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Let A be the modular algebra in which a large class of extended cyclic codes is examined. We
characterize the set of A-codes which are the results of the peculiar sums of principal A-
codes. The set described contains extended cyclic codes that we specify. Some of them are
Reed-Solomon codes.

Soit A Palgébre modulaire dans laquelle est étudiée une classe importante de codes cycliques
étendus. Nous caractérisons un ensemble de codes de A obtenus par des sommes particuliéres
de codes principaux de A. L’ensemble décrit contient des codes cycliques étendus que nous
déterminons. Parmi ceux-ci certains sont des codes de Reed-Solomon.

1. Introduction

Let p be a prime; m and r are two positive numbers; K and G are respectively
the Galois fields GF(p") and Gf(p™). We denote by A the modular algebra K[G];
A is the polynomial algebra

A={x=z ngnggeK}. (1)
geG

We denote by R the quotient algebra K[X]/(X"—1) with n=p™—1. By
convention an A-code is an ideal in A and an R-code is a cyclic code of length n
over K.

An R-code, the extension of which is invariant under the affine permutation
group on G, is characterized by Kasami in [9]. Such a code is an A-code. For
example the extended BCH codes, the generalized Reed-Muller codes, the
extended Reed-Solomon codes are A-codes. So we study the algebraic properties
of A-codes, in the same way we study a large class of cyclic codes.

We have described in [7] the R-codes, and particularly the Reed-Solomon
codes, the extension of which is a principal ideal of A. We give here a more
general presentation: the A-codes in question are particular sums of principal
A-codes; they are defined in Section 2. In Section 3 all R-codes, the extensions of
which are A-codes, are explicitly characterized. So, in Section 4, we can point out
for an extended Reed—Solomon code, the relation between its minimum distance
and its representation in the modular algebra.
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The proofs of Sections 2, 3 and 4 require a theory which is developed in [4].
Here we only give the useful definitions and properties.
When we say distance we always mean the Hamming distance.

2. Definition of an A -code set

Let P be the set of all nilpotent elements of A, called the radical of the algebra

[2];
Y x =0}- %)

gcG

P={xeA

The jth power of the radical P is denoted P'; the ideals P! are described in [4,
11, 12}

Particularly we have shown in [8] that they are the generalized Reed-Muller
codes. Each element and therefore each ideal of A has a position in the
decreasing sequence {P’ | j<m(p— 1)} which is called its depth by Poli [12].

Definition 1. je[1, m(p—1)]; x€ A; I is an A-code.
(1) x has the depth j if and only if xe P’ and x¢ P'*';
(2) I has the depth | if and only if I< P’ and I£ P/,

Notations. The principal ideals of A generated by an element x: is denoted by

(x). Let {I,,...., I} be k ideals of A; their sum is
k k
+ IF{Z ai|ai€Ii}- (3)
i=1 i=1

Theorem 1. Let I be an A-code with depth j. The two following propositions are
equivalent:
(i) There are {x;, ..., x.}, k elements of A such that:

k
Y, Ax; e PI\P**  with (A,), e K*—{0}
i=1

and

(ii) PI=P"'NI and dim PI =dim I—k.
Remark. In (i), the first condition involves that the I-expression is minimal.
Proof. (1) We suppose that I verifies (i). Clearly PIc P"*'NL Let ye PPN I;

by (i) we have y =Y*_, a;x; with a; € P; so y € PI. We have proved that P"*'NI=
PL
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Let h=dim PI, {y,,..., y,} a basis of Pl and ye I We recall that A=K®P.
We have

k
y=1 ax, GEA;
i=1

i=

k k
y= z )\ixi+z bx, A €K, beP,A+b,=a;;
i=1 i=1

Il
M=

h
y Ax; + Z wy» AeEK u ek
i=1

i=1
So the set {x4, ..., X, Y1, ..., Yu} i a generator system of the K-vector space I; it
is a maximal generator system because we cannot have

k h

Y Ax,=- Y wy; with wy €PIand Ax; e PP\ PI*Y,

i=1 i=1
So dim I =dim PI+k; (ii) is proved.

(2) We suppose that I verifies (ii). Let {y,,..., y,} be a basis of PI; it is
completed in order to obtain a basis of I:{xy,..., % ¥1,..-,yu}. Let x be a
K-linear combination of the vectors x,. From (ii) x has the depth j. Each vy,
1=<<i=<h, is an elements of PI. From the definition of the ideal product, we have

h

k
Yi= x;xs+ Z yiym YiGP, xiEP
=1

s s=1

and we deduce the system

_yl vl ... 1 x
1-y1 y2 Vi - Y xlx,
2 . s=1
—yi _ .

-y Zk: .
y X$Xs
= TR T 1-vyh lLe

Let M be the representative matrix of the system. Its determinant is a unit of
the algebra because the only terms of M that are units of A are the principal
diagonal terms. So each y; is a P-linear combination of x;, therefore every element
of PI too. (i) is proved. [0

From Theorem 1 we get a necessary and sufficient condition for the A-code to
be principal. It is the particular case k = 1; in this case we note that

dim I=dim PI+1 = PI=P*'NL
Corollary 1. An A-code is principal if and only if dim Pl =dim I - 1.

We give a notation for the A-codes characterized by Theorem 1:

€={I<A|Iisan A-code, I verifies (i) or (ii)}. 4
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3. Extended cyclic codes and ¢ elements

Let n=p™—1. Let a be a primitive element of G and let C be an R-code with
generator polynomial,

gX) =11 X-a, T<]0,n[, geK[X] (5)

teT
We denote by C’ the extended code C, C' is defined usually as in van Lint [13].

acC, a=ap+a, X+ -+a, X",
n—1
aeC, a= (— Y, ai>X°+ Ao X+ +a,_ X
i=0
The code C’ is therefore a linear code contained in P. Its definition in A is
[4,9],

C'={xcAlteT > ¢,(x)=0} (6)
with
T'=TuU{0} and &,(x)= 3, x.g" (7
geG

The ¢, t€[0, n}, are K-linear applications from A to an overfield of K and G.
We say that T is the definition set of C and T’ is the definition set of C'. Recall that

dm C=dim C' =n-T. (8)

Let s €[0, n], the p-weight of the integer s, where s is written in the p-ary number
system, is

m—1

m—1
w,(s)= Z s; withs= Z sp’, s €0, p—1]. (9)
i=0 i=0
A relation of partial order, denoted <, is defined over [0,n]: v€[0,n], se
[0,n],

v<s & =5, ief0,m—-1] (10)

(where v and s are here exprimed in the p-ary number system).

When (10) is verified, we say that s is an ascendant of v or that v is a
descendant of s.

The code C’' is an A-code if and only if it verifies the Kasami theorem
hypothesis. We write this condition with our notation:

C'isan A-code & teT' ands<t = seT'. (11)

The condition (11) is obtained for the following formula which will be used
further on:
s
bs(xy) = Z <i>¢s—i(x)¢i(}’)- (12)

iel[0,n]
i<s
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We suppose now that C is such that C’ is an A-code. Let | be the depth of C,
we recall that the defining set of P’ is

T, ={s€[0,n]] w,(s)<j}. (13)

Lemma 1. The code PC’' is an extended R-code and its definition set is

T={tel0,n]|s<ts#t > seT'}. (14)

Proof. From (6) and (7) it is clear that an extended cyclic code is a linear code
invariant under the A-automorphism:

REDIED G WS, ¢

geG geG

The codes P and C’ and therefore the product PC’' are invariant under the
automorphism o. So, the code PC’ is an extended R-code. Let T" be the defining
set of PC'. From the definition of the ideal product we have:

T"={te[0,n]| ¢, (xy)=0,xeP,yeC}.
Let xe P, ye C’ and te[0,n], T is defined by (14). If te T, we have
s<tand s#t > seT > ¢(y)=0.

So, according to the formula (12), &,(xy) = @o(x)d,(y). But ¢y(x) =0, therefore
te T". Let x = X®*—1 where g is any element of G. From (12),

a0 -Dy= T (e av.

se[0,1]

If te T", we have Vg, ¢,((X5—1)y)=0.
We can deduce that ¢.(y)=0 for each s such that s<rt and s#t Then te T;
we have proved that T=T" O

Lemma 2. Let j be the depth of C'. The code P'’"' N C' is an extended R-code the
defining set of which is:

T={te[0,n]|te T orw,(t)=j}. (15)

Proof. The A-codes P'*' and C’' are both extended R-codes, so the code
P*INC is an A-code and an extended R-code. We obtain its defining set by
adding the defining set of P*! with the defining set of C'. [

Theorem 2. Let C' be an A-code with the depth j. So, C’ belongs to the set 6,
defined by (4), if and only if there are k elements

{oliell, k] [0, n], w(t) =]}, (16)
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which characterize T':

T ={tel0,n]|Vi, iell, k], t£ t}. a7n

Proof. (1) We suppose that C’ belongs to €. From Theorem 1 the codes PC' and
P*'NC' are equal, therefore their defining sets are also equal. From (14) and
(15) we have

T'={t¢ T |s<t,s#t > seTt={t¢ T'|w,(t) =j}.

We want to show that (17) characterizes the defining set T' of C’.

Let T"={t,,..., 4%} and se T'. The t, elements do not belong to T’; then s
cannot be an ascendant of t because C’' as A-code, verifies (11). So: T'<
{s |V, ;< s}. Inversely let s €[0, n] such that, for each ¢, s is not an ascendant of
t. Two cases may occur:

(i) w,(s)=<j. The code C’ has the depth j and the code PC’ has the depth j+ 1.
To obtain the definition set of PC’, we add to T' k elements which have a
p-weight j. Then we conclude that se T'.

(i) w,(s)>]. Suppose that w,(s)=j+1. Then each descendant of s is in T’
because w,(t)=<j and t¢£ T". From Lemma 1, s belongs to T and therefore s
belongs to T'. By recurrence we can deduce: w,(s)>j=>seT'.

(2) We suppose now that T’ is defined by (16) and (17). The code C is an
A-code, which verifies (11). Let T=T'UT” be the defining set of the code PC'.
For each i we have t,e T\ T’ because,

tFt,t<t, > teT'.

On the other hand, if te€ T” with t# ¢, for each i, then te T’ or t is an ascendant
of a t. So T"={ty,...,t}. We know from (15) the defining set of the code
PI*1N C’; this set is also equal to T'U T” from (16) and (17). Then

P'NC'=PC' and dim PC'=dim C'—|T"|=dim C'—k.
From Theorem 1, C'e 4. O

4. Application to Reed-Solomon codes

We suppose from now on that K = G. The Reed-Solomon code, here denoted
by RS, of length n and minimum distance d over K is the R-code with the
following generator polynomial:

d—1
g =TI (X—a*) (18)
We note RS’ the extension of the code RS:
RS ={xeA|te[0,d[=> ¢, (x)=0}. (19)

The code RS’ is an A-code because obviously the interval [0, d[ verifies (11).
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Theorem 3. Let M=m(p—1), je[0, M] and,
d; =max{k €[0, n]| w, (k) =j}. (20)
So the A-code RS’ has the depth j, >0, if and only if de€ld;_,, d;].

The proof of Theorem 3 is given in [5]. We have also shown that an extended
Reed-Solomon code is a principal ideal of A if and only if its minimal distance is
equal to a d;. The d; representation in the p-ary number system is

1

d=tpm" '+ Y (p—1p} 2D

i=m-—s

where j=s(p— 1)+t te[0,p—1[. If s=0, then d;=tp™ .

Theorem 4. Let j be the depth of the A-code RS'.
So, the code RS’ is an element of € if and only if its minimal distance has the
following type:

d=d,_+h withw,(h)=1. (22)

Proof. Let d be the minimum distance of the code RS; we have de]d;_y, d;].
According to Theorem 2 we shall show that

d verifies (22) < [0, d[ verifies (16) and (17).

(1) We suppose that d verifier (22). From (21) we have h=p' with ie
[0, m—s—1]. Let

T'={t|d<t,t;=d_,+p'ie[0,m—s—1].
It is clear that w,(t)=j; then T” verifies (16). Let t¢]0,d[, so w,(t)>] and
w,(1)=] and d<t& 31, e T" and ;< t. This proves that [0, d[ verifies (17).
(2) We suppose that [0, d[ verifies (16) and (17). By hypothesis we have

d=d, +h with he]0,d;—d;_,]. From (21), w,(d)=]j. Suppose that w,(d)>j;
there is a t which belongs to [d, n[ such that

d=sand w,(s)=j=> s<t

This is inconsistent with (16) and (17). So w,(d) =, therefore w,(h)=1. O

5. Conclusion

The extension of the Reed-Solomon code of length n and minimal distance d
over K is an element of 4 if and only if d has the following type:

1

d=p*+p™ '+ Y (p-1p),

i=m-—s
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with t€[0,p—1[,s€[0,m—-1Jand ke[0,m —s—1]. If s =0, then

[m—s,m—1]=0.
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