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On Binary Cyclic Codes with Codewords of Weight Three
and Binary Sequences with the Trinomial Property

Il. ON BINARY SEQUENCES WITH THETRINOMIAL PROPERTY
Denote the finite field of orde2™ by Fym. Letn = 2™ — 1 and

Pascale Charpin, Aimo Tietavainen, and Victor Zinoviev

Abstract—Golomb and Gong ([8] and [9]) considered binary sequences R, = FBpa]/(2" + 1).
with the trinomial property. In this correspondence we shall show that the
sets of those sequences are (quite trivially) closely connected with binary- In this correspondence, we consider elementB,pfind, as usual, we
cyclic codes with codewords of weight three (which were already studied dentify the sequence (or vector)
in [4] and [5]). This approach gives us another way to deal with trinomial

property problems. After disproving one conjecture formulated by Golomb a=(ag,a1,...,an_1) € F'
and Gong in [9], we exhibit an infinite class of sequences which do not have
the trinomial property, corresponding to binary cyclic codes of length2™ —  and the polynomial

1 with minimum distance exactly four.

N . n—1
Index Terms—Binary cyclic code, factorization of polynomials, periodic ax) = ao +arr + T n® € R
binary sequence, trinomial, trinomial pair.

Definition 1 (cf. [8] and [9]): A sequence
I. INTRODUCTION a=(ao,a,...,an—1) € Ry,

One of the interesting objects of algebraic coding theory Bas the(k, f) trinomial property (of(k, () is a trinomial pair ofa), if
cyclic codes. Many problems connected with these codes are opfm.anyi € {0,1....,n — 1} we have
Even the simplest case—binary cyclic codes with minimal distance
three—is still far from a complete classification (see [4] and [5]).

In the recent papers [8] and [9], binary sequences with so-call@ghere the indexes are taken modulandk, ¢ are positive integers.

trinomial properties were considered. We say that a binary sequence . .
Let us mention thatin [8] and [9], Golomb and Gong further assumed

a;i + aiyr + aive =0

a = (ao,ai,...,a,—1) of lengthn = 2™ — 1 has the trinomial . )

property if there is (at least) one pair of positive integdrgnd ¢, that the (smallest) period afis .. /

where0 < k. ¢ < n. such that Define the following sets. For givehand/(, 0 < k,{ < n, let
ai+ iy + ige =0 S(k,t) = {a € R, | a has thek, () trinomial property.

n. The purpose of this correspondence is to set a one-to-one relaiigfine

forall¢, ¢ € {0,1,..., n — 1}, where the indices are taken modulaSince evidenthS(k, k) = {0} andS(¢, k) = S(k, (), it is natural to

S = Sk, )0 < k<t . 2
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Proof: This follows from the equivalence of the following four and, therefore, for each

statements:
a=(ao,....an-1) € S(k,{)

& a; + a4k +aipe =0, foranyi € {0,1,...,n -1}
oalr) e 1425 +20"
o alx) € (ged(1+ 2" + 2", 1+ 2™) " O

Thus we immediately find the size of the sk, ().
Corollary 1:
1S(k, 0)] = gdles gcd(1+rk+z[,1+x”).
Sincel + =" does not have multiple factors
ged (1 4227k 4 ,rzsé, 14 ,r”) = ged ((1 NISLAE ,rc)zs, 1+ ,r")
=ged(1+ 2t ™)

a; + api +aeri =0 3
which means that € S(k, () and soz € S.

i) Assume now thate € S. Then there aré and¢ such that for
eachi the equality (3) is valid. Denote by (%, () the linear subspace
of R,, generated by all cyclic shifts of the trinomial+ «* + 2*.
By constructionC'(k, ¢) is a cyclic code and iR, each element of
C(k, ¢) is divisible byl + 2* + z*. Thus for any elementof C'(k, )
we have that

a-c=0

which means that belongs to the cod€'(k, ()~ (see (1) in Section |
for the definition of the duality). By definition('(k, £) contains the
codewordl + z* + 2° of weight3. Thus,C'(k, £)* is an element of
and, thereforeg € £. |

and so Theorem 1 has also the following corollary (see [9, Corol-

lary 1]).
Corollary 2: For any nonnegative integer
S(2°k,2°0) = S(k, 0).

For any integes, s > 0, the trinomial pairg k. ¢) and(2°k, 2°¢) of

asequence are called equivalent (see [9, Definition 1]). Two trinomia
pairs, which are not equivalent, are called distinct. Now we can east

prove the following statement (cf. [9, Theorem 2]).

Statement 2:If for a sequence: there isa trinomial pair (%, (),

wherel < k < £ < n andk # n/3, thena has at least two distinct

trinomial pairs.
Proof: If (k,{) is a trinomial pair fora, so too are(¢, k) and

(¢—k,n—k). These three pairs are equivalent only if there are integers

i andj such that =2k and(= (2’ +1)k and thus only i =1, j =0,
(=2k, andn=3k. O

It should be noted that in Statement 2 the condifiog n/3 is not
necessary; i.e., a sequence may have the trinomial(pgi, 2n/3)
and still a distinct trinomial pair. For example, in the case 15, the
sequence

a=(ap,ar,...,a1s) = (" + 1)/ +2+1)
= 1—|—JJ+:E2+:E3+:E5+:ET+:E8+:EM
=(1,1,1,1,0,1,0,1,1,0,0,1,0,0,0)
satisfies both the equatian + a;4+5 + a;+10 = 0 and the equation

a;+a;+3+a; 14 = 0. Thus(5,10)and(3, 4) are two distinct trinomial
pairs ofa.

Theorem 2: Let S be the set previously defined by (2).
Thens is the union of all cyclic code€’ in R,, such thaC'" con-
tains at least one codeword of weight
Proof: Let & denote the union of all cyclic codésin R,, satis-

fying
Jo(x) € O wi (b(x)) = 3.

i) Assume first that belongs ta€. Then there is a cyclic codg in
R,, such that is in C' and so there is an elemdt:) of C'+ of weight
three. If

b(z) = 142 +2°

then for any: from {0,1,...,

n — 1} we have

2'b(x) =2t + 2T 4T e ot

Ill. ON BINARY-CycCLIC CODES WITH CODEWORDS OFWEIGHT
THREE

Because of Theorem 2, itis now important to study cyclic codes with
codewords of weight. Let v be a primitive element of the field;m
andm,(x) the minimal polynomial ofy® over F». For a positive in-
tegerk, denote by, a set of representatives of all distirzetyclotomic
sets modul@® — 1 and for an integer by K (r) the2-cyclotomic
coset modul@”® — 1 determined by-; i.e.,

Ke(r)={r,2r,....2" 9} C Zon_,.

If ¢ is a divisor ofm, define
L.(g.v)={i€L,|3j=j():i=2"r(mod2? — 1)}.

If I is a subset of,.., denote byC’ the binary-cyclic code of length
n = 2™ — 1 generated by the polynomial

H'm,;(m).

1€l

The following theorem yields a large set of cyclic codes with code-
words of weight three. It essentially was given in [4] and [5] and in
caser = 1, in a different form, in [8] and [9].

Theorem 3: If there is a divisory of m and an integer such that
g > 1,ged (1,27 — 1) = 1, andI C I (g, r), then for every integer
b in the interval[l, 27 — 2], the codeC; contains a word of the form

1 + xub + :Euh

whereu=(2"-1)/(27—1) andh is an integer from the same interval.

Proof: If u=(2"—1)/(29-1) theng=~" is a primitive element
of the field F>» as well as3” (becausecd (7,27 — 1) =1). Thus, for
eachb in the intervall, 29—2] there is another integérin this interval
such that

1 + ﬂrb + 37‘/1 =0. (4)

Define
wh

alr) =1+ 2"t

If i € I then there are integefsand; such that

i= k(27— 1)+ 2r.
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Therefore

uth

a(y') = 147"+
=14 ﬁib + /31’71
=147 4
=1+ 5" =0

/32j rh

and soa(z) € Cr. O

The following result is a reformulation of the previous theorem i
terms of the factorization of,(#*) (9, m,u and~ are defined as
before).

Theorem 4: Letr € {0,1,...,29 — 2}. Then)

II

1€1m(g,r)

u

My (") =

®)

m; ().

ii) The minimal polynomialn..,.(x) divides the polynomiaf(z) if
and only if foranyi € I, (g, r) the minimal polynomialn; () divides
fa).

Proof:

i) First assume that € I,.(g,7) and show that the polynomial
m;(z) dividesm,,(z"). Asi = r2? 4+ v(27 — 1) for some integer
v, we have immediately

u(29 —1)v Nur'2j

Mo (7") = Mo (7 ) ) = (mu (v )Y =0.

Thus, the right-hand side of (5) divides the left-hand side. Since both

423

ii) Assume that: dividesk. Letk = uk’ and3 = +* be a primitive
element ofF%, . We suppose, moreover, that there is an integdr <
v’ < m, ged (r',u) = 1, such that

1 + ’yr’uk, + n}/r’é 0. (7)
Letl + 3% = 8". As 3 = v*, we have that
14+ A’ur’k, + ’\,ul’, —0. (8)

Gomparing (7) and (8) we conclude that = wl'. Sinceged (v',u) =
1, £ is divisible byu. O
IV. FOURIER TRANSFORM OF SEQUENCES

It is well known that the coordinates of any sequeace R, can
be expressed by the equations

ai = f(+'),

PRI

wheref(x) is a function fromF,~ to F» which is simply the Fourier
transform of the sequen@e—in terminology of cyclic codes, it is the
Mattson—Solomon polynomial of the corresponding codeword.

Definition 2: Leta(x) € R, and define its Fourier coefficients

a(+’),

and the function associated to the sequence

A= 0<i<n-1

n—1

falz) = Z A" (9)

sides are monic polynomials, we only need to prove that the degrees are

equal. The degree of,.,.(z*) is u times the degree of,.-(x), and
the latter is the number of elements in the cadsgtr). On the other
hand, the degree of the right-hand side is the number of eleménts
the set{0,1,...,2™ — 1} such that = 72’ (mod 29 — 1) for somej
from{0,1,...,9—1},and soitis alsa times the number of elements
in the setli(,(r).

ii) First, assume thatn.. («) divides the polynomialf(z). This
means thaf (+*") = 0. Leti € I,,(g,r). We can writei = r2d 4
v(29 — 1) wherev is an integer. Thusyi = ur2? 4+ v(2™ — 1) and so

F") = £y = (f(y

The inverse statement follows easily from (5). O

Recall that/,, denotes a set of representatives of all distihcly-
clotomic cosets modul®™ — 1. The next lemma is obtained from the
basic theory of cyclic codes [3], see also ([10, p. 1165]).

Lemma 1: Leta be the sequence identified witliz:) € R,,. Denote
by J(a) the subset of,,, composed of thg satisfyinga(1’) = 0. On
the other hand, consider the elemeints I, such that (" ") # 0.
Denote byH (a) the set of such.

Then, the sequenesis produced by a function of the form (9) where
the A; are the Fourier coefficients af(z). More precisely, denoting
by H the union of the2-cyclotomic cosets of the elements Bi(a)

falz) = Z An_ra’.

7'€H

Thus we have a complete description of all sequences with thoreover,a is a codeword of the cod€'s(,), which is the smallest

(ub,wh) trinomial property.

Statement 3:Let g, m, u, and~ be defined as above. Assume thakv

the sequence € F3' has the(k, () trinomial property.
i) There is an integer such that

(6)
ii) Assume that among all for which (6) is valid, there is’ such

thatged (', u) = 1. Then, ifu dividesk thenu divides¢.
Proof:

binary-cyclic code containing.
The sequence has the trinomial property if and only if the code
'H(a) CONtains a codeword of weight
Proof: As fa(+') = a:, f. produces the sequeneeConversely,

any function of the form (9), wittl; € > and such thatl;; = A%,
is the Fourier transform of a unique binary codeword of length

LetJ(a) = {j1,...,je}. By definition,a is a codeword of the bi-
nary-cyclic codeC s(,), since it satisfies

a(y't) = 0,....a(+"¢) = 0.

Furthermore, it is well known that

i) If @ has thgk, £) trinomial property then, according to Theorem 2,

there is a cyclic code which contains a codewidrd) of weight three:
b(x) = 1+ 2% + «*. This means that there is an integesuch that,”
is a root ofb(x).

Cia) = Cti(a)-

According to Theorem 2, the proof is completed.



424 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 1, JANUARY 2001

V. ON GOLOMB'S AND GONG'S CONJECTURE the other hand, it is known that the minimum distance of any code

e o 2 AR T
In this section we assume tht" ") # 0, i.e.,1 € H(a). When, glgtc:sg] 12r-'i;1)17(;hafgd(\?v?ltledaerj'%cc;;/beervt':rewwinlfri]ni[tfa])tl:l‘;\/zz L?C:sclik::egidc:ens
moreover,H (a) # {1}, a is callednonlinear When we define . 597 prime . o
with minimum distance exactly—i.e., of sequences which have a

relation of the forme; + a.4; + aiyr + a;+¢ = 0, but have no such
relation involving a smaller number of elements.

Now we want to notice a property, that we will use later, concerning
the degree of the polynomial;(z) = 1 + 2" + (1 + z)".

Ui(z) =142" 4+ (1+2)

we see that’y (4 (the dual ofC;(,)) contains a word of weighs if
and only if there are integefsand( such that
Lemma 2: Assume thatn is odd andn # 0 (mod 3). Lett be such

v'=14+" and Vhe H(a): Uy(r*) =0 (10) that

¢ m—1 .
(which means: € S(k, ). tg{1,2,...,2 } and 1<+t <6m+3.

In[9], it is conjectured thatvheni is prime, then any nonlinear Then the cod€’ ; of length2™ — 1 has minimum distance at least four
binary sequence of periadd™ — 1 has no trinomial pair By (10), this  f ang only if U, () has no root in a proper subfield &t (exceptd
means that whem is prime andi € I,\{0,1} then the equation gnq1),

Ui(x) = 0 has noroot infz=\{0,1}. One can easily check this prop-  proof: First, it is clear that ifC'; » has no codeword of weight
erty form < 13. But we disprove this conjecture by showing that th@nenUl(ar) has no root inF,— excep® and1. Let3 be a root of; ()
following statement is true. which is not in a proper subfield df,» . Thus, one can construct a set

Statement 4: The polynomial/zs, () has a zero i1\ {0, 1}. In S of roots ofU(x) Whos_.e cardinality is at mo$tn. It is composed of
other words, the binary-cyclic codg »s; of length2!” — 1 has min- the_ elements of the orbit @f under the group generated by the permu-
imum distance three. Moreover, it has exadffy2'” — 1) codewords (@tions onfsm
of weight three. 1

oio— and p;a+— (a+1)
The nonlinear sequenaewhich is produced by the function
and of their conjugates (see [9, Lemma 2]). We have to examine the
fa(2) =Tr (2 +2>%"), 2 € Fyur\{0} cases where the cardinality 8fis strictly less tham. We denote by

Counj («) the set of the conjugates af for somex in F»~. Note that,
whereTr, the trace function fronf,1- to I, has the trinomial prop- by hypothesisConj () hasm elements. Our conclusions are coming
erty. from the basic properties of the factorization of trinomials which can

Proof: By using Maple, one obtains the factorizatiori®f, (). be found in [7, Ch. 5]. .

There are exactly six minimal polynomials of degree dividing Suppose thaf3 + 1) € Conj(3)—i.e. there isk such that3?" +

Ussi(x). They are 34+ 1 = 0. This is possible for evem only.
) Supeose now that* € Conj(3). This means that there issuch

G B T L N LBy LS B A T § that3?" + 37! = 0 which is equivalent tg3> ™! + 1 = 0. This is
(T4 P e e e e e 2 et ) possible also for evem only. .
TP e 4 b S e et D) If (34 1) € Conj(3~") then there ig: such that? +1 = 372"

o . oo ’ ‘ ‘ We have
(;vlr B e e e+ 1)

- - ok k m—k
(;vll+arlg+x“+$9+$8+$'+$4+$+1) ,52 +1+/32 +1=0<:>/32 T ig+1=0.
(:817_1_116 +:E13 —i—:cm +I9 +J}8 +I6 +:c4 +1).

So the degree afis(x) divides3(m — k) and is divisible by3. So
3 dividesm. Finally, we have proved that, in accordance with the hy-

Note tha2'” — 1 is prime; moreove281 is the smallest element of - ’
pothesis onn and 3

its 2-cyclotomic coset moduld'” — 1. Let us denote by a primitive
element off,1- whichis notaroot ot/2s (). Thus, there exists > 1
such thaty™ is a root ofU»s; (z)—for instance, the root of the first
polynomial of degred 7 above. We know that the other polynomial
have, respectively, as roats+ 47, v~ 7, 14+ "7, (1 4+ +7)~', and
1+~ ") "

Let 7' be defined byy”™ = 1+ ~7. Then(r. ') is a trinomial pair
for a sincel + +2%'7 + 427" = 0.

In other words, the cod€, 25, of lengthn =2'"—1 overF; has min-
imal distance3. According to the factorization df2s1 (), we know
exactly the numbeB; of codewords of weigh3 in C'y 2s1. There are
6 x 17 distinct roots ofl»s; (z) belonging toF,\{0,1}. Each root  Janwa, McGuire, and Wilson [11] studied the binary-cyclic codes
givesn codewords of weight—one codeword and their shifts. EachC' ¢ of length2™ — 1 (m > 5) by considering the curve defined by
codeword appears six times in this enumeration. Fin&lys=17n.0  the polynomial

Conj(3) # Conj(87") # Conj (3 + 1).

SSince the permutations andp, above defined, do not change the de-
gree of minimal polynomials we conclude th@tis the union of six
distinct sets of conjugates; so the cardinalitySof exactlyGrn.. Now
the degree ol/;(x), which ist — 1, must satisfyt — 1 > 6m. But

0 and1 are roots ofU/;(x), so we obtairt — 3 > 6m as a necessary
condition for3 to be a root of/;(x); this contradicts the hypothesis on
t. We conclude thaf’; ; has no codeword of weiglt O

~t 1 ' t
VI. AN INFINITE CLASS OF SEQUENCESWHICH DO NOT HAVE THE g(X,Y) = 1+X +,Y, + (X +Y +1)
TRINOMIAL PROPERTY (X+Y)(X+1)(Y+1)

According to Statement 4, nonlinear binary sequences of periadhose rational points correspond to codewords of weight less than or
2™ — 1 which have trinomial pairs should exist for any > 17. On equal to4. They used the following result (see [11, Theorem A)).
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Theorem 5: If ¢:(X,Y") is absolutely irreducible then the code ¢
has minimum distancg for only a finite number of values of..

Sketch of Proof: Suppose thay, (X, Y) is irreducible over the

algebraic closure aF . Then a form of Weil's theorem, due to Schmidt 7 prey A
[13], sr]ows tha_t t_he numbéy,,, of rational points(X,Y") over Fom = =38
of .(X,Y) satisfies ¥ T T3
15, 19, 23 17 {1 23.5
2" 41— (t—4)(t—5)2""" — (t - 3) 27, 31 10| 314
<Ny 2™ 414 (t—4)(t— 5)2’”/2. (11) 35, 39, 43, 47, 51, 55 23 | 58.3
59, 63, ..., 63+4i, ..., 155 | 29 | 156.7
O 159, ..., 159+4i, ..., 187 | 31 | 189

According to the lower bound above tifs fixed andm increasing
then the number of zeros will increase implying that the cOdg of
length2™ —1, for a certainn, has codewords of weightor 4. It is easy
to check the following result which is given in [1].4f< 2™/% + 4.5,
then the lower bound oN,, is greater than or equal ®&"/2~2% —
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TABLE |
CoDESC(C'; ,; OFLENGTH2™ — 1, m > mg AND m PRIME, WITH MINIMUM
DISTANCE 4 (SEE EXPLANATION BELOW)

Explanation of Table I: For any fixedt of the form4i + 3 we
computed the smallest prime number denotedn, such that < A,
where

2™/* 4 1/2; so there are solutions of the equatigiX,Y) = 0 for

allm > 7. A = min(6m + 3,2/ + 4.5).

Corollary 3: Assume thay: (X, ') is absolutely irreducible. Then

. . . According to the previous corollary, the binary-cyclic code; of
the minimum distance af'; ; is at mostt when g P Y yry &

length2™° — 1 has minimum distancé Moreover, this property holds
for any primem such thatn > mg. Note that fromm, = 31 we have

t < 2™/t 445 A = 6mo + 3.
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The next theorem is the main result given in [11].

Theorem 6: For fixedt, t = 3 (mod 4), t > 3, the curvey,(X,Y")
is absolutely irreducible. So the codg,; of length2™ — 1 has code-
words of weight3 or 4 for all but finitely many values ofn.
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