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We study permutation polynomials of the shape G(X)+γ Tr(H(X))

in Fpn [X]. Using a link with functions having a linear structure, we
introduce an effective method to construct many such permuta-
tions, as well as p-to-1 mappings.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let p be a prime number and Fpn be the finite field of order pn . Any polynomial F (X) ∈ Fpn [X]
defines a mapping

F : Fpn → Fpn

x �→ F (x),

which is called the associated mapping of F (X). Recall that any mapping of a finite field into itself is
given by a polynomial. In this paper we write F or F (x) to denote a mapping, while F (X) is reserved
for a polynomial. Also, we generally use the term “mapping” to refer F : Fpn → Fpn , while we use
“function” for f : Fpn → Fp .

A polynomial F (X) is called a permutation polynomial of Fpn if the mapping F is a permutation
of Fpn . The construction of infinite classes of permutation polynomials over finite fields is an interest-
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ing and widely open problem, which is of great importance for a variety of theoretical and practical
applications.

This paper is motivated by the question: What happens when a permutation is slightly modified?
The “slight modification” considered here is the addition of a simple mapping to a given permuta-
tion. In some sense our approach is related to the concept of complete mapping polynomials, where
new permutations are obtained by adding the identity mapping. More precisely, a polynomial F (X) is
called a complete mapping polynomial if both F (X) and F (X) + X are permutation polynomials of Fpn .
These polynomials were introduced by Niederreiter and Robinson in [20]. The study of general prop-
erties of the complete mapping polynomials seems to be very difficult (for recent results see [16]).

In this paper we consider polynomials of the shape

F (X) = G(X) + γ Tr
(

H(X)
)
, (1)

where Tr(X) is the polynomial defining the absolute trace function of Fpn , γ ∈ Fpn and G(X), H(X)

are arbitrary polynomials in Fpn [X]. Examples of such permutation polynomials over F2n are obtained
in [10,23] and [4].

A mapping F : Fpn → Fpn is called perfect nonlinear or planar if for every nonzero α ∈ Fpn the
difference mapping x �→ F (x + α) − F (x) is a permutation of Fpn . Perfect nonlinear mappings exist if
and only if p is odd. If p = 2, a mapping F : F2n → F2n is called almost perfect nonlinear (APN) if all
its difference mappings are 2-to-1. In [2,8,14] (almost) perfect nonlinear mappings of shape (1) are
constructed. In [8] the construction of F from G is called the switching construction.

In this paper we point out a link between the concept of a linear structure and permutation poly-
nomials of the form (1), which yields large classes of such permutation polynomials. The concept of
a linear structure was introduced in cryptography, mainly for Boolean functions. A nonzero a ∈ Fpn is
called a linear structure of a Boolean function f if the derivative of f at the point a is constant. Such
a property is considered as a weakness in some cryptographic applications ever since the cryptanal-
ysis suggested by Evertse in [9], which exploits the existence of linear structures. Later in [19] the
notion of the nonlinearity of f with respect to a linear structure was introduced to quantify the distance
of f to any linear structure (see also [5]). This nonlinearity is invariant under the general affine group,
and therefore seems to be a useful cryptographic criterion. Linear structures were extensively studied
in [7] and [15]. A partial classification of the monomial and binomial functions with linear structures
is given in [12,1].

This paper is organized as follows. In Section 2 background and preliminary results on functions
with linear structures are given. Section 3 starts with a general study on permutation polynomi-
als of shape (1). Propositions 3 and 4 give necessary conditions on γ ∈ Fpn , G(X) and H(X) for
which G(X) + γ Tr(H(X)) is a permutation polynomial. These conditions appear to be very effective
in proving that a certain polynomial of shape (1) is not a permutation polynomial, as demonstrated
in Examples 1, 2. Section 3.1 is devoted to the permutations of form (1), where G is itself a permuta-
tion. Theorem 3 gives a sufficient condition on γ and H(X) ensuring that F is either a permutation
or a p-to-1 mapping. Using this theorem and results from Section 2, Corollary 1 describes two large
classes of permutation polynomials of Fpn .

In Section 3.2 it is assumed that G(X) is a linearized polynomial inducing a p-to-1 mapping.
The notation L(X) is used for such a G(X) for clarity. Theorem 4 characterizes the permutation
polynomials of shape (1) obtained with such an L(X). Theorem 5 gives a sufficient condition on
γ ∈ Fpn , L(X) and H(X) to induce a permutation polynomial L(X) + γ Tr(F (X)). This theorem and
results from Section 2 are applied to describe two large classes of permutation polynomials of Fpn

in Corollary 2. Finally, Theorem 6 allows to obtain the dimension of the kernel of a linear mapping
L(x) = L1(x) + γ Tr(βx) from the one of L1(x). An application of Theorem 6 is demonstrated in Ex-
ample 4 to construct explicitly linearized polynomials inducing p-to-1 mappings. In Section 4 the
results of the previous sections are applied to characterize the linearized permutation polynomials of
shape (1). Moreover, a large family of linearized permutation polynomials over binary finite fields is
obtained via semi-bent Boolean functions.
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Notation: We denote by |E| the cardinality of a set E . The trace function from Fpn onto any sub-
field Fpk of Fpn will be denoted as follows:

Trn/k(y) = y + ypk + · · · + ypk(n/k−1)

.

The absolute trace function (i.e., k = 1) is simply denoted by Tr.

2. A linear structure

In this section we consider functions from a finite field Fpn into its prime subfield Fp . Every
function f : Fpn → Fp can be represented by Tr(R(x)) for some (not unique) mapping R : Fpn → Fpn .

Definition 1. Let f : Fpn → Fp and c ∈ Fp . We say that α ∈ F
∗
pn is a c-linear structure of the function f

if

f (x + α) − f (x) = c for all x ∈ Fpn . (2)

Note that if α is a c-linear structure of f , then necessarily c = f (α) − f (0). The next proposition
is proved in [15]; we included its proof for clarity.

Proposition 1. Let α,β ∈ F
∗
pn , α + β �= 0 and a,b ∈ Fp . If α is an a-linear structure and β is a b-linear

structure of a function f : Fpn → Fp , then

α + β is an (a + b)-linear structure of f

and for any c ∈ F
∗
p

c · α is a (c · a)-linear structure of f .

In particular, if Λ∗ is the set of linear structures of f , then Λ = Λ∗ ∪ {0} is an Fp -linear subspace, which we
call the linear space of f .

Proof. Let α,β ∈ Λ∗ , where α is an a-linear structure and β a b-linear structure. Then for any x ∈ Fpn

it holds

f
(
x + (α + β)

) − f (x) = f
(
(x + α) + β

) − f (x + α) + f (x + α) − f (x)

= a + b.

Thus α + β ∈ Λ and a nonzero α + β is an (a + b)-linear structure of f . Further, taking β = α we
get that 2α belongs to Λ and 2α is a 2a-linear structure. Similarly, cα is a ca-linear structure for any
c ∈ F

∗
p , completing the proof. �

Given γ ∈ F
∗
pn and c ∈ Fp , let Hγ (c) denote the affine hyperplane defined by the equation

Tr(γ x) = c, i.e.,

Hγ (c) = {
x ∈ Fpn

∣∣ Tr(γ x) = c
}
. (3)

Then α ∈ F
∗
pn is a c-linear structure of Tr(R(x)) if and only if the image set of the mapping R(x+α)−

R(x) is contained in the affine hyperplane H1(c).



Author's personal copy

618 P. Charpin, G. Kyureghyan / Finite Fields and Their Applications 15 (2009) 615–632

Let ξ ∈ C be a p-th root of unity. For a given R : Fpn → Fpn , let FR : Fpn → C be defined by

FR(λ) =
∑

x∈Fpn

ξ Tr(R(x)−λx). (4)

The mapping FR is the discrete Fourier transform of the mapping

x ∈ Fpn �→ ξ Tr(R(x)) ∈ C.

In particular, FR = FR ′ if and only if the functions Tr ◦R and Tr ◦R ′ are equal. Set f = Tr ◦R . We say
that FR is the Fourier transform of f . And we call the multiset

S( f ) = {
FR(λ)

∣∣ λ ∈ Fpn
}

the Fourier spectrum of f . Whether f has a linear structure can be recognized from a property of S( f ).
The following proposition is known for p = 2 (see [22] and [7]). Here we extend it for an arbitrary
prime p.

Proposition 2. Let c ∈ Fp , R : Fpn → Fpn and f (x) = Tr(R(x)). An element α ∈ F
∗
pn is a c-linear structure

for f if and only if

FR(λ) = 0 for all λ /∈ Hα(c). (5)

Proof. Recall that α ∈ F
∗
pn is a c-linear structure for f if and only if

Tr
(

R(x + α)
) − Tr

(
R(x)

) = c for all x ∈ Fpn .

This holds if and only if, for some β ∈ Fpn such that Tr(β) = c,

FR = FR ′ with R ′(x) = R(x + α) − β.

Further, observe that

FR ′(λ) =
∑

x∈Fpn

ξ Tr(R(x+α)−β−λx)

= ξ Tr(αλ)−c
∑

x∈Fpn

ξ Tr(R(x+α)−λ(x+α))

= ξ Tr(αλ)−cFR(λ).

Thus FR = FR ′ if and only if FR(λ) = 0 for all λ ∈ Fpn such that Tr(αλ) − c �= 0, i.e., for all λ which
are not in the affine hyperplane Hα(c). �

In [15], Lai uses the multivariable representation to characterize the functions assuming a linear
structure. Here we state this result for the univariable representation.

Theorem 1. Let R : Fpn → Fpn and f = Tr ◦R. Then f has a linear structure if and only if there is a nonbijective
linear mapping L : Fpn → Fpn such that

f (x) = Tr
(

R(x)
) = Tr

(
H ◦ L(x) + βx

)
(6)

for some H : Fpn → Fpn and β ∈ Fpn . In this case, the linear space of f contains the kernel of L.
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Proof. The statement is obviously true if f is affine; we may take L to be the zero mapping for such
an f . For the rest of the proof we assume that f is nonaffine. Suppose that (6) holds and α is an
arbitrary element from the kernel of L. Then α is a linear structure of f . Indeed,

f (x + α) − f (x) = Tr
(

H
(
L(x) + L(α)

)) − Tr
(

H
(
L(x)

)) + Tr(βα)

= Tr(βα),

since L(α) = 0.
Conversely, suppose that there exist α ∈ F

∗
pn and c ∈ Fp such that f (x + α) − f (x) is constantly

equal to c. This means that the linear space Λ of f has dimension k � 1 (see Proposition 1). Moreover,
k � n − 1 because of the assumption that f is nonaffine. Let {α1, . . . ,αk} be a basis of Λ and αi be a
ci-linear structure of f . Then choose β ∈ Fpn such that

Tr(βαi) = ci, 1 � i � k, (7)

which exists always. Indeed, such a β belongs to the intersection of the affine hyperplanes Hαi (ci),
which is not trivial, because 1 � k � n − 1 and the choice of αi . Further choose a linear mapping L
with the kernel Λ. Note that L is not bijective since k � 1. Finally, define a function H : Fpn → Fpn as
follows:

(a) For any y ∈ Fpn , such that y = L(x) for some x ∈ Fpn , the value H(y) satisfies Tr(H(y)) = f (x) −
Tr(βx).

(b) For y ∈ Fpn which is not in the image set of L the value H(y) is arbitrary.

It remains to show that such an H is well defined, that is for any x ∈ Fpn and x′ ∈ Fpn it holds

L(x) = L(x′) ⇒ Tr
(

H
(
L(x)

)) = Tr
(

H
(
L(x′)

))
.

So we must prove that if L(x − x′) = 0 then Tr(βx′) − Tr(βx) = f (x′) − f (x). Note that L(x − x′) = 0
implies that x′ = x + α with α ∈ Λ. Let α = ∑k

i=1 aiαi , ai ∈ Fp . Then Proposition 1 yields that α is a

c-linear structure of f with c = ∑k
i=1 aici . Thus

f (x′) − f (x) = f (x + α) − f (x) = c.

To complete the proof note that from (7) it follows

Tr
(
β(x′ − x)

) = Tr(βα) =
k∑

i=1

ai Tr(βαi) = c. �

Theorem 1 shows that any linear mapping with a known kernel allows to construct a function
with (at least partly) known linear space. The following result is an example of this.

Lemma 1. Let H : Fpn → Fpn be an arbitrary mapping, γ ,β ∈ Fpn , γ �= 0 and c = Tr(βγ ). Then γ is a
c-linear structure of f (x) = Tr(R(x)) where

R(x) = H
(
xp − γ p−1x

) + βx.

Proof. Since R(x + γ ) = H(xp + γ p − γ p−1x − γ p) + βx + βγ = R(x) + βγ , we have

Tr
(

R(x + γ ) − R(x)
) = Tr(βγ ) = c for all x ∈ Fpn . �



Author's personal copy

620 P. Charpin, G. Kyureghyan / Finite Fields and Their Applications 15 (2009) 615–632

The next lemma describes another family of functions with a known linear structure.

Lemma 2. Let g : Fpn → Fp and α ∈ F
∗
pn . Then for any c ∈ F

∗
p the element cα is a 0-linear structure of

f (x) =
∑

u∈Fp

g(x + uα).

Proof. Indeed, f (x + cα) = ∑
u∈Fp

g(x + α(u + c)) = f (x). �
3. Permutation polynomials

For the remainder of this paper, we consider the polynomials of the shape

F (X) = G(X) + γ Tr
(

H(X)
)
, (8)

where G(X), H(X) ∈ Fpn [X], γ ∈ Fpn . Our main goal is to characterize and construct such permu-
tation polynomials. Firstly, we give two simple necessary conditions on γ , G and H , for which the
corresponding F is a permutation. These conditions appear to be very effective in proving that a cer-
tain polynomial of shape (8) is not a permutation polynomial. For instance, by Proposition 3 if F (x) is
a permutation then the image set of G(x) must be of size at least pn−1.

Proposition 3. Let F (X) ∈ Fpn [X] be a polynomial of type (8). Assume that F (x) is a permutation. Then for
any β ∈ Fpn there are at most p elements x ∈ Fpn with G(x) = β .

Proof. Suppose that G(xi) = β for i = 1, . . . , p + 1, where xi are pairwise different. Then for these xi
we have:

F (xi) = β + γ c with c ∈ Fp,

providing at most p different values. Thus F (x) cannot be a permutation. �
Proposition 3 implies that if a k-to-1 mapping G yields a permutation of shape (8), then k � p.

The following example is based on this observation.

Example 1. Let 3 � s � pn − 2 be such that gcd(s, pn − 1) = d and d > p. Then for any λ,γ ∈ F
∗
pn and

for any H : Fpn → Fpn the mapping

F (x) = λxs + γ Tr
(

H(x)
)

is not a permutation. Indeed, the mapping x �→ xs is d-to-1, and then Proposition 3 implies the result.
Note that d is odd, if p = 2. Consequently, if the mapping F is a permutation then necessarily

d = 1, or equivalently, the mapping x → xs is a permutation.

We extend the previous proposition as follows:

Proposition 4. Let F (X) be a permutation polynomial of type (8) and F (0) = 0. Then for any nonzero x ∈ Fpn

satisfying G(x) = γ c for some c ∈ Fp it must hold Tr(H(x)) �= −c.

Proof. Since F (0) = 0 and F (x) is a permutation, F (x) �= 0 for any nonzero x, or equivalently,

G(x) + γ u �= 0 where u = Tr
(

H(x)
)
.

Thus if for some x �= 0 it holds G(x) = γ c with c ∈ Fp , then Tr(H(x)) �= −c. �
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Example 2. Let a mapping F of Fpn be defined by

F (x) = G(x) + γ Tr
(

H(x)
)
.

Moreover, let F (0) = G(0) = 0, γ ∈ F
∗
p and

G(Fp) = Fp, H
(
F

∗
p

) = {β} with Tr(β) �= 0.

Then for any c ∈ F
∗
p we have F (c) = G(c)+γ Tr(β). By the assumption that G is a permutation on Fp ,

there is c ∈ F
∗
p such that G(c) equals −γ Tr(β) implying F (c) = 0. Thus, such a mapping F is not a

permutation.

Recall that any polynomial F (X) ∈ Fpn [X] is a permutation polynomial if and only if its associated
mapping satisfies

FλF (0) =
∑

x∈Fpn

ξ Tr(λF (x)) = 0 for all λ ∈ F
∗
pn , (9)

where ξ ∈ C is a p-th root of unity (see for instance [17, Theorem 7.7]). In the next proposition this
property is specified for the polynomials considered here.

Proposition 5. Let F (X) ∈ Fpn [X] be a polynomial of type (8). Then

F (x) = G(x) + γ Tr
(

H(x)
)

is a permutation if and only if for any λ ∈ F
∗
pn it holds

∑
x∈Fpn

ξ Tr(λG(x)+cH(x)) = 0 where c = Tr(γ λ). (10)

Proof. We simply apply the necessary and sufficient condition (9). Since

Tr
(
λF (x)

) = Tr
(
λG(x)

) + Tr
(

H(x)
)

Tr(γ λ)

= Tr
(
λG(x) + H(x)Tr(γ λ)

)
,

condition (9) becomes

∑
x∈Fpn

ξ Tr(λG(x)+cH(x)) = 0 where c = Tr(γ λ). �

Next we consider polynomials F (X) of type (8) where G(X) is a permutation or a linearized poly-
nomial. In both cases, we will show that the existence of linear structures provides permutations
under certain conditions.

Open Problem 1. Characterize a class of permutation polynomials of type (8), where G(X) is neither
a permutation nor linearized polynomial.
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3.1. Permutations from permutations

Here we consider polynomials of shape (8) under additional assumption that G(X) is a permu-
tation polynomial. We establish a link between such permutation polynomials and the existence of
a linear structure for certain functions. As a consequence, we construct large classes of permutation
polynomials.

Theorem 2. Let γ ∈ Fpn , G(x) be a permutation on Fpn and H : Fpn → Fpn be an arbitrary mapping. Then
the mapping

F (x) = G(x) + γ Tr
(

H(x)
)

is a permutation on Fpn if and only if for any λ ∈ Fpn with Tr(γ λ) = c, c ∈ F
∗
p , it holds

FcR(−λ) =
∑

y∈Fpn

ξ Tr(cR(y)+λy) = 0, (11)

where R = H ◦ G−1 and G−1 is the inverse mapping of G.

Proof. Since G(x) is a permutation, (10) is satisfied for c = 0. Further we show that (10) is equivalent
to (11) for c �= 0. Firstly, note that

∑
x∈Fpn

ξ Tr(λG(x)+cH(x)) =
∑

y∈Fpn

ξ Tr(cH(G−1(y))+λy) = FcR(−λ).

So (10) holds if and only if FcR(−λ) = 0 for any c �= 0 and for any λ with Tr(λγ ) = c. �
Remark 1. When p = 2, the statement of Theorem 2 can be rewritten as follows: F (x) is a permutation
if and only if FR(λ) = 0 for any λ ∈ F2n with Tr(γ λ) = 1, or equivalently, if and only if γ is a 0-linear
structure of Tr(R(x)) (see Proposition 2). More details on the binary case are given in [4].

Theorem 2 and Proposition 2 lead to a set of permutations obtained by means of functions having
linear structures.

Theorem 3. Let G(x) be a permutation of Fpn . Let R be a mapping of Fpn such that γ ∈ Fpn is a b-linear
structure of Tr(R(x)). Then we have:

(i) F (x) = G(x) + γ Tr(R(G(x))) is a permutation of Fpn if b �= −1.
(ii) F (x) = G(x) + γ Tr(R(G(x))) is a p-to-1 mapping of Fpn if b = −1.

Proof. Firstly note that γ is a cb-linear structure of Tr(cR(x)) for any c ∈ F
∗
p . Then by Proposition 2,

we have

FcR(λ) = 0 for any λ /∈ Hγ (cb),

or equivalently,

FcR(−λ) = 0 for any λ /∈ Hγ (−cb)

(where Hγ is defined by (3)). Recall that λ is not in Hγ (−cb) if and only if Tr(γ λ) �= −bc. In partic-
ular, it shows that in the case b �= −1 it holds FcR(−λ) = 0 when Tr(γ λ) = c. Theorem 2 completes
the proof of (i).
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Our next goal is to prove (ii). Let y0 be an arbitrary fixed element from the image of F , say
y0 = F (x0) for some x0. Then

y0 = G(x0) + γ Tr
(

R
(
G(x0)

)) = G(x0) + γ u0,

where u0 = Tr(R(G(x0))) ∈ Fp . Consequently, x0 = G−1(y0 − γ u0) and we have

{
x ∈ Fpn

∣∣ F (x) = y0
} ⊆ {

G−1(y0 − γ u)
∣∣ u ∈ Fp

}
.

In particular, there are at most p elements x such that F (x) = y0. On the other side, for any u ∈ Fp it
holds F (G−1(y0 − γ u)) = y0. Indeed, γ is a (−1)-linear structure of Tr(R(x)), implying that γ u is a
(−u)-linear structure of Tr(R(x)) by Proposition 1. Thus for any u ∈ Fp it holds

Tr
(

R(x + γ u)
) − Tr

(
R(x)

) = −u for all x ∈ Fpn . (12)

Hence we have

F
(
G−1(y0 − γ u)

) = y0 − γ u + γ Tr
(

R ◦ G ◦ G−1(y0 − γ u)
)

= y0 − γ u + γ
(
Tr

(
R(y0 − γ u)

))
= y0 − γ u + γ

(
u + Tr

(
R(y0)

))
= y0 + γ Tr

(
R(y0)

) = y0.

The third equality is obtained by applying (12) for x = y0 and taking −u instead of u. The last equality
follows from the observation:

Tr
(

R(y0)
) = Tr

(
R
(
G(x0) + γ Tr

(
R
(
G(x0)

))))
= Tr

(
R
(
G(x0)

)) − Tr
(

R
(
G(x0)

)) = 0,

where we use (12) again for x = G(x0) and u = Tr(R(G(x0))). Hence we have proved that for any y in
the image of F it holds

{
x ∈ Fpn

∣∣ F (x) = y
} = {

G−1(y − γ u)
∣∣ u ∈ Fp

}
,

completing the proof. �
Example 3. As a direct consequence of Theorem 3 we get the complete characterization of the lin-
earized permutation polynomials X + γ Tr(β X) ∈ Fpn [X]. Namely, X + γ Tr(β X) is a permutation
polynomial of Fpn if and only if Tr(βγ ) �= −1. In the remaining cases, when Tr(βγ ) = −1, it induces
a p-to-1 mapping of Fpn .

Theorem 2 shows that a permutation polynomial of shape (8), where G(X) is a permutation poly-
nomial as well, is obtained by a composition of G(X) with a permutation polynomial given by

F (X) = X + γ Tr
(

R(X)
)
, γ ∈ Fpn . (13)

Next we use the results of Section 2 to introduce two classes of permutation polynomials of form (13).

Corollary 1. Let γ ,β ∈ Fpn and H(X) ∈ Fpn [X].
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(i) Then the polynomial

F (X) = X + γ Tr
(

H
(

X p − γ p−1 X
) + β X

)
is a permutation polynomial if and only if Tr(βγ ) �= −1.

(ii) Then the polynomial

F (X) = X + γ Tr

( ∑
u∈Fp

H(X + uγ ) + β X

)

is a permutation polynomial if and only if Tr(βγ ) �= −1.

Proof. In both cases, the statement is obvious for γ = 0. Set Tr(βγ ) = c. To prove (i), let

R(X) = H
(

X p − γ p−1 X
) + β X .

From Lemma 1 it follows that γ is a c-linear structure of Tr(R(x)). More precisely,

Tr
(

R(x + γ )
) − Tr

(
R(x)

) = Tr(βγ ) = c.

The rest follows from Theorem 3.
The proof of (ii) is obtained similarly by using Lemma 2 instead of Lemma 1. �

Remark 2. Note that if Tr(βγ ) = −1 in the statement of Corollary 1 then by Theorem 3 the corre-
sponding mapping F (x) is p-to-1.

Remark 3. The permutation polynomials introduced in Corollary 1 might be of interest for applica-
tions. For instance, they are easy to implement if the mapping H is chosen appropriately. Further H
may be taken in a way that the resulting mapping F has a desired algebraic degree. For example,
permutation polynomials of algebraic degree two are asked in [21] for the design of some public-key
cryptosystems.

3.2. Permutations from linearized polynomials

Recall that a polynomial of the form

L(X) =
n−1∑
i=0

αi X pi
, αi ∈ Fpn ,

is called a linearized polynomial over Fpn and it induces an Fp-linear mapping of Fpn . In this section
we characterize the elements γ ∈ Fpn and polynomials H(X) ∈ Fpn [X] for which L(X) + γ Tr(H(X))

is a permutation polynomial. By Proposition 3 the mapping L must necessarily be bijective or p-to-1.
Since the case of bijective L is covered in the previous sections, we consider here p-to-1 linear map-
pings. Recall that a linear mapping is p-to-1 if and only if its kernel is αFp for some α ∈ F

∗
pn .

Theorem 4. Let L : Fpn → Fpn be a p-to-1 linear mapping with kernel K = αFp , α ∈ F
∗
pn , and H : Fpn → Fpn .

Then the mapping

N(x) = L(x) + γ Tr
(

H(x)
)
, γ ∈ Fpn ,

is a permutation of Fpn if and only if
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• γ does not belong to the image set of L, and
• Tr(H(x + ε) − H(x)) �= 0 for any x ∈ Fpn and ε ∈ K \ {0}.

In particular, if p = 2 then K = {0,α} and the second condition means that α is a 1-linear structure for
Tr(H(x)).

Proof. For any c ∈ F
∗
p we have

N(x) =
{

L(x) if Tr(H(x)) = 0,

L(x) + γ c if Tr(H(x)) = c.

If γ belongs to the image set of L, say L(y) = γ , then

γ c = cL(y) = L(cy) for any c ∈ Fp,

so that the image set of N is contained in that of L. In particular, N is not a permutation. We suppose
for the rest of the proof that γ does not belong to the image set of L. For all x ∈ Fpn and for any
ε ∈ K \ {0}, we have

N(x + ε) − N(x) = γ Tr
(

H(x + ε) − H(x)
)
,

since L(ε) = 0. Thus, if N is a permutation, then it must hold

Tr
(

H(x + ε) − H(x)
) �= 0 for any x ∈ Fpn and for any ε ∈ K \ {0}, (14)

implying the necessity of the second condition.
Conversely, assume that (14) holds. Let y, z ∈ Fpn be such that N(y) = N(z). Suppose Tr(H(y) −

H(z)) = 0 then

N(y) − N(z) = L(y − z) = 0,

and thus y − z ∈ K . Further, (14) forces y = z. To complete the proof, observe that Tr(H(y)− H(z)) = c,
with c �= 0, would imply

N(y) − N(z) = L(y − z) + γ c = 0,

providing L(c−1(y − z)) = γ . This contradicts the assumption that γ is not in the image set of L. The
case p = 2 is obviously deduced, completing the proof. �
Remark 4. To apply Theorem 4 we need to check whether γ belongs to the image set of a given

p-to-1 mapping L(x) = ∑n−1
i=0 αi xpi

. We know that the image set of L is a hyperplane Hσ (0). The
defining element σ of this hyperplane can be found in terms of the so-called adjoint mapping. Indeed,
σ satisfies the following identity:

Tr
(
σ L(x)

) = Tr

(
σ

n−1∑
i=0

αi x
pi

)
= Tr

((
n−1∑
i=0

α
pn−i

i σ pn−i

)
x

)
= 0

for any x ∈ Fpn . Thus σ is the unique nonzero root of the polynomial

L∗(X) = α0 X +
n−1∑
i=1

α
pi

n−i X pi
,
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which is called the adjoint polynomial of L(X) = ∑n−1
i=0 αi X pi

. After having σ , in order to check
whether an element γ belongs to the image of L, we need only to verify the condition Tr(σγ ) = 0.

Theorem 5. Let L : Fpn → Fpn be a p-to-1 linear mapping, K = αFp be the kernel of L and σFp be the kernel
of its adjoint mapping L∗ . Further let H : Fpn → Fpn and α be a b-linear structure of Tr(H(x)). Then

F (x) = L(x) + γ Tr
(

H(x)
)
, γ ∈ Fpn ,

is a permutation of Fpn if and only if Tr(σγ ) �= 0 and b �= 0. Moreover, if Tr(σγ ) �= 0 and b = 0 then F is a
p-to-1 mapping of Fpn .

Proof. We show that the conditions of Theorem 4 are satisfied if and only if Tr(σγ ) �= 0 and b �= 0.
The condition Tr(σγ ) �= 0 is equivalent to the requirement that γ does not belong to the image set
of L (see Remark 4). Further from Proposition 1 it follows that cα is a cb-linear structure of Tr(H(x)),
for any c ∈ F

∗
p . Hence, for such a c, we have

Tr
(

H(x + cα) − H(x)
) = cb �= 0 for all x ∈ Fpn ,

which completes the first part of the proof.
Now suppose that Tr(σγ ) �= 0 and b = 0. Let x be fixed and y be such that F (x) = F (y). Then we

have

L(x − y) = γ u with u = Tr
(

H(y) − H(x)
)
.

If u �= 0 then L((x − y)/u) = γ which is impossible. Suppose u = 0 and thus x − y ∈ K = αFp . So
y = x + αv for some v ∈ Fp . Since α is a 0-linear structure of Tr(H(x)), it holds Tr(H(x + cα) −
H(x)) = 0 for any c ∈ Fp . This shows that any y ∈ x + αFp satisfies F (x) = F (y). We conclude that
x + αFp = {y ∈ Fpn | F (x) = F (y)}, which implies that F is a p-to-1 mapping of Fpn . �

Next we apply Theorem 5 and Lemmas 1, 2 to describe two classes of permutation polynomials
explicitly.

Corollary 2. Let α,β,γ ∈ Fpn , α �= 0 and H(X) ∈ Fpn [X].

(i) Then the polynomial

F (X) = X p − αp−1 X + γ Tr
(

H
(

X p − αp−1 X
) + β X

)
is a permutation polynomial of Fpn if and only if Tr(γ α−p) �= 0 and Tr(αβ) �= 0.

(ii) Then the polynomial

F (X) = X p − αp−1 X + γ Tr

( ∑
u∈Fp

H(X + uα) + β X

)

is a permutation polynomial of Fpn if and only if Tr(γ α−p) �= 0 and Tr(αβ) �= 0.

Proof. The proof follows from Theorem 5 with L(x) = xp −αp−1x. Observe that the kernel of L is αFp ,

and the adjoint mapping L∗(x) = xpn−1 − αp−1x has the kernel α−p
Fp . Further, α is a Tr(αβ)-linear

structure of Tr(H(xp − αp−1x) + βx) by Lemma 1, which completes the proof of (i). To complete the
proof of (ii), note that α is a Tr(αβ)-linear structure of g(x) = Tr(

∑
u∈Fp

H(x + uα) + βx). Indeed,
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g(x + α) = Tr

( ∑
u∈Fp

H
(
(x + α) + uα

) + β(x + α)

)

= Tr

( ∑
u∈Fp

H
((

x + (u + 1)α
) + βx + βα

))

=
∑

u∈Fp

Tr
(

H(x + uα)
) + Tr(βx) + Tr(βα)

= g(x) + Tr(βα). �
Open Problem 2. Find classes of linearized polynomials over Fpn describing mappings with kernel of
dimension 1.

The next theorem shows how changes the dimension of the kernel of a linear mapping after
adding to it the mapping γ Tr(βx). In particular, it allows to construct linear mappings with kernel of
dimension 1. Recall the notation:

Hβ(0) = {
x ∈ Fpn

∣∣ Tr(βx) = 0
}
.

Theorem 6. Let L1 : Fpn → Fpn be a linear mapping with kernel K1 of dimension k1 , 0 � k1 � n − 1, over Fp

and γ ,β ∈ F
∗
pn . Define

L(x) = L1(x) + γ Tr(βx).

Then the kernel K of L has dimension k ∈ {k1 − 1,k1,k1 + 1} depending on the cases described below:

(i) γ belongs to the image set of L1 then
• k = k1 + 1 if K1 is contained in the hyperplane Hβ(0) and there exists an element g satisfying L1(g) =

γ and Tr(βg) = −1;
• otherwise k = k1;

(ii) γ does not belong to the image set of L1 then
• k = k1 − 1 if K1 is not contained in the hyperplane Hβ(0);
• k = k1 if K1 is contained in the hyperplane Hβ(0);

Proof. The result follows mainly from the fact that any k-dimensional subspace of Fpn is either con-
tained in Hβ(0) or intersects it in a subspace of dimension k − 1.

(i) Observe that the image set of L is contained in that of L1, and therefore k � k1. Next we show
that if k > k1, then necessarily there exists an element g ∈ Fpn such that L1(g) = γ and Tr(βg) = −1.
Indeed, let x0 ∈ K. Then

L1(x0) = −γ Tr(βx0) = −γ u, u ∈ Fp . (15)

If (15) holds only with u = 0, then K ⊆ K1 and k � k1. Hence there must exist x1 ∈ K and u ∈ F
∗
p such

that Tr(βx1) = u and L1(x1) = −γ u. Set g = −x1/u. Then L1(g) = γ and Tr(βg) = −1. To complete
the proof note that with such a g it holds K ⊆ {cg + y | c ∈ Fp and y ∈ K1}. For an element cg + t ,
t ∈ K1, we have

L(cg + t) = L1(cg) + γ Tr(βcg) + γ Tr(βt) = γ Tr(βt),

which shows that K = {cg + y | c ∈ Fp and y ∈ K1 ∩ Hβ(0)}.
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(ii) Suppose that x0 ∈ Fpn belongs to K, i.e. L(x0) = L1(x0) + γ Tr(βx0) = 0. Then, since γ does
not belong to the image set of L1, it must hold Tr(βx0) = 0, and consequently L1(x0) = 0. Thus x0 ∈
K1 ∩Hβ(0). On the other hand, every element of K1 ∩Hβ(0) belongs to K, completing the proof. �

Next we apply Theorem 6 to describe linearized polynomials inducing p-to-1 mappings on Fpn .

Example 4. Let n = 2k and γ ,β ∈ F
∗
pn . Then the kernel of the linear mapping L(x) = xp2 − x +γ Tr(βx)

is of dimension 1 if and only if Trn/2(γ ) �= 0 and Trn/2(β) �= 0. Indeed, we apply Theorem 6 for

L1(x) = xp2 − x. The kernel K1 of L1 is the subfield Fp2 and, in particular, of dimension 2 over Fp .
Hence by Theorem 6 the kernel of L is one-dimensional if and only if γ does not belong to the image
set of L1 and Fp2 is not contained in the hyperplane Hβ(0). The image set of L1 consists of elements
y ∈ Fpn with Trn/2(y) = 0. It remains to note that if z ∈ Fp2 , then

Tr(βz) = Tr2/1
(
z Trn/2(β)

)
,

and thus Fp2 is contained in Hβ(0) if and only if Trn/2(β) = 0.

4. Linearized permutation polynomials

In this section we use the results of the previous sections to characterize the linearized per-
mutation polynomials given by L1(X) + γ Tr(L2(X)), where both L1(X) and L2(X) are linearized
polynomials. Firstly, note that the polynomials Tr(L2(X)) and Tr(L∗

2(1)X) describe the same mapping
on Fpn , and therefore the problem is reduced to the characterization of permutation polynomials of
shape L1(X) + γ Tr(β X).

Theorem 7. Let L1(X) ∈ Fpn [X] be a linearized polynomial and γ ,β ∈ F
∗
pn . Then the linearized polynomial

L(X) = L1(X) + γ Tr(β X)

is a permutation polynomial of Fpn if and only if (i) or (ii) is fulfilled:

(i) L1(X) is a permutation polynomial of Fpn and Tr(βL−1
1 (γ )) �= −1, where L−1

1 is the inverse mapping
of L1;

(ii) L1(X) defines a p-to-1 mapping on Fpn with kernel αFp . Moreover, γ does not belong to the image set
of L1 and Tr(βα) �= 0.

Proof. It follows from Theorem 6. �
4.1. Linear permutations via semi-bent functions

In this section we apply Theorem 7 to obtain a large set of linearized permutation polynomials
over F2n from known constructions of semi-bent functions. For the rest of this section, p = 2 and n
is assumed to be odd. We use the following notation:

c = (c1, . . . , cs), ci ∈ F2n , s = n − 1

2
.

The Boolean functions given by

fc(x) =
n−1

2∑
i=1

Tr
(
cix

2i+1) (16)
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are called quadratic Boolean functions on F2n , since with respect to a fixed basis of F2n over F2 such
a function has a quadratic multivariate representation. Note that for any a ∈ F2n we have

fc(x + a) + fc(x) =
n−1

2∑
i=1

Tr
(
ci

(
x2i

a + a2i
x + a2i+1))

= Tr

( n−1
2∑

i=1

x
(
cia

2i + (cia)2n−i )) + fc(a)

= Tr
(
xLc(a)

) + fc(a),

where Lc is the linear mapping on F2n defined by

Lc(x) =
n−1

2∑
i=1

(
ci x

2i + (cix)
2n−i )

. (17)

Definition 2. Let n be odd and fc and Lc be defined by (16) and (17). Then, fc is called semi-bent if
it has exactly one linear structure or, equivalently, if the linear mapping Lc(x) is 2-to-1 on F2n .

For more details on semi-bent functions see [3,6,11]. Such functions are studied in terms of se-
quences in [18, ch. 11]. We want to note also that semi-bent functions are called three-valued almost
optimal in [3].

The following corollary is an immediate consequence of Theorem 4.

Corollary 3. Let fc be semi-bent and α be its (unique) linear structure. Further, let H : F2n → F2n be such that
α is a 1-linear structure of Tr(H(x)). Then

N(x) = Lc(x) + γ Tr
(

H(x)
)

(18)

is a permutation of F2n , for any γ which is not in the image of Lc .

From now on, c is a binary vector and we will use a surprising property of corresponding func-
tions fc to construct linear permutations or linear mappings which are 2-to-1.

A result by Khoo, Gong and Stinson characterizes all odd integers n for which fc is semi-bent
for any nonzero c ∈ F

s
2 [11, Section 4].1 We summarize their results in the next theorem. We denote

by ordν(2) the order of 2 modulo ν , that is the smallest k such that ν divides 2k − 1.

Theorem 8. Let ν be an odd prime number and define the properties (i) and (ii) as follows:

(i) ordν(2) = ν − 1;
(ii) ν = 2r + 1, r is odd and ordν(2) = r.

Then a function fc of F2n defined by (16) is semi-bent for any choice of nonzero c ∈ F
s
2 if and only if n is an

odd prime number satisfying (i) or (ii).

The first primes satisfying (i) or (ii) are:

1 This result was extended to even n in [6].
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3, 5∗, 7∗, 11∗, 13, 19, 23∗, 29, 37, 47∗, 53, 59∗, 61, 67, 71,

79, 103, 107∗, 131, 139, 149, 163, 167∗, 173, 179, 181, 191

where ∗ means that it is a Sophie Germain prime (as indicated in [11]).

Remark 5. A prime number ν is said to be a Sophie Germain prime if ν = 2r + 1 where r is a prime
number too. Suppose that such a prime ν does not satisfy (i), so that ordν(2) is a proper divisor of
ν − 1 = 2r. Thus ordν(2) = r and (ii) holds.

In the next theorem we apply Theorem 8 and Corollary 3 to describe a large family of linear
permutations.

Theorem 9. Let n be an odd prime number satisfying (i) or (ii). Let I be a nonempty set of integers in the range
[1, n−1

2 ]. Then, for any such I the mapping

LI (x) =
∑
i∈I

(
x2i + x2n−i )

is 2-to-1 on F2n with kernel {0,1}. Further, for any λ ∈ F2n , the mapping

N(x) = LI (x) + Tr(λx)

is a linear permutation on F2n if and only if Tr(λ) = 1.

Proof. From Theorem 8 for such an n any fc , with c ∈ F
s
2, is semi-bent, and thus any mapping LI is

2-to-1 (Definition 2). Since LI (1) = LI (0) = 0, the kernel of LI is F2. Further, note that for any I the
image of LI is H1(0), since this image is a hyperplane and

Tr
(
LI (x)

) =
∑
i∈I

2 · Tr(x) = 0, for any x ∈ F2n .

Since n is odd, 1 does not belong to H1(0). Thus, from Theorem 7, N is a permutation if and only if
1 is a 1-linear structure of Tr(λx) or, equivalently,

Tr(λx) + Tr
(
λ(x + 1)

) = Tr(λ) = 1. �
Example 5. Take n = 7, which is a Sophie Germain prime. According to Definition 2 and Theorem 8,
any linear mapping

Lc(x) =
3∑

i=1

(
ci

(
x2i + x27−i ))

, ci ∈ F2,

is 2-to-1 on F27 . Its kernel is clearly F2 and 1 is not in its image. Also, any Boolean function

fc(x) =
3∑

i=1

Tr
(
cix

2i+1), ci ∈ F2,
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is semi-bent. It has only one nonzero linear structure which is clearly 1 and according to (17)

fc(x + 1) + fc(x) = fc(1) = Tr

(
3∑

i=1

ci

)
= Tr(w)

where w equals the Hamming weight of c modulo 2. Then, from Corollary 3, any mapping

N(x) =
3∑

i=1

ci
(
x2i + x27−i ) + Tr

(
3∑

i=1

c′
i x

2i+1 + (w + 1)x

)
, ci, c′

i ∈ F2,

is a permutation. On the other hand, it is directly deduced from Theorem 9 that any mapping

N(x) = λx +
3∑

i=1

((
λ2i + ci

)
x2i + (

λ27−i + ci
)
x27−i )

where ci ∈ F2 and Tr(λ) = 1 is a linear permutation.

5. Conclusion

The main contribution of this paper is the observation that functions with linear structures allow
to construct large families of permutation polynomials explicitly. Presently, we are conscious of a
number of extensions of our work. Almost all results of this paper can be generalized to polynomials
over Fq of shape G(X) + γ f (X), where f induces a mapping from Fq into an arbitrary its subfield.
For more results on such polynomials see [13].

The constructions of permutation polynomials of this paper are based on the existence of linear
structures for the involved functions. To determine whether a given function has a linear structure is
a difficult problem. In a forthcoming paper we will give a complete solution of this problem for the
monomial functions Tr(δxd), extending results from [12].
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