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Abstract In this paper we investigate the existence of permutation polynomials of the form
F(x) = xd + L(x) over GF(2n), L being a linear polynomial. The results we derive have
a certain impact on the long-term open problem on the nonexistence of APN permutations
over GF(2n), when n is even. It is shown that certain choices of exponent d cannot yield
APN permutations for even n. When n is odd, an infinite class of APN permutations may be
derived from Gold mapping x3 in a recursive manner, that is starting with a specific APN
permutation on GF(2k), k odd, APN permutations are derived over GF(2k+2i ) for any i ≥ 1.
But it is demonstrated that these classes of functions are simply affine permutations of the
inverse coset of the Gold mapping x3. This essentially excludes the possibility of deriving
new EA-inequivalent classes of APN functions by applying the method of Berveglieri et al.
(approach proposed at Asiacrypt 2004, see [3]) to arbitrary APN functions.
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1 Introduction

Differential cryptanalysis introduced in [2], together with linear cryptanalysis [24] are con-
sidered as the most efficient cryptanalyst tools for block ciphers. Commonly, the security
of modern block ciphers substantially relies on the cryptographic properties of its substitu-
tion boxes (S-boxes), which are in most of the cases the only source of nonlinearity. These
S-boxes are most often constructed by means of certain well-known power mappings that
have relatively good cryptographic properties such as high nonlinearity, high algebraic degree
and good differential characteristics.

To satisfy the diverse cryptographic criteria, a cryptographically strong S-box can be taken
from the class of almost perfect nonlinear (APN) permutations. In addition it should have
good algebraic properties, so that low degree input/output (I/O) relations do not exist. How-
ever, almost all families of APN functions have been derived from power polynomials, that
is F(x) = xd over the field GF(2n) for a suitably chosen d . Unfortunately, when n is even,
it has been a long-term open problem to prove the nonexistence of APN permutations over
GF(2n).

One of the major achievements in this context is the result of Hou [19] showing that an
APN function F, F(x) = ∑2n−1

i=0 ai xi , cannot be a permutation if ai ∈ F2n/2 and n is even.
Quite recently, Dillon [15] succeeded in finding a first instance of APN permutation polyno-
mial over GF(64). This result, though of outstanding theoretical importance, does not solve
the question related to efficient construction or finding new classes of APN permutations
when n is even. Indeed, until today no further examples of APN permutations have been
exhibited.

Our idea is to investigate the conditions for Fd(x) = xd + L(x) to be a permutation.
Then, showing that Fd cannot be a permutation for some d we also exclude the possibility
of turning a non-permuting APN function xd into permutation by adding a linear function to
it. An instance of this problem was recently studied in [12]. Also the case of permutations
F such that x �→ F(x) + x remains a permutation was already studied. These permutations
are called complete permutations [25].

To preserve good differential and linear properties, we may attempt to find instances (or
classes) of polynomials derived from power monomials that have better algebraic properties
than power monomials. It is well-known that the differential and linear properties of the
power permutation F(x) = xd are the same as for x2d , x4d , . . . , x2n−1d . The same is true
for the inverse cyclotomic coset x2/d , x4/d , . . . , x2n−1/d if xd is a bijection, see e.g. [17]. Of
course, the exponents of these mappings are reduced mod 2n − 1. While x2i d is of the same
algebraic degree as xd , this is not the case for the inverse cyclotomic coset as x2i /d has in
general different algebraic degree than xd .

The linear transformation is embedded in the so-called extended affine equivalence
(EA-equivalence) so that F and F ′ are EA-equivalent if F ′ = A1 ◦ F ◦ A2 + A for some affine
permutations A1, A2 and affine function A. A more general equivalence that we term just
equivalence (following the terminology in [7]) also includes the inverse coset by replacing F
with F−1. Nevertheless, the EA-equivalence in general does not apply to the inverse cyclo-
tomic coset. This means that transforming F into F ′ by means of the existence of A, A1, A2

does not necessarily imply that we can retrieve F from F−1 by applying the above affine
transformation for some Ã, Ã1, Ã2.

A more general framework was first introduced in [8], where the transformation is applied
rather to the graph of functions. Then F, F ′ : F2n → F2n are called CCZ-equivalent, terminol-
ogy introduced in [5], if the sets G F = {(x, F(x))|x ∈ F2n } and G F ′ = {(x, F ′(x))|x ∈ F2n }
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are affine equivalent. It was shown in [8] that EA-equivalence is a particular case of CCZ-
equivalence, and both equivalence relations preserve (up to permutation) the differential table
and the extended Walsh spectra. Furthermore, the strength to algebraic cryptanalysis (admit-
tance of low degree I/O equations) is invariant to both equivalence relations. Nevertheless,
certain classes of AB (APN) functions derived by applying the CCZ transformation cannot
be obtained via classical EA-equivalence [4].

The research on the classification of functions with respect to the above equivalence clas-
ses has received a lot of attention, see e.g. [4,5,18]. At Asiacrypt 2004, Breveglieri et al. in
the paper “On generalized linear equivalence of functions over finite fields” introduced a new
class of APN permutations derived from Gold mapping F(x) = x3 for which the conjecture
was made that this class was EA-inequivalent to any power mapping. Later this statement was
corrected not to hold over F23 due to the small size of the field (first revision), and eventually
the statement was completely withdrawn by the authors in the second revision [23]. Using an
approach based on matrix theory it was shown that the class of functions introduced in [3] is
EA-equivalent to the inverse mapping of x3. Here we give a simplified proof of this fact at the
same time specifying the particular affine transformation. More importantly, the possibility
of constructing APN permutations in a recursive manner, that was only verified by computer
in [26], is formally proved here using the number theory. To the best of our knowledge we
are not aware of any other examples of constructing APN permutations recursively, that is
starting with an APN permutation over GF(22k−1) one may define an APN permutation over
a field GF(22k+2i−1) for any i > 0 using a simple recursive formulae.

The rest of the paper is organized as follows.1 Section 2 introduces basic definitions and
concepts. The nonexistence of certain classes of permutations and the implication of this
result to the APN conjecture is treated in Sect. 3. In Sect. 4, we disprove the statement of
Breveglieri et al. [23] on the possibility of deriving new classes of functions EA-nonequiv-
alent to power monomials. The recursive property of APN permutations derived from the
Gold mapping x3 is explained. Section 5 concludes the paper.

2 Preliminaries

In the sequel F2n will denote the Galois field of 2n elements.
The polynomial degree, denoted by degp , associated to P(x) = ∑

i ai xi is defined as the
largest i for which ai is nonzero. Any mapping F : F2n → F2n can be viewed as a mapping
F ′ : F

n
2 → F

n
2 by fixing the isomorphism between the vector space F

n
2 and the field F2n . If

we represent the function F as a function on the vector space F
n
2, then we may consider this

function as being a collection of n Boolean functions f1, . . . , fn , that is, F ′ = ( f1, . . . , fn),
where fi : F

n
2 → F2. The algebraic degree of F ′ when defined as a global degree of F ′

implies the following definition.

Definition 1 The algebraic degree of F ′ is defined as,

deg(F ′) = max
j

deg( f j (x)), (1)

where deg( f ) denotes the usual algebraic degree of a Boolean function f , that is, the highest
length of the terms that appear in the algebraic normal form of f .

1 In the manuscript published in conference proceedings of WAIFI 08 [26], there is a section that contains
a polynomial time algorithm for finding low degree input/output relations for sparse polynomials over finite
fields. The interested reader is therefore referred to the manuscript in the conference proceedings [26] for the
details regarding this algorithm.
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A related notion that even better captures the cryptographic properties of F ′ is so-called
minimum degree.

Definition 2 The minimum degree of F ′ is defined as,

deg(F ′) = min
τ∈F

n
2
∗ deg

⎛

⎝
n∑

j=1

τ j f j (x)

⎞

⎠ . (2)

In most of the cryptographic applications the minimum degree of high order is an essential
criterion, as otherwise it might be the case that certain linear combinations of the inputs
induce simple (low degree) input/output relations.

The algebraic degree may also be deduced from the polynomial representation. That is,
for a function F : F2n → F2n represented as F(x) = ∑2n−1

i=0 ai xi , the algebraic degree is
given by

deg(F) = max
i

{wt (i); ai �= 0}, (3)

where wt (i) denotes the Hamming weight (number of ones) in a binary representation of
integer i . Also for a function F(x, y) : F2n ×F2n → F2n , where F(x, y) = ∑2n−1

i, j=0 ai, j x i y j ,
the algebraic degree is defined as,

deg(F) = max
i, j

{wt (i) + wt ( j); ai, j �= 0}, (4)

The differential properties of F : F2n → F2n are visualized through so-called differential
table that for each a ∈ F

∗
2n , b ∈ F2n consists of the number of solutions to the following

equation,

F(x + a) + F(x) = b a ∈ F
∗
2n , b ∈ F2n . (5)

Then, a function F is called almost perfect nonlinear (APN) if each equation (5) has at most
two solutions in F2n and such a function has a highest resistance to differential cryptanalysis.
The differential properties of F are then comprised through the differential table,

{δF (a, b)} = {|{x ∈ F2n : F(x + a) + F(x) = b}|; a ∈ F
∗
2n , b ∈ F2n }.

The nonlinearity of F : F2n → F2n and hereby the resistance to linear cryptanalysis of
Matsui [24] is measured through extended Walsh transform defined as,

WF (λ, γ ) =
∑

x∈F2n

(−1)T r(γ F(x)+λx), λ ∈ F2n , γ ∈ F
∗
2n , (6)

where T r denotes the trace mapping, i.e. T r(x) = x + x21 + · · · + x2n−1
. Then, defining the

linearity as

L(F) = max{|WF (λ, γ )| : λ ∈ F2n , γ ∈ F
∗
2n },

the goal is to find mappings with minimum possible value for L(F).
Those F , that achieve the minimum possible value for L(F) are called AB (almost bent)

or maximally nonlinear, and these functions have the maximum resistance against linear
cryptanalysis. For odd n = 2m + 1 this value is known to be 2m+1 [9]. For even n it is
still open problem to determine the minimum for L(F). It was shown in [1, Theorem 4] that
L(F) ≥ 2n/2+1 for any APN power function, n even. In the Boolean case, when considering
f : F

n
2 → F2, the situation is somewhat similar. Here, when n is even the functions achieving
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the maximum possible nonlinearity are known as bent functions [6,14,27]. These functions
are not balanced and they have a uniform Walsh spectra, that is W f (λ) = 2n/2 for any λ ∈ F

n
2.

3 Nonexistence of certain classes of permutations

Let xd be a power monomial over F2n , and L(x) be a linear function. Our goal in this section
is to answer the question when xd + L(x) is a permutation. In general, it is an open problem
when an arbitrary (non)permuting function G becomes (remains) a permutation when a linear
polynomial is added to G. Note that there exist integers d and s such that taking a nonpermuta-
tion binomial G(x) = xd + xs where d, s are not 2-power (d, s �= 2i for some i ≥ 0), we can
find permutation polynomials of the form P(x) = G(x) + L(x). One example can be found
in [17], where it was proved that for n = 2m + 1 the polynomial P(x) = x2m+1+1 + x3 + x
is a permutation polynomial on F2n . When n is even, the permutation property of xd + L(x)

is also related to open problem of the existence of APN permutations.

3.1 On permutations of the form xd + L(x) for even n

For the rest of the paper we denote

Fd(x) = xd + L(x), L(x) =
n−1∑

i=0

ai x2i
, ai ∈ F2n . (7)

Also for a linear function L on F2n :

L(x) =
n−1∑

i=0

ai x2i
, ai ∈ F2n ,

we call adjoint mapping of L the linear function:

L∗(x) =
n∑

j=1

a2 j

n− j x2 j
. (8)

Lemma 1 Let L be a linear function on F2n . Then L is a permutation if and only if L∗ is a
permutation.

Proof For any linear function L(x) = ∑n−1
i=0 ai x2i

, ai ∈ F2n , the image set of L is a linear
space, say V . Furthermore, L is a permutation if and only if K er(L) = {0}. An element β is
in the dual of V if and only if

T r(βL(x)) = 0, for allx ∈ F2n .

But

T r

(

β

n−1∑

i=0

ai x2i

)

= T r

(

x

(
n−1∑

i=0

(aiβ)2n−i

))

= T r

⎛

⎝x

⎛

⎝
n∑

j=1

(an− jβ)2 j

⎞

⎠

⎞

⎠

= T r(x L∗(β)).

Thus, β ∈ V ⊥ if and only if L∗(β) = 0. If L is a permutation then V ⊥ = {0} so that it is
impossible to have L∗(β) = 0 unless β = 0, i.e., L∗ is a permutation. Conversely, if L∗ is a
permutation then V ⊥ = {0} implying that L is a permutation. 
�
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Theorem 1 The functions Fd are defined by (7). Let n = 2m and d be any nonzero integer.
If there is λ ∈ F

∗
2n such that the function x �→ T r(λxd) is bent then Fd is not a permutation,

for any choice of L.

Proof It is well-known that any function F over F2n is a permutation if and only if all its
component functions are balanced, that is

∑

x∈F

(−1)T r(λF(x)) = 0 for all λ ∈ F
∗
2n . (9)

(see for instance [22, Theorem 7.7]). In other words, any function T r(λF(x)) has weight
2n−1. So, Fd is a permutation if and only if any function

fλ : x �→ T r

(

λ

(

xd +
n−1∑

i=0

ai x2i

))

= T r

(

λxd + x

(
n−1∑

i=0

(aiλ)2n−i

))

, (10)

is balanced. If λ is such that x �→ T r(λxd) is bent then any function x �→ T r(λxd + ax) is
not balanced. In particular fλ is not balanced, completing the proof. 
�

Note that Theorem 1 holds if we replace the power function x �→ xd by any function F . We
now apply Theorem 1 to some important classes of power functions. Moreover, Theorem 1
is applicable to any bent function of the form x �→ T r(axd). The reader can see a recent list
in [11].

Corollary 1 Let n = 2m. The functions Fd are not permutations, for any choice of L, when
d is as follows:

(i) d = 2r + 2s with 0 ≤ s < r ≤ n − 1 and gcd(2r−s + 1, 2n − 1) �= 1;
(ii) d = s(2m − 1) where s is coprime to 2m + 1 (with n = 2m);

(iii) d = 22t − 2t + 1 with gcd(t, n) = 1 where n is coprime to 3.

Proof In all cases, we have to prove that there are some λ ∈ F
∗
2n such that the function

x �→ T r(λxd) is bent.
Note that T r(ax2r +2s

) = T r(a2n−s
x2r−s+1). But the function x �→ T r(λx2t +1) is bent if

and only if λ �∈ {y2t +1|y ∈ F2n } (see the proof in [21, Theorem 2]). Thus, a bent function
exists as soon as 2r−s + 1 is not coprime to 2n − 1, proving (i).

In the case (ii), x �→ T r(λxd), with λ ∈ F2m , is bent whenever the Kloosterman sum in
point λ on F2m is zero (see explanations in [21] and [10]).

The case (iii) was treated by Dillon and Dobbertin [13, Theorem 11]. They proved that
the function x �→ T r(λxd) is bent if and only if λ �∈ {y3|y ∈ F2n }. 
�
3.2 On APN permutations of the form xd + L(x), n even

Theorem 1 applies to a great majority of power monomials for which the spectrum is known.
In particular, item (iii) in Corollary 1 refers to the Kasami exponent for which it was proved
that x22t −2t +1 is APN [17]. On the other hand item (i) covers a broad class of functions with
or without APN property depending on the choice of r, s. For instance, taking s = 0, r = 1
implies that x3 + L(x) is never a permutation, thus an APN function x3 cannot be turned
into permutation by adding a linear function. Note that the coefficients of L(x) are in F2n ,
hence this result is not covered by the result of Hou [19].
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Remark 1 One might be tempted to assert a conjecture that any power function has bent
components when n is even. This is in general not true, a counterexample is the Dobbertin
exponent d = 24g + 23g + 22g + 2g − 1, for even n = 5g. This function is APN [16], but its
sum-of-square indicator takes such values so that the function cannot have bent components
for n ∈ {10, 20}, for more details see [1, Example 5].

Now we consider APN mappings in a more general framework in connection to the open
problem of the existence of APN permutation when n is even. Recall that if a function F is
APN then F + L is also APN. Recent results on this problem are summarized in [1, Theorem
3]. Notably, it was proved that if all component functions of F are plateaued then F cannot be
a permutation. But, if F has all its components plateaued, this property holds for F + L too.
The property of being plateaued refers to the spectral characterization of Boolean functions,
and the class of plateaued functions includes both bent and partially bent functions [28]. In
addition, this superclass also contains functions that are not bent and do not have nonzero
linear structures (the main property of the partial-bent class), therefore making them more
suitable for cryptographic use. The above discussion yields the following general result:

Proposition 1 Let n = 2m. Let F be an APN function on F2n which has all its compo-
nents functions plateaued. Then F + L cannot be a permutation, for any L. This is true, in
particular, when F is quadratic.

The main question we try to answer is: Can Fd be a permutation for some L when x �→ xd

is APN ? We first give a more general result in this context.

Lemma 2 Let d be such that gcd(2n −1, d) = s with s > 1. If Fd is a permutation for some
L then L is a permutation too. In particular this holds for even n when x �→ xd is APN.

Proof Assume that gcd(2n − 1, d) = s with s > 1. Then any Boolean function

gλ : x ∈ F2n �−→ T r(λxd)

has a weight divisible by s so that its weight cannot be 2n−1. This means that gλ cannot be
balanced, for any λ. Now let L(x) = ∑n−1

i=0 ai x2i
. So Fd is a permutation if and only if any

function fλ is balanced, with

fλ(x) = T r

(

λxd + x

(
n−1∑

i=0

(aiλ)2n−i

))

= T r
(
λxd + x L∗(λ)

)
.

(see (9) and (10)). If L is not a permutation then L∗ is not a permutation, from Lemma 1.
Then there is α �= 0 such that L∗(α) = 0 and further

fα(x) = T r(αxd) = gα(x),

which is not balanced.
If n = 2m, we know that for any power APN function x �→ xd we have gcd(d, 2n −1) = 3

(see [1], Section C). In this case gα has a weight divisible by 3. 
�
Remark 2 A method to construct linear permutations was introduced in [20]. Let (a1, . . . ,

an−1) be n − 1 elements of F2n and consider

P(x) =
n−1∑

i=1

ai x2i = x

(
n−1∑

i=1

ai x2i −1

)

= x Q(x).
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It is known that Q cannot be a permutation unless it has the form ax + x2i −1, i > 1 and
a ∈ F

∗
2n . Hence one can choose a0 which is not in the image set of Q. Then

L(x) = x(a0 + Q(x)) =
n−1∑

i=0

ai x2i
,

is a permutation.

Theorem 2 There are no permutations of the form xd +∑n−1
i=0 ai x2i

, where gcd(d, 2n −1) =
s > 1 and ai ∈ F2.

Proof We first note that if Fd is to be a permutation, then
∑n−1

i=0 ai x2i
, ai ∈ F2, cannot

be a permutation as we would have {0, 1} Fd�→ 0. But by Lemma 2,
∑n−1

i=0 ai x2i
must be a

permutation, therefore result. 
�
In particular the result of Theorem 2 applies to those d for which xd is APN function.

Corollary 2 There do not exist APN permutations on F2n of the form,

xd + L(x),

where gcd(2n − 1, d) > 1, and L(x) = ∑n−1
k=0 ak x2k

, ak ∈ F2.

Remark though, as these polynomials have binary coefficients, this result is just a special
case of Hou’s result [19].

Theorem 2 cannot be extended to nonbinary coefficients without further restrictions on
F and/or parity of n. For instance, when n is even, the polynomial F(x) = x171 + α5x over
F28 is a permutation for a primitive element α. F is obtained by adding a linear function with
nonbinary coefficient to nonpermutation polynomial xd , and furthermore gcd(d, 2n −1) = 3
for d = 171 and n = 8; therefore the conditions of Theorem 2 are satisfied. Notice that exten-
sion of Theorem 2 to the case of nonbinary coefficients of L , n odd, would formally disprove
the conjecture stated in [8]. This conjecture claims that given any AB function F there exist
a linear function L such that F + L is a permutation. A counterexample for this conjecture
has already been found [5], for a certain AB function over F25 .

Finally, we have the following result for APN power functions (but also applicable to any
power mapping).

Proposition 2 Let Fd be defined by (7) such that x �→ xd is APN and L is any linear
permutation.

Then Fd is a permutation, for such L and d, if and only if

zd + (z + 1)d �= L(e)

ed
, for all z ∈ F2n and e ∈ F

∗
2n .

Proof Assume that Fd is a permutation for some choice of permutation L . This is equivalent
to say that there is no pair (x, y) such that Fd(x) = Fd(y) with x �= y. In other terms, it is
impossible to have a pair (x, e) such that Fd(x) + Fd(x + e) = 0, which is

xd + (x + e)d + L(e) = 0.

Taking z = x/e, the equality above becomes

ed
(

zd + (z + 1)d
)

= L(e). 
�
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4 Recursive APN permutations from Gold mapping x3

In Asiacrypt 2004 paper “On the generalized linear equivalence of functions over finite fields”
[3], Breveglieri et al. conjectured that all functions obtained from an implicitly defined map-
ping,

x3 + x2 + x → x

are not EA-equivalent to any power monomial over the field F2n , for odd n ≥ 3. Later this
statement was corrected not to hold over F23 due to the small size of the field (first revision),
and eventually completely withdrawn by the authors in the second revision [23].

Using a matrix-based approach it was shown that the above implicit mapping can be rep-
resented as affine transformation of the inverse coset of x3, therefore the two representations
are equivalent in the sense discussed in the introduction (EA-equivalent with respect to the
inverse coset). Yet the authors in [23] claim that the possibility of deriving EA-inequivalent
classes of APN functions by applying their approach to other APN monomials instead of
applying it to x3.

In the sequel we specify this affine transformation and furthermore give a formal proof of
the recursive property of this transformation (this property was only justified through com-
puter simulations in the conference version of this manuscript [26]). To give an exact descrip-
tion of the affine transformation let us define F(x) = x3 and consider g : x3 + x2 + x → x
over F25 . Then the explicit form of g is given by,

g(x) = x21 + x20 + x17 + x16 + x5 + x4 + x over F25 ,

where g ◦ f (x) = x (mod x32 + x), for f (x) = x3 + x2 + x . Then from F(x)◦ F−1(x) ≡ x
(mod x32 + x) we would get F−1(x) = x21 so that,

F−1(x + 1) + 1 = (x + 1)21 + 1 = x21 + x20 + x17 + x16 + x5 + x4 + x = g(x).

Thus, the implicit mapping x3 + x2 + x → x corresponds to g(x) = F−1 ◦ A2 + A, where
F−1(x) is a compositional inverse of F(x) = x3, A2(x) = x + 1 is affine permutation, and
A(x) = 1 is a constant function. The very same transformation applies to arbitrary field
sizes. The true essence of the Breveglieri et al. method [3] is therefore an affine transforma-
tion of the inverse coset of the Gold mapping. Applying the same approach to arbitrary APN
functions would only give the functions that belong to the inverse coset of the initial APN
function used.

In the conference version of this manuscript [26] a simple recursive method of construct-
ing APN permutations was derived using the result in [3]. The method was based on the
following observation. The Lagrange interpolation for the mapping x3 + x2 + x → x over
F23 gives the function g′(x) = x5 + x4 + x , the same explicit form over F25 is then,

g(x) = x21 + x20 + x17 + x16 + x5 + x4 + x, (11)

from which it was deduced that

g(x) = x16(g′(x) + 1) + g′(x)

holds. This, however, gives a general recursion, that was verified by computer in [26] for
finite fields of relatively small sizes, that relates the function g′ : x3 + x2 + x → x on F22k−1

to the function g : x3 + x2 + x → x on F22k+1 , k ≥ 2, through

g(x) = x22k
(g′(x) + 1) + g′(x). (12)
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This interesting feature seems only to be valid for the Gold mapping F(x) = x3. Below, we
formally prove that recursion is true for any odd n. The following lemma will be needed.

Lemma 1 Let F(x) = x3 and F−1(x) = xu for some u > 0, so that (F ◦ F−1)(x) ≡ x
(mod x22k−1 + x) over F22k−1 , k ≥ 2. Then the compositional inverse of F(x) = x3 over
F22k+1 is computed as,

F−1(x) = x22k+u .

Proof We have assumed that (x3)u ≡ x (mod x22k−1 + x), that is,

3u ≡ 1 (mod 22k−1 − 1).

Then we can write 3u = 1 + d(22k−1 − 1) for some d > 0. But as 1 < u < 22k−1 − 1 then
0 < d < 3, and we must necessarily have d = 2. That is, 3u = 1 + 2(22k−1 − 1). To show
that F−1(x) = x22k+u over F22k+1 it suffices to show that,

3(22k + u) ≡ 1 (mod 22k+1 − 1).

We have,

3(22k + u) = 3 · 22k + 1 + 2(22k−1 − 1) = 22k+2 − 1 ≡ 1 (mod 22k+1 − 1).

This concludes the proof. 
�
We are now ready to prove the recursive property of the APN permutations of the form
g′(x) = F−1(x + 1) + 1, where F−1 is the compositional inverse of F(x) = x3.

Proposition 3 Let F ′−1 and F−1 denote the compositional inverses of F(x) = x3 over
F22k−1 and F22k+1 , respectively. Given the APN permutation g′(x) = F ′−1(x + 1) + 1 over
F22k−1 , the function g(x) = F−1(x + 1) + 1 over F22k+1 is given by,

g(x) = x22k
(g′(x) + 1) + g′(x).

Proof Let g′(x) = F ′−1(x + 1) + 1 = (x + 1)u′ + 1, where xu′
is a compositional inverse

of x3 over F22k−1 . Then,

g(x) = (x + 1)u + 1
Lem. 1= (x + 1)22k+u′ + 1 = (x22k + 1)(x + 1)u′ + 1 =

= x22k
(x + 1)u′ + g′(x) = x22k

(g′(x) + 1) + g′(x). (13)


�
Remarkably the recursion is more delicate when considering the inverse mapping of

x3 + x2 + x over F23 . In other words, instead of considering x3 + x2 + x → x whose explicit
polynomial form over F23 is g(x) = x5 + x4 + x , we may start with the implicit mapping
x5 + x4 + x → x over F23 and then try to deduce a recursion similar to the one valid for
x3 + x2 + x → x . The Lagrange interpolation of g : x5 + x4 + x → x gives the following
explicit forms,

x3 + x2 + x, over F23

x25 + x24 + x17 + x16 + x9 + x8 + x, over F25

x51 + x50 + x49 + x48 + x35 + x34 + x33 + x32 + x19 + x18 + x17 + x16

+x3 + x2 + x, over F27
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x409 + x408 + x401 + x400 + x393 + x392 + x385 + x384 + x281 + x280 + x273

+x272 + x265 + +x264 + x257 + x256 + x153 + x152 + x145 + x144 + x137 + x136

+x129 + x128 + x25 + x24 + +x17 + x16 + x9 + x8 + x over F29 .

All these functions are clearly APN permutations but in difference to x3 + x2 + x → x the
recursive relation that defines APN permutation over F22k+1 refers to a smaller field F22k−3

rather than to F22k−1 . When 2k + 1 = 5, i.e. k = 2, a general recursion given below does not
apply as the binary field F2 would be then used. The recursion, valid for F22k+1 and k > 2,
is given by

g(x) =
{

(x22k−2 + x22k−1 + x22k−1+22k−2
)(g1(x) + 1) + g1(x), k odd;

(x22k−1 + x22k + x22k+22k−1
)(g1(x) + 1) + g1(x), k even;

where g1 and g denote the explicit mappings of x5 + x4 + x → x over F22k−3 and F22k11

respectively. Nevertheless, the affine transformation applied to the compositional inverse is
expectedly the same one as for x3 + x2 + x → x . That is, the explicit form of the mapping
g : x5 + x4 + x → x is given by g(x) = F−1(x + 1) + 1, where F−1(x) is a compositional
inverse of F(x) = x5. For instance, over F25 it is readily checked that using F−1(x) = x25

for F(x) = x5 the above expression is retrieved.

Lemma 2 Let F(x) = x5 and F−1(x) = xu for some u > 0, so that (F ◦ F−1)(x) ≡ x
(mod x22k−1 + x) over F22k−3 , k > 2. Then the compositional inverse of F(x) = x5 over
F22k+1 is computed as,

F−1(x) =
{

x22k−1+22k−2+u, k odd;
x22k+22k−1+u, k even;

Proof We have assumed that (x5)u ≡ x (mod x22k−3 + x), that is,

5u ≡ 1 (mod 22k−3 − 1).

Then we can write 5u = 1 + d(22k−3 − 1) for some d > 0. But as 1 < u < 22k−3 − 1 then
0 < d < 5, and then d ∈ {2, 4}. The case d = 2 holds for odd k, and d = 4 when k is even.

To show that F−1(x) = x22k−1+22k−2+u over F22k+1 for odd k and d = 2, it suffices to
show that,

5(22k−1 + 22k−2 + u) ≡ 1 (mod 22k+1 − 1),

where the multiplicative inverse u over the field F22k−3 satisfies 5u = 1 + 2 · (22k−3 − 1).
Then,

5 · (22k−1 + 22k−2 + u) = 5 · (22k−1 + 22k−2) + 1 + 2 · (22k−3 − 1)

= 22k+2 − 1 ≡ 1 (mod 22k+1 − 1).

When k is even, that is d = 4, then 5u = 1 + 4(22k−3 − 1) so that,

5 · (22k + 22k−1 + u) = 5 · (22k + 22k−1) + 1 + 4 · (22k−3 − 1)

= 22k+3 − 3 ≡ 1 (mod 22k+1 − 1).

This concludes the proof. 
�
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Proposition 4 Let F ′−1 and F−1 denote the compositional inverses of F(x) = x5 over
F22k−3 and F22k+1 , respectively. Given the APN permutation g1(x) = F ′−1(x + 1) + 1 over
F22k−3 , the function g(x) = F−1(x + 1) + 1 over F22k+1 is given by,

g(x) =
{

(x22k−2 + x22k−1 + x22k−1+22k−2
)(g1(x) + 1) + g1(x), k odd;

(x22k−1 + x22k + x22k+22k−1
)(g1(x) + 1) + g1(x), k even;

Proof We only prove the case k odd, the proof for k even is similar. Let g1(x) = F ′−1(x +
1) + 1 = (x + 1)u′ + 1, where xu prime is a compositional inverse of x5 over F22k−3 . Then,

g(x) = (x + 1)u + 1
Lem. 2= (x + 1)22k−1+22k−2+u′ + 1

= (x22k−1 + 1)(x22k−2 + 1)(x + 1)u′ + 1

= (x22k−1 + x22k−2 + x22k−1+22k−2
)(x + 1)u′ + (x + 1)u′ + 1

= (x22k−1 + x22k−2 + x22k−1+22k−2
)(g1(x) + 1) + g1(x). 
�

Remark 3 The authors are not aware of similar examples of APN functions with such a recur-
sive property. The recursion resembles the properties of the Welch exponent d = 2m +3 over
F2n , n = 2m + 1, (known to be an APN (AB) permutation [17]) which relates the exponent
of x2m+3 to the field size. The recursion in this case is given by Fd(x) = x2m

F ′
d(x) where F ′

d
and Fd define the APN permutations over F2n and F2n+2 respectively, n = 2m + 1. Note that
the algebraic degree is always equal to 3 in this case whereas the recursion in (12) increases
the degree in each step of iteration. Furthermore, there is no obvious relation between the
inverse coset exponents.

The iterative property of the Gold function cannot in general be extended to polynomials with
nonbinary coefficients. It remains an open problem to find other examples of recursions for
polynomials with nonbinary coefficients in the subfield of all considered larger fields in the
sequence. For instance, starting with an initial polynomial in F23 [x] with the coefficients in
F23 one may try to construct polynomials (that preserve the permutation and APN property)
over F26 , F29 , F212 , etc. in an iterative manner.

5 Conclusions

In this paper we have developed several ideas useful in analysis of cryptographically sig-
nificant mappings over finite fields. Though, we could not treat all the cases of interest for
particular class of polynomials given by xd + L(x), the results presented here will hopefully
impact the subsequent research in this field.
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