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On Binary Cyclic Codes with Codewords of Weight Three
and Binary Sequences with the Trinomial Property

Pascale Charpin, Aimo Tietäväinen, and Victor Zinoviev

Abstract—Golomb and Gong ([8] and [9]) considered binary sequences
with the trinomial property. In this correspondence we shall show that the
sets of those sequences are (quite trivially) closely connected with binary-
cyclic codes with codewords of weight three (which were already studied
in [4] and [5]). This approach gives us another way to deal with trinomial
property problems. After disproving one conjecture formulated by Golomb
and Gong in [9], we exhibit an infinite class of sequences which do not have
the trinomial property, corresponding to binary cyclic codes of length2
1 with minimum distance exactly four.

Index Terms—Binary cyclic code, factorization of polynomials, periodic
binary sequence, trinomial, trinomial pair.

I. INTRODUCTION

One of the interesting objects of algebraic coding theory is
cyclic codes. Many problems connected with these codes are open.
Even the simplest case—binary cyclic codes with minimal distance
three—is still far from a complete classification (see [4] and [5]).
In the recent papers [8] and [9], binary sequences with so-called
trinomial properties were considered. We say that a binary sequence
aaa = (a0; a1; . . . ; an�1) of lengthn = 2m � 1 has the trinomial
property if there is (at least) one pair of positive integers,k and `,
where0 < k; ` < n; such that

ai + ai+k + ai+` = 0

for all i; i 2 f0; 1; . . . ; n � 1g, where the indices are taken modulo
n. The purpose of this correspondence is to set a one-to-one relation
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between these two problems, i.e., between binary-cyclic codes with the
minimal distance three and binary sequences with trinomial properties.

In Section II, we consider binary sequences with trinomial properties
and characterize such sequences in terms of cyclic codes with minimal
distance three. In Section III, we construct families of such sequences
explicitly. Section IV is devoted to disproving the conjecture from [9]
that any nonlinear binary sequence of periodn = 2m � 1, wherem
is prime, has no trinomial property. Finally, in Section V, we construct
infinite families of binary nonlinear sequences which have no trinomial
properties.

In this correspondence, acodewordis an element of the vector space
Fn

2 . A codeis a subspace ofFn

2 . Thedistancebetween two codewords
will always be the Hamming distance. So the weight of any codeword
x = (x1; . . . ; xn) will be the Hamming weightwt (x) = n

i=1
xi.

Thedual of any binary linear codeC of lengthn is defined by means
of the standard scalar product

C? = fy 2 Fn

2 j z � y = 0; z 2 Cg (1)

wherez � y = n

i=1
ziyi, z = (z1; . . . ; zn), andy = (y1; . . . ; yn).

II. ON BINARY SEQUENCES WITH THETRINOMIAL PROPERTY

Denote the finite field of order2m byF2 . Letn = 2m � 1 and

Rn = F2[x]=(x
n + 1):

In this correspondence, we consider elements ofRn and, as usual, we
identify the sequence (or vector)

aaa = (a0; a1; . . . ; an�1) 2 Fn

2

and the polynomial

a(x) = a0 + a1x+ � � �+ an�1x
n�1 2 Rn:

Definition 1 (cf. [8] and [9]): A sequence

aaa = (a0; a1; . . . ; an�1) 2 Rn

has the(k; `) trinomial property (or(k; `) is a trinomial pair ofaaa), if
for anyi 2 f0; 1; . . . ; n � 1g we have

ai + ai+k + ai+` = 0

where the indexes are taken modulon andk; ` are positive integers.

Let us mention that in [8] and [9], Golomb and Gong further assumed
that the (smallest) period ofaaa is n.

Define the following sets. For givenk and`; 0 < k; ` < n; let

S(k; `) = faaa 2 Rn jaaa has the(k; `) trinomial propertyg:

Since evidentlyS(k; k) = f000g andS(`; k) = S(k; `); it is natural to
define

S = fS(k; `) j0 < k < ` < ng: (2)

Statement 1:S(k; `) is a cyclic code (and thus alsoS(k; `)?, the
dual ofS(k; `), is cyclic).

Proof: If the vectorsaaa andbbb have the(k; `) trinomial property,
then also their sumaaa+bbb has that property. Therefore, the setS(k; `) is
a linear space. By definition it is cyclic. Thus,S(k; `) is a cyclic code.

Theorem 1: We denote byhh(x)i the cyclic code generated by
h(x), i.e., the ideal ofRn generated byh(x). Then

S(k; `) = hgcd (1 + x
k + x

`
; 1 + x

n)i?:
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Proof: This follows from the equivalence of the following four
statements:

aaa = (a0; . . . ; an�1) 2 S(k; `)

, ai + ai+k + ai+` = 0; for anyi 2 f0; 1; . . . ; n� 1g

, a(x) 2 h1 + xk + x`i?

, a(x) 2 hgcd(1 + xk + x`; 1 + xn)i?:

Thus we immediately find the size of the setS(k; `).

Corollary 1:

jS(k; `)j = 2deg gcd(1+x +x ;1+x ):

Since1 + xn does not have multiple factors

gcd 1 + x2 k + x2 `; 1 + xn = gcd (1 + xk + x`)2 ; 1 + xn

= gcd(1 + xk + x`; 1 + xn)

and so Theorem 1 has also the following corollary (see [9, Corol-
lary 1]).

Corollary 2: For any nonnegative integers

S(2sk; 2s`) = S(k; `):

For any integers; s � 0; the trinomial pairs(k; `) and(2sk; 2s`) of
a sequenceaaa are called equivalent (see [9, Definition 1]). Two trinomial
pairs, which are not equivalent, are called distinct. Now we can easily
prove the following statement (cf. [9, Theorem 2]).

Statement 2:If for a sequenceaaa there isaaa trinomial pair (k; `),
where1 < k < ` < n andk 6= n=3, thenaaa has at least two distinct
trinomial pairs.

Proof: If (k; `) is a trinomial pair foraaa, so too are(`; k) and
(`�k; n�k). These three pairs are equivalent only if there are integers
i andj such that̀ =2ik and`=(2j+1)k and thus only ifi=1; j=0;
`=2k; andn=3k.

It should be noted that in Statement 2 the conditionk 6= n=3 is not
necessary; i.e., a sequence may have the trinomial pair(n=3; 2n=3)
and still a distinct trinomial pair. For example, in the casen = 15, the
sequence

aaa = (a0; a1; . . . ; a14) = (x15 + 1)=(x4 + x+ 1)

= 1 + x+ x2 + x3 + x5 + x7 + x8 + x11

= (1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 0; 1; 0; 0; 0)

satisfies both the equationai + ai+5 + ai+10 = 0 and the equation
ai+ai+3+ai+4 = 0. Thus,(5; 10)and(3; 4)are two distinct trinomial
pairs ofaaa.

Theorem 2: Let S be the set previously defined by (2).
ThenS is the union of all cyclic codesC in Rn such thatC? con-

tains at least one codeword of weight3.
Proof: Let E denote the union of all cyclic codesC in Rn satis-

fying

9b(x) 2 C? : wt (b(x)) = 3:

i) Assume first thataaa belongs toE . Then there is a cyclic codeC in
Rn such thataaa is inC and so there is an elementb(x) ofC? of weight
three. If

b(x) = 1 + xk + x`

then for anyi from f0; 1; . . . ; n � 1g we have

xib(x) = xi + xk+i + x`+i 2 C?

and, therefore, for eachi

ai + ak+i + a`+i = 0 (3)

which means thataaa 2 S(k; `) and soaaa 2 S .
ii) Assume now thataaa 2 S . Then there arek and` such that for

eachi the equality (3) is valid. Denote byC(k; `) the linear subspace
of Rn generated by all cyclic shifts of the trinomial1 + xk + x`.
By construction,C(k; `) is a cyclic code and inRn each element of
C(k; `) is divisible by1+ xk + x`. Thus for any elementccc of C(k; `)
we have that

aaa � ccc = 000

which means thataaa belongs to the codeC(k; `)? (see (1) in Section I
for the definition of the duality). By definition,C(k; `) contains the
codeword1+ xk + x` of weight3. Thus,C(k; `)? is an element ofE
and, therefore,aaa 2 E .

III. ON BINARY-CYCLIC CODES WITH CODEWORDS OFWEIGHT

THREE

Because of Theorem 2, it is now important to study cyclic codes with
codewords of weight3. Let 
 be a primitive element of the fieldF2

andms(x) the minimal polynomial of
s overF2. For a positive in-
tegerk, denote byIk a set of representatives of all distinct2-cyclotomic
cosets modulo2k � 1 and for an integerr byKk(r) the2-cyclotomic
coset modulo2k � 1 determined byr; i.e.,

Kk(r) = fr; 2r; . . . ; 2k�1rg � Z2 �1:

If g is a divisor ofm, define

Im(g; r) = fi 2 Im j 9j = j(i) : i � 2jr(mod2g � 1)g:

If I is a subset ofIm, denote byCI the binary-cyclic code of length
n = 2m � 1 generated by the polynomial

i2I

mi(x):

The following theorem yields a large set of cyclic codes with code-
words of weight three. It essentially was given in [4] and [5] and in
caser = 1, in a different form, in [8] and [9].

Theorem 3: If there is a divisorg of m and an integerr such that
g > 1; gcd (r; 2g � 1) = 1; andI � Im(g; r); then for every integer
b in the interval[1; 2g � 2], the codeCI contains a word of the form

1 + xub + xuh

whereu=(2m�1)=(2g�1) andh is an integer from the same interval.
Proof: If u=(2m�1)=(2g�1) then�=
u is a primitive element

of the fieldF2 as well as�r (becausegcd (r; 2g�1)=1). Thus, for
eachb in the interval[1; 2g�2] there is another integerh in this interval
such that

1 + �rb + �rh = 0: (4)

Define

a(x) = 1 + xub + xuh:

If i 2 I then there are integersk andj such that

i = k(2g � 1) + 2jr:
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Therefore

a(
i) = 1 + 

uib + 


uih

= 1 + �
ib + �

ih

= 1 + �
2 rb + �

2 rh

= (1 + �
rb + �

rh)2 = 0

and soa(x) 2 CI .

The following result is a reformulation of the previous theorem in
terms of the factorization ofmur(x

u) (g;m; u and
 are defined as
before).

Theorem 4: Let r 2 f0; 1; . . . ; 2g � 2g. Then i)

mur(x
u) =

i2I (g;r)

mi(x): (5)

ii) The minimal polynomialmur(x) divides the polynomialf(x) if
and only if for anyi 2 Im(g; r) the minimal polynomialmi(x) divides
f(xu).

Proof:
i) First assume thati 2 Im(g; r) and show that the polynomial

mi(x) dividesmur(x
u). As i = r2j + v(2g � 1) for some integer

v, we have immediately

mur(

ui) = mur 


u(2 �1)v


ur2 = (mur(


ur))2 = 0:

Thus, the right-hand side of (5) divides the left-hand side. Since both
sides are monic polynomials, we only need to prove that the degrees are
equal. The degree ofmur(x

u) is u times the degree ofmur(x), and
the latter is the number of elements in the cosetKg(r). On the other
hand, the degree of the right-hand side is the number of elementsi in
the setf0; 1; . . . ; 2m � 1g such thati � r2j(mod 2g � 1) for somej
fromf0; 1; . . . ; g�1g, and so it is alsou times the number of elements
in the setKg(r).

ii) First, assume thatmur(x) divides the polynomialf(x). This
means thatf(
ur) = 0. Let i 2 Im(g; r). We can writei = r2j +
v(2g� 1) wherev is an integer. Thus,ui = ur2j + v(2m� 1) and so

f(
ui) = f(
ur2 ) = (f(
ur))2 = 0:

The inverse statement follows easily from (5).

Thus we have a complete description of all sequences with the
(ub; uh) trinomial property.

Statement 3:Let g;m; u; and
 be defined as above. Assume that
the sequenceaaa 2 Fn

2 has the(k; `) trinomial property.

i) There is an integerr such that

1 + 

rk + 


r` = 0: (6)

ii) Assume that among allr for which (6) is valid, there isr0 such
thatgcd (r0; u) = 1. Then, ifu dividesk thenu divides`.

Proof:
i) If aaa has the(k; `) trinomial property then, according to Theorem 2,

there is a cyclic code which contains a codewordb(x) of weight three:
b(x) = 1+ xk + x`. This means that there is an integerr such that
r

is a root ofb(x).

ii) Assume thatu dividesk. Letk = uk0 and� = 
u be a primitive
element ofF2 . We suppose, moreover, that there is an integerr0; 0 <
r0 < n; gcd (r0; u) = 1; such that

1 + 

r uk + 


r ` = 0: (7)

Let 1 + �rk = �` . As � = 
u, we have that

1 + 

ur k + 


u` = 0: (8)

Comparing (7) and (8) we conclude thatr0` = u`0. Sincegcd (r0; u) =
1; ` is divisible byu.

IV. FOURIER TRANSFORM OFSEQUENCES

It is well known that the coordinates of any sequenceaaa 2 Rn can
be expressed by the equations

ai = f(
i); i = 0; . . . ; n� 1

wheref(x) is a function fromF2 to F2 which is simply the Fourier
transform of the sequenceaaa—in terminology of cyclic codes, it is the
Mattson–Solomon polynomial of the corresponding codeword.

Definition 2: Let a(x) 2 Rn and define its Fourier coefficients

Aj = a(
j); 0 � j � n� 1

and the function associated to the sequenceaaa

faaa(x) =

n�1

j=0

Ajx
n�j

: (9)

Recall thatIm denotes a set of representatives of all distinct2-cy-
clotomic cosets modulo2m � 1. The next lemma is obtained from the
basic theory of cyclic codes [3], see also ([10, p. 1165]).

Lemma 1: Letaaa be the sequence identified witha(x) 2 Rn. Denote
by J(aaa) the subset ofIm composed of thej satisfyinga(
j) = 0. On
the other hand, consider the elementsh 2 Im such thata(
n�h) 6= 0.
Denote byH(aaa) the set of suchh.

Then, the sequenceaaa is produced by a function of the form (9) where
theAj are the Fourier coefficients ofa(x). More precisely, denoting
by �H the union of the2-cyclotomic cosets of the elements ofH(aaa)

faaa(x) =

r2 �H

An�rx
r
:

Moreover,aaa is a codeword of the codeCJ(aaa), which is the smallest
binary-cyclic code containingaaa.

The sequenceaaa has the trinomial property if and only if the code
CH(aaa) contains a codeword of weight3.

Proof: Asfaaa(
i) = ai; faaa produces the sequenceaaa. Conversely,
any function of the form (9), withAj 2 F2 and such thatA2j = A2

j ,
is the Fourier transform of a unique binary codeword of lengthn.

Let J(aaa) = fj1; . . . ; j`g. By definition,aaa is a codeword of the bi-
nary-cyclic codeCJ(aaa), since it satisfies

a(
j ) = 0; . . . ; a(
j ) = 0:

Furthermore, it is well known that

C
?
J(aaa) = CH(aaa):

According to Theorem 2, the proof is completed.
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V. ON GOLOMB’S AND GONG’S CONJECTURE

In this section we assume thata(
n�1) 6= 0, i.e.,1 2 H(aaa). When,
moreover,H(aaa) 6= f1g; aaa is callednonlinear. When we define

Ui(x) = 1 + x
i + (1 + x)i

we see thatCH(aaa) (the dual ofCJ(aaa)) contains a word of weight3 if
and only if there are integersk and` such that



` = 1 + 


k and 8h 2 H(aaa) : Uh(

k) = 0 (10)

(which meansaaa 2 S(k; `)).
In [9], it is conjectured thatwhenm is prime, then any nonlinear

binary sequence of period2m � 1 has no trinomial pair. By (10), this
means that whenm is prime andi 2 Imnf0; 1g then the equation
Ui(x) = 0 has no root inF2 nf0; 1g. One can easily check this prop-
erty form � 13. But we disprove this conjecture by showing that the
following statement is true.

Statement 4:The polynomialU281(x) has a zero inF2 nf0;1g. In
other words, the binary-cyclic codeC1;281 of length217 � 1 has min-
imum distance three. Moreover, it has exactly17(217 � 1) codewords
of weight three.

The nonlinear sequenceaaa which is produced by the function

faaa(x) = Tr (x+ x
281); x 2 F2 nf0g

whereTr, the trace function fromF2 to F2, has the trinomial prop-
erty.

Proof: By using Maple, one obtains the factorization ofU281(x).
There are exactly six minimal polynomials of degree17 dividing
U281(x). They are

(x17 + x
16 + x

13 + x
12 + x

11 + x
7 + x

5 + x
4 + 1)

(x17 + x
16 + x

13 + x
12 + x

11 + x
10 + x

9 + x
7 + x

6 + x
4 + 1)

(x17 + x
13 + x

11 + x
10 + x

8 + x
7 + x

6 + x
5 + x

4 + x+ 1)

(x17 + x
13 + x

12 + x
10 + x

6 + x
5 + x

4 + x+ 1)

(x17 + x
13 + x

11 + x
9 + x

8 + x
7 + x

4 + x+ 1)

(x17 + x
16 + x

13 + x
10 + x

9 + x
8 + x

6 + x
4 + 1):

Note that217 � 1 is prime; moreover281 is the smallest element of
its 2-cyclotomic coset modulo217 � 1. Let us denote by
 a primitive
element ofF2 which is not a root ofU281(x). Thus, there exists� > 1
such that
� is a root ofU281(x)—for instance, the root of the first
polynomial of degree17 above. We know that the other polynomials
have, respectively, as roots1 + 
� ; 
�� ; 1 + 
�� ; (1 + 
� )�1; and
(1 + 
�� )�1.

Let � 0 be defined by
� = 1 + 
� . Then(�; � 0) is a trinomial pair
for aaa since1 + 
281� + 
281� = 0.

In other words, the codeC1;281 of lengthn=217�1 overF2 has min-
imal distance3. According to the factorization ofU281(x), we know
exactly the numberB3 of codewords of weight3 in C1;281. There are
6 � 17 distinct roots ofU281(x) belonging toFnnf0; 1g. Each root
givesn codewords of weight3—one codeword and their shifts. Each
codeword appears six times in this enumeration. Finally,B3=17n.

VI. A N INFINITE CLASS OFSEQUENCESWHICH DO NOT HAVE THE

TRINOMIAL PROPERTY

According to Statement 4, nonlinear binary sequences of period
2m � 1 which have trinomial pairs should exist for anym � 17. On

the other hand, it is known that the minimum distance of any code
C1;t is in f2; 3; 4; 5g (see an overview in [2]). We focus here on
the casem prime and will describe an infinite class of cyclic codes
with minimum distance exactly4—i.e., of sequencesaaa which have a
relation of the formai + ai+j + ai+k + ai+` = 0, but have no such
relation involving a smaller number of elements.

Now we want to notice a property, that we will use later, concerning
the degree of the polynomialUt(x) = 1 + xt + (1 + x)t.

Lemma 2: Assume thatm is odd andm 6� 0 (mod 3). Lett be such
that

t 62 f1; 2; . . . ; 2m�1g and 1 < t < 6m+ 3:

Then the codeC1;t of length2m�1 has minimum distance at least four
if and only ifUt(x) has no root in a proper subfield ofF2 (except0
and1).

Proof: First, it is clear that ifC1;t has no codeword of weight3
thenUt(x) has no root inF2 except0 and1. Let� be a root ofUt(x)
which is not in a proper subfield ofF2 . Thus, one can construct a set
S of roots ofUt(x) whose cardinality is at most6m. It is composed of
the elements of the orbit of� under the group generated by the permu-
tations onF2

�;� 7�! �
�1 and �;� 7�! (�+ 1)

and of their conjugates (see [9, Lemma 2]). We have to examine the
cases where the cardinality ofS is strictly less than6m. We denote by
Conj (�) the set of the conjugates of�, for some� in F2 . Note that,
by hypothesis,Conj (�) hasm elements. Our conclusions are coming
from the basic properties of the factorization of trinomials which can
be found in [7, Ch. 5].

Suppose that(� + 1) 2 Conj(�)—i.e. there isk such that�2 +
� + 1 = 0. This is possible for evenm only.

Suppose now that��1 2 Conj (�). This means that there isk such
that�2 + ��1 = 0 which is equivalent to�2 +1 + 1 = 0. This is
possible also for evenm only.

If (� + 1) 2 Conj (��1) then there isk such that� + 1 = ��2 .
We have

�
2 +1 + �

2 + 1 = 0() �
2 +1 + � + 1 = 0:

So the degree ofm�(x) divides3(m � k) and is divisible by3. So
3 dividesm. Finally, we have proved that, in accordance with the hy-
pothesis onm and�

Conj (�) 6= Conj (��1) 6= Conj (� + 1):

Since the permutations� and�, above defined, do not change the de-
gree of minimal polynomials we conclude thatS is the union of six
distinct sets of conjugates; so the cardinality ofS is exactly6m. Now
the degree ofUt(x), which is t � 1, must satisfyt � 1 � 6m. But
0 and1 are roots ofUt(x), so we obtaint � 3 � 6m as a necessary
condition for� to be a root ofUt(x); this contradicts the hypothesis on
t. We conclude thatC1;t has no codeword of weight3.

Janwa, McGuire, and Wilson [11] studied the binary-cyclic codes
C1;t of length2m � 1 (m > 5) by considering the curve defined by
the polynomial

gt(X;Y ) =
1 +Xt + Y t + (X + Y + 1)t

(X + Y )(X + 1)(Y + 1)

whose rational points correspond to codewords of weight less than or
equal to4. They used the following result (see [11, Theorem A]).
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Theorem 5: If gt(X; Y ) is absolutely irreducible then the codeC1;t

has minimum distance5 for only a finite number of values ofm.
Sketch of Proof:Suppose thatgt(X; Y ) is irreducible over the

algebraic closure ofF2. Then a form of Weil’s theorem, due to Schmidt
[13], shows that the numberNm of rational points(X;Y ) overF2

of gt(X; Y ) satisfies

2m + 1� (t� 4)(t� 5)2m=2
� (t� 3)

� Nm � 2m + 1 + (t� 4)(t� 5)2m=2: (11)

According to the lower bound above, ift is fixed andm increasing
then the number of zeros will increase implying that the codeC1;t of
length2m�1, for a certainm, has codewords of weight3 or4. It is easy
to check the following result which is given in [1]. Ift � 2m=4 + 4:5,
then the lower bound ofNm is greater than or equal to2m=2�2 �
2m=4 + 1=2; so there are solutions of the equationgt(X; Y ) = 0 for
all m � 7.

Corollary 3: Assume thatgt(X; Y ) is absolutely irreducible. Then
the minimum distance ofC1;t is at most4 when

t � 2m=4 + 4:5

wherem � 7.

The next theorem is the main result given in [11].

Theorem 6: For fixedt; t � 3 (mod 4); t > 3; the curvegt(X; Y )
is absolutely irreducible. So the codeC1;t of length2m � 1 has code-
words of weight3 or 4 for all but finitely many values ofm.

By using the previous results, we are able to construct, as an example
of application, a class of codes of typeC1;t with minimum distance
exactly4. This leads to a large class of sequences which do not have
the trinomial property.

Corollary 4: Suppose thatm is prime. Lett be an integer such that

t � 3 (mod 4); t > 3:

If m andt satisfy

t < min(6m+ 3; 2m=4 + 4:5)

then the minimum distance of the codeC1;t is exactly4. Therefore,
any sequenceaaa produced by a function of the form

faaa(x) = Tr (x+ �0x
t + �1x

k + � � �+ �ix
k )

where�i 2 F2 nf0g, does not have the trinomial property.
Proof: According to Corollary 3 and Theorem 6, the codeC1;t

has minimum distance at most4. Moreover, since we assume thatt <
6m+3 with m prime, we can apply Lemma 2. We conclude thatC1;t

has no codeword of weight3; its minimum distance is exactly4.
Now consider a sequenceaaa produced byfaaa(x). Thenaaa is a codeword

of the cyclic codeC?1;t;k ;...;k (see Lemma 1). If the sequenceaaa has
trinomial property thenC1;t;k ;...;k contains codewords of weight3;
this is impossible because this code is contained in the codeC1;t.

TABLE I
CODESC OF LENGTH 2 � 1; m � m AND m PRIME, WITH MINIMUM

DISTANCE 4 (SEE EXPLANATION BELOW)

Explanation of Table I: For any fixedt of the form4i + 3 we
computed the smallest prime numberm, denotedm0, such thatt < �,
where

� = min(6m+ 3; 2m=4 + 4:5):

According to the previous corollary, the binary-cyclic codeC1;t of
length2m �1 has minimum distance4. Moreover, this property holds
for any primem such thatm � m0. Note that fromm0 = 31 we have
� = 6m0 + 3.
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