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The Coset Distribution of Triple-Error-Correcting Binary
Primitive BCH Codes

Pascale Charpin, Member, IEEE, Tor Helleseth, Fellow, IEEE, and
Victor A. Zinoviev

Abstract—Binary primitive triple-error-correcting Bose–Chaudhuri–
Hocquenghem (BCH) codes of length = 2 1 have been the
object of intensive studies for several decades. In the 1970s, their covering
radius was determined in a series of papers to be = 5. However, one
problem for these codes that has been open up to now is to find their coset
distribution. In this paper this problem is solved and the number of cosets
of each weight in any binary primitive triple-error-correcting BCH code is
determined. As a consequence this also gives the coset distribution of the
extended codes of length = 2 with minimum distance 8.

Index Terms—Bose–Chaudhuri–Hocquenghem (BCH) codes, coset dis-
tribution, covering radius.

I. INTRODUCTION

Let GF(2m) denote the finite field with 2m elements. A binary linear
[n; k]-code C is a k-dimensional subspace of GF(2)n. The Hamming
distance between two vectors is the number of components in which
they differ. The minimum distance of the code is the smallest Ham-
ming distance between any two distinct codewords in the code. A coset
of the code C is the set of vectors a + C for some a 2 GF(2)n. The
coset leader for a coset of a linear code is a vector of smallest weight
in the coset. The weight of a coset is the weight of a coset leader. For
an optimal complete decoding algorithm for a linear code, where all
codewords are sent equally often, the errors which are corrected are
exactly the coset leaders. An important problem in determining the per-
formance of a linear code is therefore to determine the distribution of
the cosets of the code (i.e., to determine the number of cosets of each
weight).

The family of triple-error-correcting binary primitive Bose–Chaud-
huri–Hocquenghem (BCH) codes of length n = 2m�1 has been thor-
oughly studied since the 1960s. The weight distribution of these codes
was determined by Kasami [9] for odd m. For even m the method of
Kasami did not work. Berlekamp [2, Table 16.5], [3] and [4] gave the
weight distribution of the extended codes for even values of m. The
covering radius of a code is the maximum weight of a coset leader.
In the 1970s, the covering radius of these codes were shown in a se-
ries of papers by Assmus and Mattson [1], van der Horst and Berger
[8] and Helleseth [7] to be � = 5. However, one problem for the
triple-error-correcting binary primitive BCH codes that has been open
up to now is to find the coset distribution of these codes.

We will assume throughout the rest of this paper thatm � 5 since the
number of cosets of the binary triple-error-correcting code in this case
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is 23m (cf. MacWilliams and Sloane [10, p. 262]), while the case m =
4 is degenerated in the sense that it only contains 25m=2 cosets, since
�5 has a minimum polynomial of degree m=2 = 2. Let Ki denote the
number of cosets of weight i. Since the code is triple-error-correcting
the values of K0, K1, K2 and K3 are immediately given by

K0 = 1; K1 =
n

1
; K2 =

n

2
; K3 =

n

3
:

Since the covering radius of the code is known to be 5, it is therefore
sufficient to determine K4 and K5. Some partial results were given by
van der Horst and Berger [8] who came up with the following bounds
for K4 and K5:

K4 �
1

6
n(5n2 + 10n� 3) and K5 �

4

3
n(n+ 2)

and they conjectured that equality holds for m � 8. They were able
to prove this conjecture for 8 � m � 12 using a computer search.
They further verified that the conjecture does not hold for m = 5, 6
and 7. The main result of this paper is to show that their 30-year-old
conjecture holds and therefore to prove the following theorem.

Theorem 1: LetKi denote the number of cosets with a coset leader
of weight i in a triple-error-correcting binary primitive BCH code of
length n = 2m � 1 where m � 8. Then the distribution of the cosets
is given by

K0 =1

K1 =
n

1

K2 =
n

2

K3 =
n

3

K4 =
1

6
n(5n2 + 10n� 3)

K5 =
4

3
n(n+ 2):

One should observe that an even harder problem is the “full” problem
to find the weight distribution of the vectors in any coset of the binary
primitive triple-error-correcting codes (or their extended codes). This
problem has been studied in the papers by Charpin and Zinoviev [6]
and Charpin, Helleseth, and Zinoviev [5]. This problem remains open
for even m while it was solved (i.e., expressed in terms of some expo-
nential sums) for odd m in these papers.

II. COSETS OF BCH CODES OF LENGTH n = 2m � 1

The proof of our main result in Theorem 1 will be rather self-con-
tained. We will apply and simplify some of the techniques developed
in van der Horst and Berger [8] in combination with some new ideas
needed to prove their conjecture. The focus of the very long and
technical paper by van der Horst and Berger [8] was to construct
a complete decoding algorithm for the triple-error-correcting BCH
code. Their studies of the complete decoding algorithm was partially
motivated by the desire to use the triple-error-correcting BCH code in
source coding. We will mainly focus on the distribution of the weights
of the cosets in order to prove their conjecture.

The binary triple-error-correcting primitive BCH code has parity-
check matrix H defined by

H =

1 � �2 . . . �n�1

1 �3 �6 . . . �3(n�1)

1 �5 �10 . . . �5(n�1)
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where � is an element of order n = 2m � 1 in GF(2m), i.e., the code
consists of all binary codewords ccc = (c0; c1; . . . ; cn�1) 2 GF(2)n

such that cccHtr = 000.
The syndrome sss of a received vector rrr is

sss = rrrHtr = (S1; S3; S5)

where rrr = (r0; r1; . . . ; rn�1) and Htr denotes the transpose of the
matrix H .

The decoding starts by computing the syndrome of the received
vector and then finding a coset leader in the coset with the same
syndrome sss = (S1; S3; S5). The vectors in a coset all have the same
syndrome and our problem is to find a coset leader, i.e., a vector of
smallest possible weight with this syndrome. Therefore we need to find
nonzero and distinct elements X1; X2; . . . ; Xw (the error-locations)
in GF(2m) with the smallest possible w such that

Si =

w

j=1

Xi
j (1)

for i = 1; 3; 5. Equivalently, we need to determine a locator polynomial

�(X) =

w

i=1

(X +Xi) = Xw + �1X
w�1 + � � �+ �w

of minimal weightw, such that (1) holds with nonzero and distinctXi’s
in GF(2m).

The Newton identities give a relation between the coefficients of the
locator polynomial �(X) and the error-locations via

S1 + �1 =0

S2 + �1S1 + 2�2 =0

S3 + �1S2 + �2S1 + 3�3 =0

� � �

Si + �1Si�1 + �2Si�2 + � � �+ i�i =0

for i � w. For i > w then

Si + �1Si�1 + � � �+ �w�1Si�w+1 + �wSi�w = 0:

We use the convention that �i = 0 when i > w.
The Newton identities imply

S1 =�1;

S3 =�1S
2

1 + �2S1 + �3;

S5 =�1S
4

1 + �2S3 + �3S
2

1 + �4S1 + �5:

Throughout this correspondence, we define the trace function from
GF(2m) to GF(2) by

Tr(x) =

m�1

i=0

x2 :

A. The Cosets of Weight w = 1

The locator polynomial of a coset leader of weight 1 is

�(X) = X + S1

since the syndrome (S1; S3; S5) is given by Sj = Xj
1 for j = 1; 3; 5.

The cosets of weight 1 are therefore the n cosets with syndromes of
the form S1; S

3
1 ; S

5
1 where S1 6= 0.

B. The Cosets of Weight w = 2

The locator polynomial of a coset leader of weight 2 corresponding
to the error-locations X1 and X2 leads to a syndrome given by Sj =
Xj
1 + Xj

2 for j = 1; 3; 5. Note that S1 6= 0 since the error-locations
are distinct. We obtain by simple direct calculations from the Newton
identities that S3 = S31 + �2S1 and S5 = S51 + �2S3.

Comparing the two expressions for �2, we have

�2 = (S3 + S31)=S1 = S5 + S51 =S3:

Since �1 = S1, the locator polynomial in the case of a coset leader
of weight 2 is given by

�(X) = X2 + S1X + S3 + S31 =S1: (2)

This polynomial has two distinct nonzero zeros in GF(2m) when
S1 6= 0, S3 6= S31 and Tr S3 + S31 =S31 = 0.

Note that the two expressions for �2 lead to the following relations
between the syndrome components

M = S23 + S31S3 + S5S1 + S61 = 0:

Observe that there are n choices of S1 6= 0 and (n � 1)=2 choices
of S3 6= S31 such that Tr S3 + S31 =S31 = 0. Therefore the
cosets with syndromes (S1; S3; S5) where S1 6= 0, S3 6= S31 ,
Tr S3 + S31 =S31 = 0 and S5 is such that the condition M = 0
holds are all the n

2
cosets of weight 2.

C. The Cosets of Weight w = 3

In this case, the Newton identities lead to �1 = S1 and the following
two expressions for �3:

�3 =S3 + S31 + �2S1

and

�3S
2

1 =S5 + S51 + �2S3:

Note that if S3 = S31 the first expression substituted into the second
one implies S5 = S51 , contradicting that w = 3. Therefore, S3 6= S31
and comparing the expressions above leads to

�2 =
S5 + S21S3
S3 + S31

and substituting for �2 in the expression for �3 gives

�3 =S3 + S31 + �2S1

=
S23 + S61 + S5S1 + S31S3

S3 + S31

=
M

S3 + S31
where

M =S23 + S31S3 + S5S1 + S61 :

Hence, the locator polynomial in the case w = 3 is

�(X) = X3 + S1X
2 +

S5 + S21S3
S3 + S31

X +
M

S3 + S31
: (3)

Note that M 6= 0 since �3 = X1X2X3 6= 0 (all Xi are nonzero
elements) for the case of an error corresponding to a coset leader of
weight 3.

Even though we do not need this fact in this paper it is useful for the
decoding algorithm of these codes to observe that it follows from well
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known properties of cubic polynomials that a necessary condition for
three distinct zeros of the locator polynomial is that

Tr
S5 + S5

1

3

(S3 + S3

1
)
5
+ 1 = 0:

D. The Cosets of Weight w = 5

We will study the conditions for cosets of weight w = 5 with a lo-
cator polynomial with nonzero distinct zerosX1,X2,X3,X4 andX5.
The following theorem characterizes some particular cosets of weight 5
in the triple-error-correcting codeswith a syndrome (S1; S3; S5)where
S1 6= 0. These will later be shown to be all cosets of weight w = 5
with S1 6= 0.

Theorem 2: Let D be a coset with syndrome (S1; S3; S5)
such that S1 6= 0, M = S2

3 + S3

1S3 + S5S1 + S6

1 = 0; and
Tr S3 + S3

1 =S3

1 = 1. Then D is a coset of weight 5.
Proof: Since the covering radius of the triple-error-correcting

BCH code is known to be 5, it is sufficient to show that the weight
w of the coset D is at least 5. Since S1 6= 0 the coset has weight
at least 1. By the trace condition in the theorem it follows that
S3 6= S3

1 and therefore the coset has weight at least 2. Further, since
Tr S3 + S3

1 =S3

1 = 1 it follows that w 6= 2 since the locator
polynomial (2) for w = 2 does not have its zeros in GF(2m) unless
Tr S3 + S3

1 =S3

1 = 0. The coset cannot have weight 3 either,
since the locator polynomial (3) for a vector of weight 3 has constant
term 0 when M = 0 and therefore cannot have three distinct nonzero
zeros. It follows that the coset has weight at least 4. We therefore
assume that the coset has weight 4 and we will show that this is
impossible.

From the Newton identities, we obtain

�3 =S3 + S3

1 + �2S1

and

�4 =
S5 + S5

1 + �2S3 + �3S
2

1

S1
:

Substituting for �3 in the expression for �4 gives

�4 =
S5 + S3S

2

1 + �2(S3 + S3

1)

S1
:

Hence, the locator polynomial is

�(X) = X4 + S1X
3 + �2X

2 + S3 + S3

1 + �2S1 X

+
S5 + S3S

2

1 + �2 S3 + S3

1

S1
: (4)

Since this polynomial has four distinct zeros in GF(2m) it can be fac-
tored as

�(X) = (X2 + aX + b)(X2 + (a+ S1)X + d): (5)

Comparing coefficients, we obtain

�2 = d+ b+ a(a+ S1)

�3 = ad+ b(a+ S1)

�4 = bd:

From the first identity, we obtain

d = �2 + b+ a(a+ S1)

and from the second, we get

�3 = ad+ b(a+ S1)

= a�2 + ab+ a2(a+ S1) + ab+ bS1

= a�2 + a2(a+ S1) + bS1:

Hence,

b =
�3 + a�2 + a2(a+ S1)

S1

and substituting the value for b in the expression for d above gives

d =
�3 + (a+ S1)�2 + a(a+ S1)

2

S1
:

The third identity now gives

�3+a�2+a
2(a+ S1) �3+(a+S1)�2+a(a+S1)

2 =�4S
2

1 :

Substituting

�3 =S3 + S3

1 + �2S1

and

�4 =
S5 + S3S

2

1 + �2 S3 + S3

1

S1
into this expression, we obtain

(a+ S1)�2 + S3 + S3

1 + a2(a+ S1)

� a�2 + S3 + S3

1 + a(a+ S1)
2

= S5S1 + S3S
3

1 + �2 S3S1 + S4

1 :

Collecting the coefficients of �22 , �2 and the constant term and dividing
the resulting expression by a(a + S1)S

4

1 gives

�2
S2

1

2

+
�2
S2

1

+ k = 0 (6)

where

k =
S2

3 + S6

1 + S5S1 + S3S
3

1

S4

1
a(a+ S1)

+
S3 + S3

1

S3

1

+
a2(a+ S1)

2

S4

1

=
M

S4

1
a(a+ S1)

+
S3 + S3

1

S3

1

+
a2(a+ S1)

2

S4

1

=
M=S6

1

x(x+ 1)
+
S3 + S3

1

S3

1

+ x2(x2 + 1) (7)

and x = a=S1. The trace of k is given by

Tr(k) =Tr
M=S6

1

x(x+ 1)
+
S3 + S3

1

S3

1

+ x4 + x2

=Tr
M=S6

1

x(x+ 1)
+
S3 + S3

1

S3

1

: (8)

Since M = 0, the trace condition in the theorem gives

Tr(k) = Tr
S3 + S3

1

S3

1

= 1:

This contradicts (6) which only has a solution in GF(2m) when
Tr(k) = 0, and therefore a coset weight of w = 4 for D is impos-
sible. Since the code has covering radius 5, we conclude that the coset
D has weight 5.

Remark 1: Note that the number of cosets of weight w = 5 of this
form is n(n+ 1)=2. This follows since there are n choices of S1 6= 0
and for each nonzero S1, there are (n + 1)=2 choices of S3 such that
Tr S3 + S3

1 =S3

1 = 1. Observe that S5 is uniquely determined by
S1 and S3 since M = 0.

The following result can be found in [8]. We include a simpler and
more direct proof for the sake of completeness.

Lemma 1: There are (5n2+13n)=6 cosets of weight 5withS1 = 0.
Proof: Note that, for m > 4, there are (n + 1)2 cosets with

S1 = 0. Further, observe that all nonzero cosets with S1 = 0 must
have odd weight. Indeed, as we saw above, it is impossible for cosets
of weight 2, since X1 6= X2. That cosets of weight 4 with S1 =
0 are impossible can be seen from the following simple arguments.
Assume that some cosetD has syndrome (S1 = 0; S3; S5) and assume
that X1, X2, X3, and X4 are error-locations of some vector of D.
Recall, that X1, X2, X3, X4 are mutually distinct nonzero elements
in GF(2m). Now we see from (1) that for any h 2 GF(2m) a 4-tuple
(X1 + h; X2 + h; X3 + h; X4 + h) forms the error-locations for a
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vector with the same syndrome (S1 = 0; S3; S5). This can easily be
verified by checking the syndrome of this 4-tuple and using that

4

i=1

X2
i =

4

i=1

Xi

2

= S2
1

and similarly

4

i=1

X4
i =

4

i=1

Xi

4

= S4
1 :

Now take h = X1, which is not forbidden. Then we obtain a 3-tuple
(X2 + X1; X3 + X1; X4 + X1) which has this syndrome. But this
means that D is a coset of weight 3.

The number of nonzero cosets of weight 3 with S1 = 0 are the
number of (unordered) ways to select nonzero and distinctX1,X2 and
X3 such thatX1+X2+X3 = 0 and is therefore equal to n(n�1)=6.
This means that the number of cosets of weight 5withS1 = 0 therefore
is ((n + 1)2 � 1)� n(n � 1)=6 (since we cannot choose S3 and S5
both equal to zero), which equals (5n2 + 13n)=6.

Remark 2: Note that adding the number of cosets in Lemma 1 with
S1 = 0 to the number of cosets with S1 6= 0 in Remark 1 obtained
from Theorem 2 we obtain the following useful bound

K5 � n(n+ 1)

2
+

5n2 + 13n

6

=
4

3
n(n+ 2):

E. The Cosets of Weight w = 4

To prove the conjecture by van der Horst and Berger [8] it is sufficient
to show that all cosets with S1 6= 0, except for the ones in Theorem 2,
have weight at most 4.

In order to prove Theorem 3, we need the following crucial lemma
which is proved by Moreno and Moreno [11].

Lemma 2: Let F be the algebraic closure of F = GF(2m). Let
f(x); g(x) 2 F [x] where deg f < r = deg g and g(x) is a polyno-
mial with t distinct zeros in F . Let L denote the set of zeros of g(x)
in F . If f(x)

g(x)
6= h(x)2 + h(x) for any rational function h(x) 2 F (x),

then

x2FnL

(�1)Tr � (t+ r � 2)
p
2m + 1:

Based on this lemma we are able to prove the following theorem.
This is a key result in order to complete the determination of the coset
distribution.

Lemma 3: Let u 6= 0, u 2 F = GF(2m). For m � 10 and for
given i = 0 or 1 there exists an element x 2 F n f0; 1g such that

Tr
u

x(x+ 1)
= i

and

Tr
u

x(x+ 1)3
=Tr

u

x3(x+ 1)
= 0:

Proof: Let T be the number of elements in F 0 = F n f0; 1g,
obeying the conditions in the theorem. Further, let e(f) = (�1)Tr(f).
Then standard methods give

8T =
x2F

1 + e
u

x(x+ 1)3
1 + e

u

x3(x+ 1)

� 1 + (�1)ie u

x(x+ 1)

=
x2F

1 +
x2F

e
u

x(x+ 1)3
+

x2F

e
u

x3(x+ 1)

+
x2F

e
u

x3(x+ 1)3
+

x2F

(�1)i e u

x(x+ 1)

+
x2F

(�1)ie ux

(x+ 1)3
+

x2F

(�1)i e u(x+ 1)

x3

+
x2F

(�1)ie u(x4 + x2 + 1)

x3(x+ 1)3
:

In order to apply the bound of Lemma 2, we have to check that all
functions a(x)=b(x) which appear in the sums above satisfy the con-
dition of the lemma. We take, for example, the function ux=(x+ 1)3.
We have to show that there is no rational h(x) 2 F (x) such that

ux

(x+ 1)3
= h(x)2 + h(x): (9)

Suppose, on the contrary, that there is a rational function h(x) =
a(x)=b(x) which satisfies (9). We can assume without loss of gener-
ality that gcd (a(x); b(x)) = 1. We obtain

uxb(x)2 = (x+ 1)3a(x)(a(x) + b(x)):

This is a polynomial equality. So, the left-hand side of this equality
is divisible by (x + 1)3. This means that b(x) is divisible at least by
(x + 1)2. But then, the right hand side of this equality is divisible by
(x+1)4, which is impossible, since a(x) cannot be divisible by x+1
when b(x) is divisible by x+1. We therefore conclude that the equality
(9) is impossible. Hence we can apply Lemma 2 to this sum. The other
functions in all the sums above are treated in the same way.

Using the bounds for the exponential sums given in the lemma above
implies that all the last seven sums are upper bounded by c

p
2m +

1, where c takes the values 4; 4; 6; 2; 2; 2; and 6, respectively, starting
from the first sum after 1. It follows therefore that 8T � 2m � 2�
26
p
2m � 7 and so T is strictly positive for m � 10.

Theorem 3: Let m � 10 and let D be a coset such that S1 6= 0
which does not obey both the conditions M = S2

3 + S3
1S3 + S5S1 +

S6
1 = 0 and Tr S3 + S3

1 =S3
1 = 1. Then D is a coset of weight at

most 4.
Proof: We will show that we can find a polynomial �(X) of de-

gree 4 with four zeros (not necessarily distinct) in GF(2m)with the re-
quired syndrome. We will show that we can select the coefficient �2 of
X2 in the polynomial �(X) in (4) such that it has all zeros in GF(2m).
This implies that (1) holds and therefore that the coset has weight at
most 4. If some of the zeros of �(X) are 0 or repeated this leads to a
coset of weight less than 4.

Set x to be an element of GF(2m) n f0; 1g, such that

Tr
M=S6

1

x(x+ 1)
=Tr

S3 + S3
1

S3
1

and

Tr
M=S6

1

x3(x+ 1)
=Tr

M=S6
1

x(x+ 1)3
= 0:

This can be done by Lemma 3.
Set �2 to be a solution in GF(2m) of the quadratic equation

�2
S2
1

2

+
�2
S2
1

+ k = 0

where

k =
M=S6

1

x(x+ 1)
+
S3 + S3

1

S3
1

+ x2(x2 + 1):
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This can be done since Tr(k) = 0, by the choice of x in the previous
step. Then set

�1 =S1

�3 =S3 + S3
1 + �2S1

�4 =
S5 + S3S

2
1 + �2(S3 + S3

1)

S1
and

a =S1x

b =
�3 + a�2 + a2(a+ S1)

S1

d =
�3 + (a+ S1)�2 + a(a+ S1)

2

S1
and

�(X) = (X2 + aX + b)(X2 + (a+ S1)X + d):

Note that since x 62 f0; 1g and S1 6= 0, we cannot have a = 0 nor
a = S1. Further, observe that

Tr(b=a2) =Tr
�3 + a�2 + a2(a+ S1)

a2S1

=Tr
S3 + S3

1 + (a+ S1)�2 + a2(a+ S1)

a2S1

=Tr
S3 + S3

1

a2S1
+

�2
aS1

+
�2
a2

+
a

S1
+ 1

=Tr
S3 + S3

1

a2S1
+

�22
a2S2

1

+
�2
a2

+
a

S1
+ 1 :

Since a = S1x, then we obtain

Tr(b=a2) =Tr
S3 + S3

1 + �22=S1 + �2S1
x2S3

1

+ x + 1

=Tr
(S3 + S3

1)=S
3
1 + k

x2
+ x+ 1

=Tr
M=S6

1

x3(x+ 1)
+ x2 + 1 + x + 1

=Tr
M=S6

1

x3(x+ 1)

=0:

Similarly we obtain

Tr
d

(a+ S1)2
=Tr

�3 + (a+ S1)�2 + a(a+ S1)
2

(a+ S1)2S1

=Tr
S3 + S3

1 + a�2 + a(a+ S1)
2

(a+ S1)2S1
:

Note that this is the same formula as forTr(b=a2)with a+S1 replaced
by a or equivalently x replaced by x + 1. Therefore we have

Tr
d

(a+ S1)2
= Tr

M=S6
1

x(x+ 1)3
= 0:

Then note that �(X) factors into linear factors and

�(X) = X4 + S1X
3 + (a(a+ S1) + b+ d)X2

+(ad+ (a+ S1)b)X + bd

and routine calculations show that

�(X) = X4 + �1X
3 + �2X

2 + �3X + �4:

For each i let Ti be the sum of the ith powers of the roots of �(X)
(repeating roots according to their multiplicity in such sums). Then it

remains to show that Ti = Si for i = 1; 3; 5. The Newton identities
give us

T1 =�1

T3 =�1T
2
1 + �2T1 + �3

T5 =�1T
4
1 + �2T3 + �3T

2
1 + �4T1

and since �1 = S1, we have T1 = S1. Then

T3 =�1S
2
1 + �2S1 + �3

=S3

by the definitions of �1 and �3. Further,

T5 =�1S
4
1 + �2S3 + �3S

2
1 + �4S1

=S5

by the definitions of �1, �3 and �4. We conclude that the zeros of �(X)
obey the syndrome equations in (1). Note that if some of the zeros of
�(X) are 0 or equal, it means that the coset has a coset leader of weight
less than 4. In any case, the coset D has weight at most 4.

Proof of Theorem 1: The theorem was shown to be true for 8 �
m � 12 by a computer search due to van der Horst and Berger [8].
From Remark 1 following Theorem 2 we know that the number of
cosets of weight w = 5 with S1 6= 0 is at least n(n + 1)=2. Fur-
ther, from Remark 2 following Lemma 1 we know that the number of
cosets of weight w = 5 with S1 = 0 equals (5n2 + 13n)=6, which
implies that K5 �

4
3
n(n + 2).

According to Theorem 3 all cosets with S1 6= 0 other than those
in Theorem 2 have weight at most 4. It follows therefore that K5 =
4
3
n(n+2) and therefore, since the total number of cosets is (n+1)3,

that K4 = 1
6
n(5n2 + 10n � 3).

III. THE COSET DISTRIBUTION OF EXTENDED BCH CODES OF

LENGTH n = 2m WITH MINIMUM DISTANCE d = 8

In this section we determine the coset distribution of the extended
codes of the triple-error-correcting BCH codes. Denote by B the ex-
tended binary primitive BCH code of length N = 2m with minimum
distance 8. The parity-check matrix Hext of B is defined by

Hext =

1 1 1 1 . . . 1

0 1 � �2 . . . �n�1

0 1 �3 �6 . . . �3(n�1)

0 1 �5 �10 . . . �5(n�1)

where � is an element of order n = 2m � 1 in GF(2m). Note that the
syndrome in this case is a 4-tuple (S0; S1; S3; S5).

Denote by �i the number of cosets of B of weight i. Since B is an
extended binary [N = 2m; k = N � 3m � 1]-code with covering
radius at most 6, we have immediately that

6

i=0

�i = 2N3 and
3

i=0

�2i =

3

i=1

�2i�1:

Using that �0 = 1 and that clearly �i = N

i
for i = 1; 2; 3, we

deduce that

�4 + �6 = N3 � 1�
N

2

and

�5 = N3 �
N

1
�

N

3
=

1

6
N(N � 1)(5N + 8):

Hence, to find the complete coset distribution we have to find the
number �6 or �4. From the previous sections we know the coset



1732 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 4, APRIL 2006

TABLE I
COSET DISTRIBUTION OF BCH CODES

TABLE II
COSET DISTRIBUTION OF EXTENDED BCH CODES

distribution for the code of length n = 2m � 1. Further, we observe
that

�6 = K5:

This can be seen since any coset of weight 6 of the code B of length
N = 2m is reduced to a coset of weight 5 of the corresponding code of
lengthn = 2m�1, and vice versa, when we do overall parity checking.
In other words, more precisely, a coset with syndrome (S1; S3; S5)
has weight 5 in the binary triple-error-correcting BCH code of length
n = 2m � 1 if and only if (S0 = 0; S1; S3; S5) is the syndrome of a
coset of weight 6 in the extended code. Therefore, �6 = K5 and the
coset distribution of the extended code follows directly from the coset
distribution of the binary primitive triple-error-correcting BCH code
and this gives the final result below.

Theorem 4: Let �i denote the number of cosets with a coset leader
of weight i in the extended triple-error-correcting binary primitive
BCH code of length N = 2m where m � 8. Then the distribution of
the cosets is given by

�0 =1

�1 =
N

1

�2 =
N

2

�3 =
N

3

�4 =
1

6
(N � 1)(6N2

� 5N � 2)

�5 =
1

6
N(N � 1)(5N + 8)

�6 =
4

3
(N � 1)(N + 1):

For completeness sake, the number of cosets with a coset leader of
weight i in the triple-error-correcting binary primitive BCH code of
length n = 2m � 1 and in the extended code are given in the Tables I
and II when m = 5; 6; and 7.

IV. CONCLUSION

We have determined the distribution of cosets in the binary primitive
triple-error-correcting BCH codes of length n = 2m � 1. This solves
the conjecture from 1976 by van der Horst and Berger. As an easy
consequence this also gives the coset distribution of the extended codes
of length N = 2m and minimum distance d = 8.
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On Quasi-Cyclic Interleavers for Parallel Turbo Codes

Joseph J. Boutros, Member, IEEE and Gilles Zémor, Member, IEEE

Abstract—In this correspondence, we present an interleaving scheme
that yields quasi-cyclic turbo codes. We prove that randomly chosen
members of this family yield with probability almost 1 turbo codes with
asymptotically optimum minimum distance, i.e., growing as a logarithm
of the interleaver size. These interleavers are also very practical in terms
of memory requirements and their decoding error probabilities for small
block lengths compare favorably with previous interleaving schemes.

Index Terms—Convolutional codes, iterative decoding, minimum dis-
tance, quasi-cyclic codes, turbo codes.

I. INTRODUCTION

It is now well known that the behavior of turbo codes, although very
powerful under high noise, exhibits an error floor phenomenon that can
be explained by poor minimum distance properties. More specifically,
it can be shown that for randomly chosen interleavers, the expected
minimum distance of a classical two-level turbo code remains constant
[21], [19], i.e., does not grow with block length. Can the error floor
behavior of turbo codes be improved by designing the interleaver in a
way that differs from pure random choice?
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