^{\delta_1} - 2 \right),$$

which coincides with (10) for the case $\delta_2 = \delta_3 = 1$. Let now $\delta_1 > 1$ and $\delta_2 > 1$, but $\delta_3 = 1$. Then the polynomial $U_t(x)$ has $2^{\delta_1} - 2$ roots (elements of $\mathbb{F}_{2^{\delta_1}}$) distinct from 0 and 1 and $2^{\delta_2} - 2$ roots (elements of $\mathbb{F}_{2^{\delta_2}}$) distinct from 0 and 1. Since the intersection of these fields is only the subfield $\mathbb{F}_2 = \{0, 1\}$, in this case the polynomial $U_t(x)$ has $(2^{\delta_1} - 2) + (2^{\delta_2} - 2)$ different roots distinct from 0 and 1. This gives that the number of codewords of weight three is

$$B_3 = \frac{2^m - 1}{6} \left((2^{\delta_1} - 2) + (2^{\delta_2} - 2) \right),$$

which exactly agrees with the lower bound of Theorem 4. Thus, for this case that bound is exact. Let now all $\delta_i > 1$, i = 1, 2, 3. This means that the intersection of $\mathbb{F}_{2^{\delta_1}}$ and $\mathbb{F}_{2^{\delta_2}}$ is a subfield $\mathbb{F}_{2^{\delta_3}}$. Therefore, in this case the polynomial $U_t(x)$ has

$$(2^{\delta_1}-2)+(2^{\delta_2}-2)-(2^{\delta_3}-2)$$

different roots, which gives the corresponding expression for B_3 . The case $t = 2^u - 2^v + 1$ is quite similar. The fact that $U_t(x)$ is divisible by the polynomial (10), i.e., that $U_t(x)$ has multiple roots, does not influence the number of weight-3 codewords corresponding to the divisor δ_1 of m. The derivation of the expression for B_3 is similar to the previous case Δ

4. The case q=3

In this section, we treat the case g=3, i.e., the case where codes are of length $n=2^m-1$, and 3 divides m. Let $C=C_{i_1,\ldots,i_r}$, be a binary cyclic code generated by the polynomial $g(x)=m_{i_1}(x)-m_{i_r}(x)$, where the integers i_j , $0 < i_j < n$, are in distinct cyclotomic cosets modulo n. All such integers i_h (representatives of the cyclotomic cosets modulo n) belong to one of three cyclotomic cosets modulo 7, namely, $K_3(0)$, $K_3(1)$, and $K_3(3)$. As above, denote by J(r) the set of all such integers i_h that belonging to $K_3(r)$, where r=0,1,3.

Proposition 6. Let 3 divide m. Let integers i_1, \dots, i_s (representatives of distinct cyclotomic cosets modulo $n = 2^m - 1$), where $gcd(n, i_1, \dots, i_s) = 1$, be such that $\{i_1, \dots, i_s\} \subseteq K_3(r)$, $r \in \{1, 3\}$ Then

(b) the number B_3 for C satisfies the inequality $B_3 \ge 2^m - 1$; (c) these codewords are the trinomials $c_h(x) = 1 + x^{u(h/r)} + x^{u(3/r)}$ and all their cyclic shifts, where $h \in \{1,2\}, u = (2^m - 1)/7$, and the quotients h/r and 3/r are calculated in the ring \mathbb{Z}_7 .

PROOF. By Theorem 2, the code C has minimum distance three. Let γ be a primitive element of the field \mathbb{F}_{2^m} . Then $\beta = \gamma^u$, where $u = (2^m - 1)/7$, is a primitive element of the field \mathbb{F}_8 , the latter being a subfield of F₂. Since

$$x^7 + 1 = (x^3 + x + 1)(x^3 + x^2 + 1)(x + 1),$$

the minimal polynomial of β over \mathbb{F}_2 is $m_h(x) = 1 + x^h + x^3$, where h is either 1 or 2. Assume, for instance, that it is $m_1(x)$, i.e., $1 + \beta + \beta^3 = 0$, and let

$$f(x) = 1 + x^{(1/r)} + x^{(3/r)},$$

where the division is made in the ring \mathbb{Z}_7 . Then the polynomial $c(x) = f(x^u)$ is a codeword of the code $C = C_{i_1,...,i_s}$ for any $i_1,...,i_s$ from the set J(r) In particular, c(x) is a codeword of the code $C_{J(r)}$ (see the proof of Theorem 3) If r=1, then $c(x)=1+x^u+x^{3u}$ The condition $i\in J(1)$ means that $i=7i_1+i_2$, where $i_2 \in K_3(1)$ (i.e., $i_2 = 2^{\ell}$). Therefore, for such i we have

$$c(\gamma^{i}) = 1 + \gamma^{iu} + \gamma^{3iu}$$

$$= 1 + \beta^{k_2} + \beta^{3k_2}$$

$$= (1 + \beta + \beta^{3})^{k_2} = 0$$

If r = 3, then $c(x) = 1 + x^{u(1/3)} + x^u$ Since $\beta^{1/3} = \beta^5$, we have $c(x) = 1 + x^u + x^{5u}$. With the help of cyclic shifts by 2u positions, we obtain

$$c'(x) = x^{2u}c(x) = 1 + x^{2u} + x^{3u}$$

Similarly, the condition $i \in J(3)$ means that $i = 7i_1 + i_2$, where $i_2 \in K_3(3)$ (i.e., $i_2 = 3 \cdot 2^{\ell}$). Therefore, we have

$$c'(\gamma^{i}) = 1 + \gamma^{2iu} + \gamma^{3iu}$$

$$= 1 + \beta^{2k_{2}} + \beta^{3k_{2}}$$

$$= (1 + \beta^{6} + \beta^{9})^{2^{i}}$$

$$= (1 + \beta + \beta^{3})^{2^{i+1}} = 0$$

Thus, we have proved that the polynomial $1 + x^u + x^{3u}$ and all its cyclic shifts are codewords of a code C_{i_1,\dots,i_s} , where $\{i_1,\dots,i_s\}$ is any (nonempty) subset of J(1), while the polynomial $1+x^{2u}+x^{3u}$ and all its cyclic shifts are codewords of a code C_{i_1,\ldots,i_s} , where $\{i_1,\ldots,i_s\}$ is any (nonempty) subset of J(3). So for any such code C we have $B_3 \geq 2^m - 1$. For the code $C_{J(r)}$, where $r \in \{1,3\}$, this number is exactly the maximal possible number (see Theorem 3). \triangle

For the code $C_{3,5}$, the divisibility of m by 3 is a necessary and sufficient condition for $d_{3,5}=3$. For the proof we apply the method used in [9].

Proposition 7. The code $C_{3,5}$ of length 2^m-1 has distance $d_{3,5}=3$ if and only if 3 divides m. In this case, its minimum-weight codewords are exactly all $B_3 = 2^m - 1$ codewords of weight three of the code $C_{J(3)}$. If 3 does not divide m, the code $C_{3,5}$ has minimum distance $d_{3,5} \geq 4$.

PROOF Note that $C_{3,5}$ cannot have minimum distance two because gcd(3,5) = 1. Therefore, we assume that there is a codeword c(x) of weight three in $C_{3,5}$ given by its locators $\{X_1, X_2, X_3\}$ Define the locator polynomial of c(x) as

$$\sigma_c(x) = \prod_{i=1}^3 (1 - X_i x) = 1 + \sigma_1 x + \sigma_2 x^2 + \sigma_3 x^3,$$

TABLE 1

n	m	g	B ₃	1.	J(r), Representatives of Cosets
15	4	2	5	1	1, 5, 7
63	6	2	21	1	1,5, 7, 11, 13, 23, 31
-		3	63	1	1, 9, 11, 15, 23
				3	3, 5, 13, 27, 31
255	8	2	85	1	1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 43, 47, 53, 55, 59, 61, 85, 91, 95, 119, 127
-		4	595	1	1, 17, 19, 23, 31, 47, 53, 61, 91
				7	7, 11, 13, 29, 37, 43, 59, 119, 127
511	9	3	511	1	1, 9, 11, 15, 23, 25, 29, 37, 39, 43, 51, 53, 57, 79, 85 93, 95, 107, 109, 123, 127, 183, 191, 219, 239
				3	3, 5, 13, 17, 19, 27, 31, 41, 45, 47, 55, 59, 61, 73, 75, 83, 87, 103, 111, 117, 125, 255, 171, 187, 223
1023	10	2	341	1	1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 71, 73, 77, 79, 83, 85, 89, 91, 95, 101, 103, 107, 109, 115, 119, 121, 125, 127, 149, 151, 511, 341, 155, 157, 167, 173, 175, 179, 181, 187, 191, 343, 347, 367, 205, 215, 221, 223, 235, 239, 245, 247, 251, 253, 379, 383, 439, 479
		5	5115	1	1, 33, 35, 39, 47, 63, 95, 101, 109, 125, 219, 157, 159, 171, 187, 343, 221
				3	3, 17, 37, 43, 55, 79, 99, 105, 117, 127, 167, 179, 189, 375, 347, 223, 251
				5	5, 9, 41, 49, 51, 71, 103, 111, 165, 173, 175, 191, 351, 235, 237, 253, 439
				7	7, 19, 25, 45, 59, 69, 87, 107, 121, 149, 255, 183, 205, 231, 245, 379, 479
				11	11, 13, 21, 53, 57, 73, 75, 83, 115, 119, 181, 363, 367, 207, 239, 383, 447
				15	15, 23, 27, 29, 61, 77, 85, 89, 91, 123, 147, 151, 511, 213, 215, 247, 495

and its power sum symmetric functions

$$S_k = X_1^k + X_2^k + X_3^k, \quad k \in \{0, 1, \dots, n-1\}.$$

It is known that the elements σ_i and functions S_k are related by the Newton identities. This means that they satisfy the relations

$$S_{1} + \sigma_{1} = 0,$$

$$S_{3} + S_{2}\sigma_{1} + S_{1}\sigma_{2} + \sigma_{3} = 0,$$

$$S_{5} + S_{4}\sigma_{1} + S_{3}\sigma_{2} + S_{2}\sigma_{3} = 0.$$
(11)

Taking cyclic shifts of the codeword c(x), we can assume $S_1 = 1$. Furthermore, by the definition of $C_{3,5}$, we have $S_3 = S_5 = 0$. Thus, by (11) we obtain

$$\sigma_1 = S_1 = 1, \qquad \sigma_2 = 0, \qquad \sigma_3 = 1$$

(recall that $S_{2k} = S_k^2$) Then $\sigma_c(x) = 1 + x + x^3$ is the unique locator polynomial up to a cyclic shift for a codeword of weight three. But this polynomial splits in the field of order 2^m if and only if 3 divides m. Therefore, $C_{3,5}$ has minimum distance $d_{3,5} = 3$ if and only if 3 divides m. Otherwise, $d_{3,5} \ge 4$. The number B_3 for this code equals n (i.e., the number of different cyclic shifts of the polynomial $\sigma_c(x) = 1 + x + x^3$) Δ

ŧ

5. A table of codes with $d \leq 3$

To illustrate the results of the previous sections, we give a table of binary cyclic codes of length $n = 2^m - 1$ with minimum distance $d \le 3$ (Table 1). For any divisor g of m and for any coset representative r modulo $2^g - 1$, where r and $2^g - 1$ are coprime, a complete list J(r) of representatives of cosets modulo n is given. Any cyclic code C_I generated by the polynomial

$$m(x) = \prod_{i \in I} m_i(x),$$

where I is any nonempty subset of J(r), has minimum distance $d \leq 3$. If it satisfies the conditions of Lemma 1, then d = 2. The number $B_3 \geq B$, where B is defined by (3) and is given in the table, can be evaluated according to Theorems 3, 4, and 5.

The authors are indebted to N. Sendrier [10] for checking some numerical results with his own programs

REFERENCES

- 1 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, New York (1986).
- 2. T. Kasami, "The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes," Inf. Control, 18, No. 4, 369-394 (1971).
- 3. J. H. van Lint and R. M. Wilson, "On the minimum distance of cyclic codes," *IEEE Trans. Inf. Theory*, 32, No. 1, 23-40 (1986).
- 4. H. Janwa and R. H. Wilson, "Hyperplane section of Fermat varieties in P³ in characteristic 2 and some applications to cyclic codes," in: Proc. 10th Int. Sympos. Appl. Algebra, Algebraic Algorithms and Error-Correcting Codes, Lect. Notes Comp. Sci., 673, Springer-Verlag, New York (1993), pp. 180-194.
- 5. H. Janwa, G. McGuire, and R. H. Wilson, "Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2)," J. Algebra, 178, 665-676 (1995).
- 6. P. Charpin, A. Tietäväinen, and V. Zinoviev, "On binary cyclic codes with minimum distance three," in: Proc. 5th Int. Workshop Algebr. Combin. Coding Theory, Sozopol, Bulgaria (1996).
- 7 J. H. van Lint and R. M. Wilson, "Binary cyclic codes generated by m_1m_7 ," IEEE Trans. Inf. Theory, 32, No. 2, 283 (1986).
- 8. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Massachusetts (1984).
- 9. D. Augot, P. Charpin, and N. Sendrier, "The minimum distance of some binary codes via the Newton's identities," in: *Proc. Int. Sympos. EUROCODE'90*, Lect. Notes Comp. Sci., 514, Springer-Verlag, New York (1991), pp. 65-73.
- 10 D. Audibert and N. Sendrier, "Distribution des poids des codes cycliques binaires de longueur 63," INRIA, Report No. 2299 (1994).