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INFORMATION THEORY AND CODING THEGRY

ON BINARY CYCLIC CODES WITH MINIMUM DISTANCE d =3

P. Charpin, A. Tietaviainen, and V. Zinoviev UDC 621 .381 .15

We consider binary cyclic codes of length 2™ —1 generated by a product of two or several minimal polynomials.
Sufficient conditions for the minimum distance of such a code to be equal to three are found.

1. Introduction

Denote the finite field of order ¢, ¢ = 2™, m > 4, by F,. Let vy be a primitive element of Fom and
m,(z} be the minimal polynomial of ¥’ over F;. We assume that 0§ < § < j < 2™ — 2 and that i and
5, 0L <7 <27 - 2, are not in the same cyclotomic coset modulo n = 2™ — 1 Denote the binary cyclic
code of length n with generator m;(z)m;(z) by Ci;(m) or, briefly, by C; ;. The minimum distance of C;
is denoted by d;; = d; ;(m}.

It is well known [1] that the case (1, 5) = (1,3) cotresponds to the 2-error-correcting BCH codes The
following pairs (i, 7) also define codes with minimum distance five (of course, there are many equivalent
paits): (1,2 4 1) if ged(f, m) = 1 (see [1, Sec 154]); (1,2% — 2¢ 4 1) for odd m if ged(€,m) = 1 (see
(2, 3]) and for even m if m/ged(€, m) is odd (see [2]) and if gcd(f,m) = 1 (see {4]) On the other hand,
it was proved in (5] that for fixed ¢ (¢ = 3 (mod 4), t > 4) there is no infinite family of codes C) ({m)
with minimum distance 5. It is natural to try to charactetize all pairs (4, §) that give codes with a certain
minimum distance d, where d = 2, 3,4, or 5. If d = 2, this can easily be done (see Lemma 1). However, in
all other cases the task is certainly much more difficult In this paper we consider the case d = 3.

We consider also (binary cyclic) codes C,,. i, whose generating polynomial is the product of one or
several minimal functions m;, (z), ..., m;, (z). We find sufficient conditions (Theorems I and 2) for the cyclic
code C;,, :, to have minimum distance d = 3. We also find lower bounds on the number of codewords
of weight three (Theorems 3 and 4). The codes Cy,; are investigated in a more detailed way. In the case
t = 2“3 (2" — 1) we give necessary and sufficient conditions that d) ¢ equals three (Theorem 5). The results
of this paper were in part announced in [6]

As usual, we identify the vector ¢ = (o, .. ,ca-1) € 3 and the polynomial

n—1
o(z) = Yy cezt € Fafzl/(z” + 1)
£=0
A vector ¢ is an element of C; ; if and only if
() = c(r) = 0. 1)

Thus, di ; < 3 if there is a trinomial ¢(z) = 1 + 2% + 2%, 1 <k < b < n, such that Eqs. (1) are valid.
We begin with a simple example (mentioned in [7] for the case (i,7) = (1,7)). Let m be even. Then 3
divides 2™ — 1 Denote (2™ — 1)/3 by u. Then v* (denote it by 8 = v¥) is 2 primitive element of F, and,
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therefore, the minimal polynomial of 8 is 1 +z +z% If we choose ¢(z) = 1 +z¥ + z°%, we see that Egs. (1)
are valid for all i and j which are not divisible by 3 Thus, we have proved the following result.
Proposition 1. Lel m,m > 2, be even and 4,7, 1 € i < j < 2™ — 2, be arbifrary integers. If
ged(t,3) = ged(7,3) = 1, then the code C;; of lerngth 2™ — 1 has distance 4 ; < 3.
In the sequel, we generalize this observation for the case where m has an arbitrary divisor ¢ > 2. This
approach gives a way of characterizing some infinite classes of codes with minirmum distance d > 3.

2. General results

Figst, we characterize the codes i ; with minimum distance d; ; = 2.

Lemma 1. Lel i,5, 0< i< j<2™ -2, be arbitrary integers that do notl belong to the same cyclolomic
cosel modulo 2™ — 1. Then the binary cyclic code Cij of length n = 2™ — 1 with generaling polynomial
9(z) = mi(z)m;(z) has distance d;; = 2 if and only if ged(n,i,j) > 1

PROOF. Since 7 is a primitive nth root of unity, d; ; = 2 if and only if there exist k and £,0 < € < k < n,
such that

yH = v
or, equivalently,
(k—Oi=(k—-£)j=0 (modn)
Both congruences are valid if and only if n/ged(n, 1, j) divides k — £. Therefore, such & and £ exist if and
only if ged(n,i,7) > 1 A
Definition. Denote by K,(r) the cyclotomic coset of r modulo 29 — 1, ie,,

Ko(r) = {12* (mod 29 = 1): £=0,1,. ,g—1)

For any integer #, 0 £ i < 2™ — 2, we say that i belongs to K (r) if an integer 7, 7 = 0,1,...,¢ — 1, exisis
such that 27 = r (mod 29 — 1)

Theorem 1, Leti, 7,0 <i< j<2™—1, be arbitrary integers that do not belong to the same cyclotomic
coset modulo 2™ -- 1. Lel g be an arbilrary divisor of m. If there ezists an infeger r, 0 < 1 < 29 — 1,
where ged(r, 29 — 1) = 1, such that both i and j are in K, (r), then the binary cyclic code Ci; of length
2™ — 1 generated by the polynomial g(z) = my(z)m;(x) has minimum distance d;; < 3 If, moreover,
ged(n, 4,7} = 1, then d;; = 3.

PrOOF. If v is a primitive element of F;, ¢ = 2™, then [8) the element f = y*, where u = (2™ —
1)/(2% ~ 1), is a primitive element of Fzs Let b be an integer in the interval [1, 29 — 2] such that

1+8+8 =0
Define
C(:): 1 ‘.{_ IU(I[I‘) .+ zu(blr), (2)

where the quotients 1/r and b/r are calculated in the ring Zqs..; of integers modulo 29 — 1 and, therefore,
lie in the interval (1,29 — 2], We claim that ¢(z) is a codeword of C; ;. To check this, it suffices to show
that both ¥ and 49 are roots of the polynemial c(z). Indeed, since i € K, (r), nonnegative integers k£ and
£ exist such that

i=£29 - 1) + 2%r

Thus,

C(Ti) — 1+,¥ui(1/r) + Tu:”(b/r)
= 14 g0/ 4 gilb/n}
= 14 ﬁZ*r(l/r) +ﬁ2"r{bfr)
— 1_{_ﬂ2k +ﬁ62k
= (1+8+8)" =0
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Similarly we can show that c(v/) = 0. Thus, we have proved that ¢(z) of type (2) belongs to Ci; aad,
therefore, the minimum distance of this code is d < 3 If now ged(n,i,j) = 1, then by Lemma 1 the code
( has distance d > 2, whence it follows that d =3 A

Note that Proposition | is a particular case (g = 2} of the first statement of Theorem 1.

As follows from the proofs, the statements given above {i.e., Lemma | and Theorem 1) can be generalized
to the case where the code C is generated by a polynomial g{z) which is a product of several minimal
functions. In particular, the following generalization of Theorem 1 is valid.

Theorem 2. Letf 1),.. i, 0 < iy < .. < i, < 2™ —~ 1, be arbitrary fnlegers that belong fo distinet
cyclotomic cosels modulo 2™ — 1. Let g be an arbifrary divisor of m. If there erists an integer r, 0 <
r < 29 ~ 1, where ged(r,2¢ — 1) = 1, such that all integers i1, ..,1, are in K (r), then the binary cyclic
code Cy,,. i, of length 2™ — 1 generated by the polynomiel g(z) = m; (z). .. my (z) has minimum distance

di, i, < 3 If, moreover, ged(n, 4y, .., i) =1, then d; ;, =

[T ERN ]

We emphasize that Theorems 1 and 2 give only sufficient conditions that the binary cyclic code C =
Ci,, . i, has minimum distance d;,, i, = 3 For such a code C, we now try to estimate the number of
codewords of weight three (denote it by Ba). We need some notations. Let I{r) be the set of all integers i
in {1,n —~ 1} such that i € K,{r) (see Definition). Clearly, I(r) is a join of cosets module n. Denote by J{r)
a set of representatives of these cosets and denote by Ci(,y the binary cyclic code of length n generated by

the polynomial
sz = J] mi=).
i€ J(r)
Theorem 3. Lel iy, .. i, 0 <1 < ... <i, € 2™~ 1, be arbitrary infegers, g be an orbitrary divisor
of m, and en inleger r, 0 < r < 29— 1, where ged(r, 29 — 1) = 1, be such that {iy, i} C J(r). Then
B for the binary cyclic code Cy,, i, of length 2™ - 1 satisfies the inequality

B3> B = (2™ - 1)(29 — 2)/6. (3)

For the code Cyry, te, if {iy,.. i} = J(r), the tnequality in (3) turns into the equalily.
Proo¥. Let u = (2™ —1)/(29 — 1). Then the order of the element § = y* is 29 - | and, therefore, A is

a primitive element of the field Fz, of order 29, the latter being a subfield of Fam. .
For each integer @, 1 < a < 29 — 2, there is exactly one integer b in the interval [1,29 — 2] such that

148 +8° =0, (4)

and, of course, b # a. Thus, there are exactly (29 — 2)/2 pairs (a,b), ] < a < & < 29 — 2, such that the
trinomial '

e(z) = 1 4 z%e/r) g gub/7) {5)
(where the quotients a/r and §/r are calculated in the ring Zjs—) is a codeword of any such code C =
Ci,,. i, Hence, we have found (29 — 2}/2 weight-3 codewords of type (5) that belong to ¢ From any such
codeword we obtain, by shifting, n = 2™ — 1 codewords of the type

gle(z) = ' 4 gHHue/m) o gttulin)  p gy 2™ 2 (6)
Thus, we have obtained the set of (2™ — 1)(29 — 2)/2 codewords of weight 3. But it is easily seen from the

construction that each word is obtained exactly three times. Thus, the number Bj of codewords of weight

three in Cy,, i, satisfies the inequality (3).
Assume now that C' = Cj(y. Consider an arbitrary weight-3 word of this code with locators {1,v%,+'}.

Then, by the definition,
1+ 7a(£(2'~—1)+r) +7b(£{2’7-—1)+r) =0

for any £ € [0,u— 1], u = (2™ — 1}/(29 - 1). Therefore, by adding to any such equality the first equation
{which corresponds to the case £ = 0), we obtain

Lo (74;_(29_1) L 1) 4yt (‘7“@«“.1) + 1) -9

289




Eh

A,

for any € Thus, the polynomial
Rz =y (z*+ 1) + y¥(=* +1)

has as its roots all u elements of the type Ay = (v*)¥° ! == ¢, where £ € [0, u — 1]. Since each such element
A¢ is a uth root of unity, the polynomial z* + 1 {which has as its u roots all these u elements A;) should
divide Q(z). So the remainder R(z) of Q(z) modulo z* + 1 must be the zero polynomial. We have

R(z) = 7" (=% + D+ (=" + 1),

where @’ < u, ¥ < u, @’ = a (modu), and b’ = & (modu). The equation R(z) = 0 is satisfied if and only if
one of the following conditions holds:

(i) 7% = y*" and o/ = ¥;

i)z =1land z¥' = 1.

Condition (i) is impossible, because v2" 4" equals I So, (ii) holds, proving that a’ = §' = 0. Therefore,
u divides @ and b. Hence, any weight-3 codeword of the code C 7(~) (up to a shift £) is of the form (6}
Therefore, the number B (of weight-3 codewords in C;(,-)) equals B, ie, corresponds to the equality in
(3). 4

It is difficult to determine the number of codewords of weight three for an arbitrary code Cj,, .,. We
give here a statement which is a natural generalization of Theorem 3.

Theorem 4. Let &y,. i, 1 <i; <. < i, € 2™~ 2, be arbitrary integers. Let {g1,.. , e} be
distinct divisors of m such that ged{gn,g¢) =1 for eny 1 < h < €< k. If there ezist k integers vy, where
1<, <2% -2, ged(ry,29% — 1) = 1, such thal

{ili oy il-'} - Ks'h(rﬁ)
forany h(h=1, . k), then the number Bs of codewords of weight three in Cyi, ;, salisfies the inequalily

m—1

E
By 2 ~—5— > @ -2).
h=1
Proor. Recalling the arguments that we used in the proof of Theorem 3, we see that for any h, h €
{1, . ,k},in C=Cy,, ;, there are exactly (2™ — 1)(29 — 2)/6 weight-3 codewords of the form

Ch(zr) = pt +xi+ux(n1/rk) + z"l‘“h(“a/’fa),

where £ € {0,1,.. ,2™ — 2}, u, = (2™ - 1)/(2% — 1), the integers a; and a9, 1 € ay < ag < 29 — 2, are

defined by the equation
1+ 83 +6=0

(here Bp = 1;* is a primitive element of the field Fasu ), and the quotients a;/ry and ay/ry are calculated in
the ring of integers modulo 29 — 1. Therefore, to prove Theorem 4, it suffices to show that cs(z) does not
coincide with a codeword of another type, say, of type c(z) (which corresponds, for instance, to a divisor
gt € {gla - ":gk} of m)'l
Cg(ﬂ:) = z? _}_xu-{-u;(b,/rg) +$u+u¢(b2/r¢), h _—’é r

Assume the contrary, ie, ex(z) = ce{z) Then the quotients of the locators of ¢,(z) and c.(z) are,
tespectively, y¥* and y*¢. Since lem(ua, ue) = (2™ — 1)/ged(29* — 1,29¢ — 1) = 2™ — 1, they are equal to
1, which provides a contradiction. A

Example 1. Let m = 6. Then the divisors of m are the numbers 2 and 3 Since 1, 11, and 23 belong
to both the coset K,(1) and the coset K3(1), all the (binary cyclic} codes C, 11, €y 23, Ch1 23, and Cy 11 23
bave minimum distance d = 3 by Theorem 2. Then, by Theorem 4, we have Bz > 84. In this case, this
bound is attained for all codes mentioned above
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3. The codes C, ,

In this section, we consider cyelic codes Cy,¢ of length n = 2™ — | with roots y and 7!, where an integer
tis not a power of 2 Note that if n is a prime, then any code C;; is equivalent to some code Ci,t. The
code Cyp has a codeword of weight three if and only if there are two distinct nonzero elements a; and ay

of Fy» which satisfy
of + eyt (o +az)! =0,
Since Cy ¢ is cyclic, we can take @) = 1. Thus, we have the following result.
Proposition 2. The code Cy has minimum distance dy . =3 if and only if the polynomial

Ulz) = 1 + 2 + (1 + z)*

has af least one root in Fzm \ {0,1}.

Proor. By Theotem 1 we know that it t = (29 — 1) 4+ 2* for some k < g, where g divides m, then
Ci,+ has minimum distance dyy = 3 Here we want to generalize this result and also to obtain sufficient
conditions that dy ; > 3. Moreover, we want to present some cases where the bound on B, given in Theorem

4 is atfained.
Example 2. For some ¢, the minimum distance is at least 4 when m is odd. Take, for example, £ = 13
Then the polynomial
Vis(z) = (1 + z)(z? + 2 + 1)°
has roots in Fam \ {0, 1} if and only if m is even. Thus, according to Proposition 2, di13 > 4 if and only if
m is odd.
Example 3. The next case, t = 21, is a little more complicated. We have

Uiz} = z(1+ 2}z’ + 22 + 1) (2P + ' + 2B 4 2 + D%+ 25 + 23 4+ 22 ¢ 1).

Hence, the minimum distance of C) 71 is at least 4 if and only if 6 does not divide m. Note that this last
case is not covered by Theorem 1.

Now, we have two observations. First, Uy(z) is a product of minimal polynomials over F, This is

because

UdB%) =14+ 8% + (14 5°) = {1+ 8 + (1 + 5)")* = (U:(B))?,
and, therefore, whenever § is a root of U(z), the element 82 is a 100t, too. Second, we have the following
statemnent. .

Proposition 3. Let m be a prime and { be an infeger such that 1 < £ < m+ 3. Then the code Cre of
length 2™ — 1 has minimum distance d > 4.

ProoF The polynomial Uy(r) has degree t — 1. Moreover, the elements 0 and 1 are roots of Ui(z)
Therefore, Ui(z) may be represented in the form Uy(z) = (22 + z)V;(z), where the degree of Vi(z)ist -3
If an element # € Fym exists such that Vi(8) = 0, then the minimal polynomial of B8 divides Vi(z) and
should have degree m This contradicts the latter assumption of the proposition A

Furthermore, we have the following fact.

Proposition 4. Let g and t > 3 be arbitrary integers such that 29 < ¢ and assume that the equivalence

t=2% (mod2¢—1)

holds for some integer k, k > 1 Then the polynomial z2° -+ = divides U(z), i.e., all elements of the field
Fzs are roots of Uy(z).
PrROOF Let § be a nonzero element of Fas, ie, 8% ~1 =1 Then we have

V() =1+ 8 +(1+8) =148 +(1+8) =0. A
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Proposition 5. Lef u, v, 1 < v < u, be arbitrary integers and let ¢ = 2% & (2¥ — 1). Then
(J:z' +x) (.::2' +z) (224 z) f =241,
2.

2‘---
v z 4z
('T" + I) .'82 _}_ T

Ui(z) = ()

fl=2¢-2+1.

Proor. Fist consider the case ¢ = 2¥ 4 2¥ — 1. The condition { = 2" (mod 2* — 1) and Proposition 4
imply that
(z2 +z) | Ulz).

Similarly, from the condition ¢ = 2* {mod 2" — 1} we obtain that
" +2) | Uil=).
Define . .
(=¥ +2)(" + 2)
z{z + 1)
It is clear that the degree of L(z}is equal to t — 1, ie,, it is exactly the degree of U;(z). This means that

if ged(u,v) = 1, then we have proved that L(z) = U(z) Assume now that ged(u,v) > 1 and consider the
derivative of U(z):

L(x) =

Ul(zy=z""1 4+ (1 + )L

Let 8 € (Fax NFp )\ {0, 1}, i.e, the conditions 82°~! =1 and 2"~ = 1 hold simultaneously. Then, if §
is neither 0 nor I,
Uiy =11 (1) " =1y 1 =0
Set -~ .
Wi(z) = ged(z? +z,z% +1)
z(z+ 1)

Then we have proved that (W (z))? | L(z). Therefore, in each case L(z) = U;(z).

Let now t = 2% — 2¥ + 1. Similarly to the previous case, the condition ¢ = 2* {(mod 2* — 1) and
Proposition 4 imply that 22" 4 z divides Uy(2). Since t = 2°(2%"" = 1)+ 1, we have t = 1 (mod 2¥~ — 1),
and therefore 22" +z also divides Uy(z). Now let us show that U;(z) is actually divisible by the polynomial

[ R + 27
z xz
A T (8)

24z

"This last condition is equivalent to the fact that for any element 8 € Fye-. \ {0, 1} the polynomial (z + 8%
divides Ui(z) Now represent U(z) in the following form:

-—

Ut() = 142"+ (1 2)t = 1422777 "Dz 4 (142)27C77 (1 4.2),

Now, replacing z% in the expression above by the element 827, we can find the remainder, say, Ri(z), of
the division of Ui(z) by (227 + £27) Since 82" "“! = 1, we have

qu-~v

v o —w v _I

R(z) = 14 707 Doy (14 7) (I+2)=l+z+(1+2)=0
Thus, Ui(z) is divisible by the polynomial (7). On the other hand, it is easy to see that the polynomials
z? and (1 + z)? do not divide Ui(z). Now the second equality of (7) follows by comparing the degrees of
both polynomials. A

Using Proposition 5, we can now formulate the necessary and sufficient conditions for the code Ch
where L = 2% £ (2¥ — 1}, to have minimum distance d = 3. Also, these two classes of codes are interesting
in (he sense that the lower bound on B3 in Theorem 4 is exact.
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Theorem 5. Lef v, v, 1 <v < u, be arbilrary infegers and let ¢ = 2" £ (2¥ — 1) Denole

51 = ged{m, u) fi=2%42~1, )
Vo ged(mu—v) ift=2%—~2"41,

and 8 = ged(m,v). Then the code Cy, has minimum distance dy¢ > 4 if and only if 6, = 8, = 1, and
dys = 3 otherwise. For the number B3 of this code we have the following expression:

am—1

5 (2% 4 202~ 25 - 9), (10)

Bz =

where 63 = gcd(é; ,52)”
ProoF. First, consider the case { = 2¥ + 27 — 1. If §; = 8§ = 1, then the polynomial

Ui(z) = (z%° +2)(=?" 4 2)/(z? + z)

has no roots in the field Fym distinet from 0 and 1, and therefore d;y > 4. Otherwise, C}  contains
codewords of weight three Since we know all the roots of U;(z), we can write down the exact expression
for the number B3 in Cy . If 6 > 1 but &, = 1 (and, therefore, &3 = 1), then the polynomial U;(x) has
2%1 — 2 roots (which are elements of Fys, ) distinct from 0 and 1. Recalling the arguments that we have used
for the proof of Theorem 3, we obtain in this case the following expression:

By = 2m -1 (26' ‘—-2),
6
which coincides with (10) for the case 63 = 63 = 1. Let now §; > 1 and §; > 1, but & = 1. Then the
polynomial U;(z) has 2% ~ 2 roots (elements of Fys, ) distinct from 0 and 1 and 2% — 2 roots (elements of
Fys, } distinct from 0 and 1. Since the intersection of these fields is only the subfield ¥, = {0,1}, in this
case the polynomial Uy(z) has (2 - 2) + (22 - 2) different roots distinct from 0 and 1. This gives that

the number of codewords of weight three is
2m —

6
which exactly agrees with the lower bound of Theotem 4. Thus, for this case that bound is exact. Let now
all 6; > 1,1 =1,2,3 This means that the intersection of Fys, and Fye, is a subfield Fys, . Therefore, in
this case the polynomial U(z) has

By =221 (@4 —9) 1 (2% -2)),

@25 -2)+ (2% -2)- (2% -2

different roots, which gives the corresponding expression for By, The case t = 2% — 2¥ + 1 is quite similar.
The fact that Uy{z) is divisible by the polynomial (10), i e, that U;(z) has multiple roots, does not influence
the number of weight-3 codewords corresponding to the divisor §; of m. The derivation of the expression

for B3 is similar to the previous case A

4. The case g = 3

In this section, we treat the case g = 3, i.e., the case where codes are of length n = 2™ — 1, and 3 divides
m Let € =i, , be a binary cyclic code generated by the polynomial g(z) = my, (z) (z), where
the integers 1;, 0 < ¢; < n, are in distinct cyclotomic cosets modulon Al such integers 1, {representatives
of the cyclotomic cosets modulo n) belong to one of three cyclotomic cosets modulo 7, namely, K3(0), K3{1),
and K3(3). As above, denote by J(r) the set of all such integers i), that belonging to K3(r), where r = 0, 1, 3.

Proposition 8. Let 3 divide m. Lel integers iy,. .,i, {represeniaiives of distinet cyclolomic cosefs
modulo n = 2™ — 1}, where ged(n,iy,.. ,i,) =1, be such that {i1,. i} S Ka(r), re {1,3} Then
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(a) the cyche code C =Gy,  ;, has mintmum distance d = 3,
(b) the number By for C salisfies the inequality By 2 2™ —1;

(c) these codewords are the trinomials en(z) = 1+ z¥(B7) 4 zu3/v) gnd all their cyclic shifts, where
he{1,2}, u= (2™ - 1)/7, and the quoticnis h/r and 3/r are calculated in the nng Zz.

ProoF. By Theorem 2, the code C has minimum distance three. Let 7 be a primitive element of the
field Fam. Then 8 = y*, where u = (2™ — 1)/7, is a primitive element of the field Fs, the latter being a

subfield of Fam . Since .

2 l= {2 +r+1) (P +22+ 1} (= +1),
the minimal polynomial of 8 over F3 is ma(z) = 1 + 2" 4 23, where k is either L or 2. Assume, for instance,
that it is my{(z), ie, 1+ 8+ 3% =0, and let

fley=1+ PRtTAp IR CI L)}

where the division is made in the ring Z; Then the polynomial ¢(z) = f(z¥) is a codeword of the code
C =0y, foranyiy, ..., 1 fromthe set J(r) In particular, ¢(z) is a codeword of the code Cy(ry (see the
proof of Theorem 3) If r = 1, then ¢(z) = 1 + z* + z°*. The condition i € J(1) means that i = 71; +1,
where i € K3(1} (ie, iz = 2¢). Therefore, for such i we have

c(y") — 1+7:'u _{__,_rsiu
14 g% + g%
(148489 = 0.

If r = 3, then c(z) = 1 + z%(1/®) + z* Since Y% = §°, we have c(z) = 1 + z¥ + z5*. With the help of
cyclic shifts by 2u positions, we obtain

¢'(z) = z2c(z) = 1 + 27 + 2%

Similarly, the condition § € J{3) means that i = 7i; 4 iz, where i € K3(3) (ie,i2 =3 -24). Therefore, we
have

c.r(_yi) — 1+ ,Tﬂiu iy 73:"3

1+ g7 + g%
(l + ‘86 + ﬁg)z‘
= (1+8+5""

Thus, we have proved that the polynomial 1 + z* + z3% and all its cyclic shifts are codewords of a code
Ci,,.. i., where {i}, . .,1,} is any (nonempty) subset of J(1), while the polynomial 1 + 2% +z® and all its
cyclic shifts are codewords of a code C;,,.. i,, where {i1,...,i,} is any (nonempty) subset of J(3}. So for
any such code C we have B3 > 2™ — 1. For the code Cy(r), where 1 € {1,3}, this number is exactly the
maximal possible number (see ‘Theorem 3). A

For the code Cs 5, the divisibility of m by 3 is a necessary and sufficient condition for d35 = 3. For the
proof we apply the method used in [9].

Proposition 7. The code Ca5 of length 2™ — 1 has distance da s = 3 if and only of 3 dindes m. [n
this case, its minimum-weight codewords are ezactly all By = 2™ — 1 codewords of weight three of the code
Cry. If 3 does not divide m, the code Cas has minimum distence da 5 > 4.

ProOF Note that C3 5 cannot have minimum distance two because ged(3, 5) = 1. Therefore, we assume
that there is a codeword ¢(z) of weight three in Cj 5 given by its locators {Xy, X3, X3} Define the locator
polynomial of ¢(z} as

= 0.

3
o.{z) = H(l —~ Xiz) =14 o1z 4 0p2% 4 0327,

i=1
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n {mig| Bs | r | J(r), Representatives of Cosels
15 | 4|2 5 11,5, 7
63 6 121 21 111,5, 7, 11, 13, 23, 31
3| 63 141,89, i1, 15, 23
313, 5, 13, 27, 3t
265 (812 85 11,5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 37, 43,
47, 53, 55, 59, 61, 85, 91, 95, 119, 127
41595 | 141,17, 19, 23, 31, 47, 53, 61, 91
T {7, 11, 13, 29, 37, 43, 59, 119, 127
511 1 9 13] 511 ¢ 11,8, 11, 15, 23, 25, 29, 37, 39, 43, 51, 53, 57, 79, 85
93, 95, 107, 109, 123, 127, 183, 191, 219, 239
3 |3, 5, 13, 17, 19, 27, 31, 41, 45, 47, 55, 59, 61, 73, 75,
83, 87, 103, 111, 117, 125, 255, 171, 187, 223
1023110 (21 341 1 1 |1,5,7 11,13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47,
49, 53, 55,09, 61, 71, 73, 77, 79, 83, 85, 89, 91, 95, 101,
103, 107, 109, 115, 119, 121, 125, 127, 149, 151, 511, 341,
165, 157, 167, 173, 175, 179, 181, 187, 191, 343, 347, 367,
205, 215, 221, 223, 235, 239, 245, 247, 251, 253, 379, 383,
439, 479
5(5115} 1 11, 33, 35, 39, 47, 63, 95, 101, 109, 125, 219, 157, 159, 171,
187, 343, 221
3 13,17, 37, 43, 55, 79, 99, 105, 117, 127, 167, 179, 189, 375,
347, 223, 251 ‘
5 5, 9,41, 49, 51, 71, 103, 111, 165, 173, 175, 191, 351, 235,
237, 253, 439 -
717, 19, 25, 45, 59, 69, 87, 107, 121, 149, 255, 183, 205, 231,
245, 379, 479
11| 11, 13, 21, 53, 57, 73, 75, 83, 115, 119, 181, 363, 367, 207,
239, 383, 447
15 | 15, 23, 27, 29, 61, 77, 85, 89, 91, 123, 147, 151, 511, 213,

215, 247, 495

and its power sum symmetric functions

Sp=XF4xi+x% ke{0,1,. ,n—1}

It is known that the elements o; and functions S are related by the Newton identities

they satisfy the relations

Si+o = 0,
53 + 520‘1 + 5102-{-0‘3 = 0,
Ss + Sqo1 + Saoa + S5 = 0

. This means that

(11)

Taking cyclic shifts of the codeword ¢(z), we can assume S; == 1. Furthermore, by the definition of Cj s,
we have 53 = S5 = 0. Thus, by (11) we obtain

=8 =1, oq =0, g3 =1
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(recall that Spx = S?). Then o.(z) = ! + z + z> is the unique locator polynomial up to a cyclic shift for
a codeword of weight three. But this polynomial splits in the field of order 2™ if and only if 3 divides m.
Therefore, C3 5 has minimum distance d3 g = 3 if and only if 3 divides m. Otherwise, d3 ;5 > 4. ‘The number
B for this code equals n (i.e , the number of different cyclic shifts of the polynomial .(z) = Fz+ %) A

5. A table of codes with d < 3

To itlustrate the results of the previous sections, we give a table of binary cyclic codes of lengthn = 2™ -1
with minimum distance d < 3 (Table 1). For any divisor g of m and for any coset representative r modulo
29 — 1, where r and 29 ~ 1 a1e coprime, a complete list J(r) of representatives of cosets modulo n is given.

Any cyclic code Cr generated by the polynomial

miz) = Hm,-(:r),

fef

where [ is any nonempty subset of J(r)}, has minimum distance d < 3. If it satisfies the conditions of
Lemma 1, then d = 2. The number Bz > B, where B is defined by (3) and is given in the table, can be
evaluated according to Theorems 3, 4, and 5.

The authors are indebted to N. Sendrier [10] for checking some numerical results with his own programs
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