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Abstract

Dobbertin (Construction of bent functions and balanced Boolean functions with high
nonlinearity, in: Fast Software Encryption, Lecture Notes in Computer Science, Vol. 1008,
Springer, Berlin, 1994, pp. 61-74) introduced the normality of bent functions. His work
strengthened the interest for the study of the restrictions of Boolean functions on k-
dimensional flats providing the concept of k-normality. Using recent results on the
decomposition of any Boolean functions with respect to some subspace, we present several
formulations of k-normality. We later focus on some highly linear functions, bent functions
and almost optimal functions. We point out that normality is a property for which these two
classes are strongly connected. We propose several improvements for checking normality,
again based on specific decompositions introduced in Canteaut et al. (IEEE Trans. Inform.
Theory, 47(4) (2001) 1494), Canteaut and Charpin (IEEE Trans. Inform. Theory). As an
illustration, we show that cubic bent functions of 8 variables are normal.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Normality was introduced by Dobbertin in [12]. Since this paper was mainly
devoted to the construction of new bent functions, normality was defined for
Boolean functions with an even number m of variables: such a function is normal if it
is constant on some flat of dimension m/2. In particular, Dobbertin proposed the
conjecture that any bent function is normal.
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The known classes of bent functions, which are explicitely constructed, are
normal. This leads to the main interest of normality concerning bent functions: a
bent function which is not normal does not belong to any known class of bent functions.
Since bent functions are not yet classified, normality appears as a relevant property.
Recently, few examples of non-normal bent functions were exhibited using a specific
algorithm. All these facts will be explained in forthcoming papers [6,11]. To find an
infinite class of non-normal bent functions remains today an open problem.

The terminology was later extended to the odd case. Throughout a lot of
observations and numerical results, it appears that normality is a property of a large
class of Boolean functions. However Carlet proved in [8] that, asymptotically, almost
all Boolean functions are not normal. Actually the general problem is to find k, the
larger dimension for an affine subspace such that a given function is constant on,
providing the concept of k-normality (see [8,13]). The complexity of any algorithm,
which checks this property for a given function, strongly depends on the method
which is used for the enumeration of all j-dimensional flats (j<k). Our aim, in this
paper, is to establish some suitable simplifications by means of the decompositions of
Boolean functions, a point of view that we developed with Canteaut et al. [4,5].

On the other hand we want to present and discuss some basic properties around
the concept of normality for Boolean functions. Elementary aspects are presented in
Section 2.2. The next section is devoted to the normality of any Boolean function
viewed by its Fourier transforms. Here we want to show which formulas must be
computed when checking the k-normality with respect to some flat (see Lemma 3).
We after focus on a special class of Boolean functions including bent functions and
almost optimal functions. Almost optimal functions provide classes of not normal
functions (Theorem 1). We apply our results to the case of resilient functions in
Section 3.1; we propose a sufficient condition, characterizing z-resilient functions
which are not affine when at most 7 + 1 variables are fixed (Theorem 2). In Section
3.2 as well as in the last section, we come back to highly non-linear functions. In
accordance with our previous works, mainly in [4,5], we explain and develop the fact
that to study the normality of bent functions (even case) is to study the normality of
some almost optimal functions (odd case), notably by Propositions 5, 7 and 9.
Concerning the bent functions we show that to consider such a function and its dual
together should be more efficient (Proposition 6). We show that any cubic bent
function of 8 variables is normal (Proposition 8). At the end, as an illustration, we
treat the quadratic functions (in the Appendix).

Main notation:

%, 1s the set of Boolean functions of m variables;

wt(x) denotes the Hamming weight of the vector x;

¢ g€ B,y is the indicator of E : ¢pp(x) = l<x€eE;

. is the usual scalar product with respect to the standard basis;
0. xeFY—a-x, aeF}, denotes any linear function in %,,;
F(f), L(f) and A(f), are defined by (1) and (2);

D, f is the derivative of f with respect to a (see (3)).
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2. Preliminaries
2.1. Boolean functions

We essentially use the same notation as [4,5]. A Boolean function of m variables is a
function from FJ' into F», and we denote by 4,, the set of all Boolean functions of m

variables. Any f' € %,, can be expressed as a polynomial, called its algebraic normal
form (ANF):

m
S(x1, . Xm) = Z Ja (H x?’), Iy €Fs.
i1

m
ueky

The degree of f, denoted by deg( f), is the maximal value of wr(x)' such that 2, #0.
Any Boolean function in 4,, can also be identified with the binary codeword of
length 2™ consisting of all values f(x), xeF5. By convention, the weight of f (i.e.,
the weight of the corresponding codeword of 1) will be denoted by wt( f). The usual
dot product between two vectors x and y is denoted by x - y. We denote by V'* the
dual of any subspace V' —FY' relatively to the usual scalar product:

Vi = {xeFy|VyeV, x-y=0}.

For any aeFy, ¢, will denote the linear function in %,, : x+—a - x. More generally,

an affine Boolean function has the ANF:

m

E aix;+e, aekF,, ceF;.
i=1

Note that, by convention, such a function can be constant.
The Fourier transform of f € %, in point a is denoted Z (f + ¢,) and calculated as

acFy—F(f+o,) = Z (_1)f(X)+rpa(x). ()

m
xeF;

For convenience, 7 ( f) will denote the Fourier transform in @ = 0. Note that for any
function ge %,,:

F(g) =2" = 2wt(g).

The function ¢ is said to be balanced if wt(g) = 2"~! or, equivalently, Z(g) = 0.
Note that g is constant if and only if #(g) = +2™.

The values of the Fourier coefficients # ( f + ¢,) form the Fourier spectrum of f.
The non-linearity A"y of f, which is the minimum value wt( f + ¢,) when a describes
F7', is related to the Fourier transform via following expression:

Ny =2m1 —@ where Z(f) = max | 7 (f + ,)l- (2)

"The weight of any binary vector @ = (aj, ..., a,)€F} is the Hamming weight: wt(a) = Y, a;. The
vector u is written with the standard basis.
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When m is even, it is known that 2(f)>2"/?> with equality for functions whose
Fourier coefficients take the two values + 2"/ only—the so-called bent functions. When
m is odd, any f satisfies 2"/? < #( f). For odd m such that m <9, then Z(f)=20"+1/2
where equality holds for the so-called almost optimal functions (see Definition 6). It is a
long-standing open problem to determine the exact lower bound for m>9.

The auto-correlation function of f € %, refers to the mapping from F}' to the space
of Boolean functions, ar— % (D, f), where

Dof : x—=f(x) +f(a+x) (3)

is the derivative of f with respect to any direction aeF5'.

Definition 1. The linear space of any Boolean function f is the linear subspace of
those elements a such that the function D, f is constant. Such nonzero « is called a
linear structure of f.

Let E be any subset of F;'. We denote by ¢, the Boolean function in %,, whose
value on x is 1 if and only if xeE; it is called the indicator of E. For any two
functions f and g in %,,, the function fg corresponds to the usual product in %,, :
fg(x) = 11if and only if f(x) = g(x) = 1. For any f € %,,, the function f ¢ is called
the restriction of f to E : f¢(x) = 1 if and only if f(x) = 1 and xe E. When V is a k-
dimensional linear subspace of F7', the restriction of f to V', f'¢, can obviously be
identified with a function of k variables. More generally, for any coset b + V" of V|
we identify f¢,,, with f,e % as follows: fi(x) =f(x+b),xe V. Note that the
function f, € %) is defined up to any translation x+—x + v, ve V. In general, the
properties studied in this paper are invariant under translations.

Definition 2. Let /€%, and let V' be a linear subspace of F;' of dimension k. The
decomposition of f with respect to V is the sequence { f,, be W} where V' x W =F}
and f, = f¢,,y, by identifying f¢,. to a Boolean function in %.

The following properties, describing the links between f and its restrictions, will be
intensively used in this paper. They are usually known; proofs can be found in [3, 4,
Section V; 5].

According to the previous definition, we have for any decomposition of f with
respect to some k-dimensional subspace V:

S P 40) =2 Y P2, (4)

veV+t be W

where f, is the restriction of f to b+ V. The following properties are directly
deduced:

For all be W, L(f,)<ZL(f), (5)
S FHSLAS). (6)

beWw
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On the other hand, let us denote by fot1;, be W, the Boolean function in %,, defined
by fotp(x) = f(x + b). Then we have

Yo F(fommto)=Y. (“D)"F(f+e,)=2""F(f). (7)

velVt velV+

For b =0, (7) is simply

ST F(ft+e)=2"F " (—1)/ =2k g (), 8)

veV+ xeV

where fy denotes the restriction of f to V. Note that for simplicity (and if
there is no confusion about the choice of the decomposition), we will often
write the decomposition of f with respect to V as f = (fi,...,f;), with fie %
and ¢ = 2"k,

2.2. Introduction of normality

The concept of normality was introduced by Dobbertin for even m [12]. Our
terminology here follows more recent works as [8,13]. Note that [ m/2] is equal to
m/2 for even m and to (m+ 1)/2 for odd m. Recall that, by convention, an affine
function £ is such that deg(f)<1.

Definition 3. A Boolean function f € %, is said to be normal when it is constant on
an affine subspace U of F5' of dimension [ /2. In this case f is said to be normal
with respect to U.

The function f is said weakly normal when it is affine, and not constant, on a flat U
of dimension [ m/2].

The normality is connected with the problem of the determination of the highest
dimension of the affine space where f is constant.

Definition 4. A Boolean function f € 4,, is said to be k-normal, k <m, if there exists a
k-dimensional flat on which /" is constant. It is weakly k-normal if it is affine, and not
constant, on some k-dimensional flat.

Suppose that f is weakly normal with respect to U; so the restriction of f to U can
be identified to some affine function /€ %y,,/27. Then there is v such that /' + ¢, is
normal on U—by choosing v such that the restriction of ¢, to U is either / or 1 + /.
Conversely, if f is constant on U then the function f + ¢, is either constant or affine
on U for any v. More precisely, set U = a + V where V is a subspace of dimension
[m/27] and aeF%. Consider ¢,(x) = v- x for xea + V; the restriction of ¢, toa + V
is not constant if and only if ye Vv - (a + y) is not constant, i.e. y+>v - y is not null
or, equivalently, v¢ V. We claim that f is normal if and only if some function of its
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spectrum is weakly normal and we precise which functions are weakly normal. This
result is obviously generalized as follows:

Lemma 1. Let f€%,,. Then f is k-normal with respect to U, if and only if there is
veFy such that f + ¢, is affine on U. When vé¢ V+, where V denotes the subspace
which has U as a coset, then f + ¢, is affine and not constant on U.

It is important to notice that the property for a function of m variables to be
constant on some flat holds up to the automorphism group of the Reed—Muller code
of order one and length 2. Indeed this automorphism group is the general affine
group, usually denoted by AGL(m,2). It is the group generated by the linear
permutations and by the translations on F)' (we call translations the mappings
x—a+x, acFy). The set of the affine subspaces of F' is clearly invariant under all
these permutations.

Lemma 2. Let f'€ #,,. Denote by o any linear permutation on ¥5'. If f is constant on
some affine subspace of ¥y then

® the functions of type f(o(x) +a), x = (X1, ..., xXm) and a€F}', satisfy this property
too;
® the function f + 1 satisfies this property too.

Throughout a lot of observations and numerical results, and as we will see in this
paper, it is easy to characterize infinite classes of normal functions while it is difficult
to prove that a function is not normal. As an illustration the following example leads
immediately to general results.

Example 1. Let € %), given by its ANF:
f(x) = X1X2X3X4X5 + XgX7X8X9X]10 + X1X2 + X3X4 + X¢X7 + XgX9 + X]0.

Let V' be the subspace of dimension 5, defined by x, = x4 = x7 = x3 = x;9 = 0. Each
term of f contains at least one x;, i€{2,4,7,8,10}. This implies

f(x1707x37O7x57x670707x970) = 07 vx.
Then f is normal with respect to V, since f¢p;, = 0.

Actually the previous example refers to an obvious property. Consider f €%,
which has an ANF of the form

f.(xla"-vxm):xlAl+"'+xtAla (9)

where t =m/2 for even m and t = (m — 1)/2 for odd m and each A4; denotes the
ANF of some Boolean function of the m — 1 variables {x;|1 <j<m, j#i}. Then f is
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normal with respect to V', the subspace defined by
X1 =--=x,=0.

This method can be applied more generally or, precisely, for quadratic
functions as we will see later (in the Appendix). There is actually a general
result which is easily deduced from the representation of a given Boolean function by
its ANF.

Proposition 1. Let us denote by k some integer in the range [1,m]. Let f € B, such that
its ANF is of the following form:

f(xla u-;xm) = Z /lu (ﬁ X?i> with /IMGFQ.
i=1

ueky
wt(u) >k

Then | is k-normal, equal to zero, with respect to any subspace V defined by

Xy = =X, , =0 where 1<i;<m.
Proof. Each term in the ANF of f is of degree strictly greater than k. So each term is
zero if at least m — k variables are zero. [

Example 2. Let m be odd and let the symmetric function

m
f(x1, .o x) = Z <H xﬁ"').
u,wt(u)=(m+3)/2 \i=1

According to Proposition 1 (with k = (m + 1)/2), f is normal with respect to any

subspace V' of dimension (m + 1)/2 defined by x;; = -+ = x;,_,, , = 0.

Clearly, any function whose ANF has no monomials of degree 1, 2 and 3 is constant
on a subspace of dimension 3. But more is known: for m>4 any Boolean function is
2-normal and for m>=6 any Boolean function is 3-normal [2]. This result, is based on
the work of Dubuc [13] who proved:

Proposition 2. For m<7, any Boolean function of m variables is | m/2 |-normal.

3. Normality and Fourier coefficients

In this section, our aim is to characterize normal functions, especially when these
functions are highly non-linear. We first use intensively the formulas of Section 2.1 in
order to state precisely what means k-normal, which properties could simplify
algorithms or allow us to obtain full results on special classes. We then propose a
general characterization which we apply to the class of resilient functions. The next
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sections are devoted to (almost) optimal functions. In the next lemma we distinguish
normality with respect to any subspace and normality with respect to any affine
subspace, for clarity.

Lemma 3. Let f €%, and let V be any subspace of dimension k. Consider the sums:

Sa= Y F([+@.,), acW, V: x W =F}.

veV+

The function f is affine on V if and only if there is be W such that S, = +2™. In this
case, S,€{0,+2"} for all a and f + @, is k-normal with respect to V (such b is
unique).

More generally, the function f is affine on ¢+ V, c¢V, if and only if one of the
sums

Toc= . (~D“Z(f +,.). acW, V" x W=F},

veV+t

say Ty, equals +2". In this case, T, .€{0, +2"} for all a and f + ¢, is k-normal with
respect to c+ V.

Proof. Let us denote by £ the restriction of f to V. According to (4), S, =
2m=kF (h+¢,) where £, is the restriction of ¢, to V. Note that

F(h+t.) = Z (=1)/ @ where ag¢ V*.
xeV

So we get here, when a describe W, the 2% Fourier coefficients of /. But 4 is affine if
and only if one of these coefficients equals +2*. More precisely, if / is affine only one
among these coefficients is +2X and any other is 0. The function f + ¢,
corresponding to Z (h + ¢,) = +2% is constant on V.

The general case is obtained by applying (7)—i.e. f is affine on ¢ + V if and only if
the function x+—f(x + ¢) is affine on V. [

The complexity of any algorithm checking if a given function is k-normal (or not)
strongly depends on the method which is used for the enumeration of all k-
dimensional flats. By the previous lemma, we only want to explain what must be
checked for any given subspace in order to establish some suitable simplifications.
Our method can be summarized as follows:

The function f is given by its Fourier-spectrum; notation is as Lemma 3.

For any k-dimensional subspace V'
For any ce W', V x W' =F%,
For any a compute T, ;
If T,.¢{0, £2"} then f is not affine on ¢+ V else
If T,. = £2" then f is affine on ¢+ V and f + ¢, is k-normal with respect to
c+ V.
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Now we focus on a special class of functions which includes highly non-linear
functions.

Theorem 1. Let '€ A, and let k be an integer such that m/2<k<m.

If f is k-normal (or weakly k-normal) then 28 < 2 (f).

Assume that L (f) = 2F. Let us denote by V, any subspace of dimension k and by
b+ V some coset of V. Then

® f is constant on b+ V if and only if
(=D F(f +¢,) = 25, VeV, (10)

where ¢ is constant, equal either to 1 or to —1;
® iff is such that |F (f)| <2k then f is not k-normal,
® jf f is constant on some coset of V then f is balanced on all other cosets of V.

Proof. The function f is k-normal if and only if some function of its spectrum is
weakly k-normal (according to Lemma 1). So we can assume that f is k-normal with
respect to U. Let h denote the restriction of f to U. According to (5) we have
L (h)<Z(f) where Z(h) = 2F, then 28< 2 (f).

From now on f is such that #(f) = 2. According to (7), f is constant on b + V if
and only if

S ()F(f 4 0,) = 2R (fy) = £27,

veV+

where f, denotes the restriction of f to b+ V. Since |7 (f + ¢,)|<2* for all v, this
property holds if and only if the 2% terms in the sum above have the same value £2¥
where ¢ = 1 if the sum is equal to 2" and ¢ = —1 otherwise. Obviously, |7 (f)|<2F
contradicts (10).

Now, denote by {f,, ae W} the decomposition of f with respect to V7, where
V x W =Fy. 1If f is constant on b + V, for some b, then F2(fy) = 2% and, applying
(6), we obtain

22k< Z 5;2(}(;1)<22k
aeW

Thus 7 (f,) = 0 for any a#b, completing the proof. O

Remark 1. The property #(f)>2F means that the non-linearity Ny of f satisfies
N p<2m=l = 2k=1 by definition of ./7/. It is well-known that any f €%, satisfies
P(f)=2"/2; hence this bound is significant for k>m/2 only.

Note that the second result of Theorem 1 is obviously deduced but surprising,
since it provides non-normal functions. For instance, any balanced function [ such
that % (f) = 2~ is not k-normal. In particular, resilient functions are balanced and
can satisfy the hypothesis of Theorem 1.
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The third result implies that if /" is neither constant nor balanced on ¥ then f is not
constant on any coset of V.

3.1. On resilient functions

A function f'e %, is said to be t-resilient if F(f + ¢,) =0 for all a satisfying
wt(a)<t. By convention, such a function is not affine. Moreover, in order to define
resilient functions, we assume that functions are represented by their ANF, after
fixing the standard basis. Actually the resiliency was first introduced as follows by
Siegenthaler [19]: f is said to be t-resilient if, by fixing any set of r variables, where
r<t, the function f, considered as a function of m — r variables, is always a balanced
function. More precisely:

Definition 5. Let /' € 4,, which is expressed by its ANF with respect to the standard
basis. Let us define, for any ae F%', the subspace whose dimension is the weight wt(a)
of a:

Vo=A{ueF) | uga}

where u<a means that u;<a; for all i—i.e. a covers u. Setting a = (ay, ...,a,), we
denote by a the vector (a; + 1, ..., a, + 1).

The function f is f-resilient if for any a such that wt(a) <t every restriction of f to
every coset of V, is balanced.

We are going to examine the following problem: on which flat, defined by fixing
some variables, a given resilient function is (or not) affine?

Theorem 2. Let fe%B,, be a t-resilient function (1<t<m — 3) which is not t+ 1-
resilient. For ac¥}, set a= (a1 +1,...,an + 1); the subspace V, is explained by
Definition 5. We have:

(i) Assume that [ is such that F (f + ¢,) #0 for all v such that wt(v) =t + 1. Then
Sor all a such that wt(a)<t+ 1 f is not affine on any coset of the k-dimensional
subspace V, (k=zm — (t+1)).

(i) More precisely, let a such that wt(a)<t+ 1. If F(f + @p,4) #0 for some beV,
satisfying wt(b + a) =t + 1 then f cannot be affine on any coset of V.

Especially, when wt(a) =t + 1 then f is not affine on any coset of V, if 7 (f +
(Pg) #0.

Proof. Note that wt(a)<t+ 1 means wt(a) =m — (¢ + 1); in this case the dimension
of V, is greater than or equal to m — (¢ + 1). Clearly

VaL = {v|jvxa} =V,
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for any a. Moreover we have here V, x V; =F}. We apply Lemma 3, considering
for any be V, and for any ce V; the sum
Ty = Z (=D F(f + @pi)-
vsa

Let a be such that wt(a) =>m — t — 1; thus wt(a) <t + 1. As f is t-resilient, we know
that # (f + ¢,) = 0 for all v such that wt¢(v) <¢. In particular Ty, = 0 for all ¢ when
wt(a)<t. Suppose that there is heV, such that wt(b+a)=1t+1 and F(f +
¢p.qa) #0, providing for each ce Vy:

Tpe = (—1)““Z(f + @p.4) #0.

Note that for wt(a) = ¢ + 1 our hypothesis becomes 7 ( f + ¢;)#0 (and b = 0). As f
is not constant, we conclude that T} ¢ {0, +2"}, for all ¢. According to Lemma 3,
the proof of (ii) is completed and (i) is directly deduced. [

Many resilient functions fe4%,, are effectively constructed by concatenating
several functions of %, k<m. The choice of these functions is important
considering other cryptographic properties. For instance the so-called Maiorana—
McFarland functions, which provide the largest known class of resilient functions
were introduced in [1] as concatenations of affine functions, by fixing some variables
(see, for instance, the recent papers [9], [10, Section 6]). The previous proposition has
concern with other kinds of resilient functions, especially when the order ¢ of
resiliency is high (i.e. m — t is small).

Open problem 1. Construct t-resilient functions with t as high as possible satisfying, for
such a function f : F(f + ¢,) #0 for all v such that wt(v) =t + 1.

Any t-resilient function f satisfies Z(f)=>2""2 [18]. When Z(f) = 2'*? then the
degree of f is as high as possible since it is exactly m — ¢ — 1 (from the Siegenthaler’s
bound [19]); moreover the Fourier spectrum of f is {0, +272} [20] (f is three-valued).
Such a t-resilient function is said to achieve the best nonlinearity [9]. Since it is
balanced, such a function is not (7+ 2)-normal (from Theorem ). But these
functions could be affine on some k-dimensional flat. For instance, take ¢ =
(m — 3)/2 with odd m and consider #-resilient functions with the best non-linearity.
Such a function f is of most interest since it is highly non-linear (#(f) = 20"+1)/2),
highly resilient and has an high degree m—t— 1= (m+ 1)/2. According to
Theorems 1 and 2, we express as follows the fact that by fixing at most (m —1)/2
variables in the ANF of /' we cannot obtain an affine function.

Corollary 1. Let f'€ B,,, modd, be a ((m — 3)/2)-resilient function such that L(f) =
20m0/2  Let us consider the subspaces

Vy={ueF) |uxa}, wt(a)=(m-+1)/2.

Assume that F (f + ¢,)#0 for all v such that wt(v) = (m — 1)/2. Then f is not affine
on any flat b+ V,, for all b and for all a. Therefore f is neither normal nor weakly
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normal with respect to any coset of V, such that wt(a) = (m + 1)/2 (here the dimension
of V, is exactly (m+ 1)/2).

Example 3. Set m = 7; let f€%; be a 2-resilient function. Then deg(f)<4 from
Siegenthaler’s bound. By definition, f is balanced on the subspaces

Vy={ueFy |uxa}, wt(a)e{5,6}

(of codimension 1 and 2) and on their cosets. Now suppose that Z (f + ¢,)#0 for
all v such that wt(v) = 3. In accordance with Theorem 2, f is not affine on ¥, and on
its coset, for all a such that wt(a)=4.

3.2. Almost optimal functions—for odd m

Theorem 1 is of most interest for functions such that () = 2["/21 since in this
case it has concern with the normality, as given by Definition 3. We will now focus on
these functions; we begin by recalling the definition of almost optimal functions; these
functions were extensively studied in [4].

Definition 6. The Boolean function f' € 4, is said to be almost optimal if

o Z(f)<2"2/2 when m is even;
o 7(f)<2mD/2 when m is odd.

The function f is said to be three-valued almost optimal if its Fourier spectrum is
{0, +£20m+2)/2 when m is even and {0, +20"*1)/2} when m is odd.

In this section, we treat the odd case; for almost optimal functions, our previous
results have immediate consequences.

Corollary 2. Let f€%B,,, m odd, be an almost optimal function. Then:

(1) If f is balanced then f is not normal.
(D) 1If 2(f) <2072 then f + ¢, is not normal, for any v.
(iil) Assume that L (f) = 20"+V/2 Let N be the number of v such that |7 (f + ¢,)| =
L(f). If N<2m=1/2 then f 4 ¢, is not normal, for any v.

Proof. It is important to notice that the hypothesis on f, in each statement (ii) and
(iii), holds for any function f + ¢, of the spectrum of f. So we need to prove these
results for f only.

If 2(f)<2m+D/2" we know from Theorem 1 that f cannot be k-normal with
k=m+1)/2. As (m+1)/2 = [ m/2], this is to say “f is not normal”. We suppose
now that Z(f) =2"*1/2, From Theorem 1 again (with k = (m + 1)/2), if f is
balanced then it cannot be normal, so that (i) is proved. Assuming that # () #0, if f
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is normal then there are at least 2"~1)/2 functions f + ¢, such that the absolute value
of Z(f + ¢,) is equal to 20"*1)/2 (from (10)). This contradicts N <2"-V/2, [

There are important classes of almost optimal functions. We studied such a class in
the previous section (Corollary 1). Another example is the class of partially bent
functions* which are almost optimal. Up to affine transformations on the variables,
such a function f has an ANF of the following form:

X1, e Xm) = g(X1, ooy Xm1) + @p(X1, ooy Xin), (11)

where ¢ is a bent function of m — 1 variables and ¢, is some linear function. When it
is quadratic, f is at least weakly normal (see Theorem 4). Otherwise, it is clear that
the normality of f is connected with the normality of the bent function g—another
general problem. Partially bent functions arise in the next proposition, a small
extension of Proposition 2. Note that the concept of linear structure is defined in
Section 2.1 (see Definition 1).

Proposition 3. For m = 7, any function f € %7 which has a linear structure, say a, is
either weakly normal or normal, it is normal if the function D, f is null, especially when
[ is not balanced.

In particular, any partially bent function which is almost optimal (i.e., of form (11))
is normal when it is not balanced and weakly normal otherwise.

Proof. Let f'e #; be such that the function D, f is constant for some a. Let H be an
hyperplane which does not contain a. Let f = (g, /) be the decomposition of f with
respect to H, with g(x) = f(x) and /h(x) =f(x +a) for xe H (see Definition 2).
Then, since D, f(x) = f(x) +f(x + a), the decomposition of D, f with respect to H
is

D,f =(g+h,g+h), with D,fe{0,1}.

This implies that g =h+¢ where ¢=0 when D,f =0 and ¢=1 otherwise.
Therefore f = (g,g + ¢). As g can be identified to a Boolean function of 6 variables,
it is constant on some three-dimensional flat U. So f is either normal with respect to
Uu(a+ U),if ¢ =0, or weakly normal with respect to U u (a + U) otherwise. Note
that D, f = 1 implies that f is balanced.

Now suppose that f* is equivalent to a function given by (11), up to affine
transformations. Thus /" has a linear structure, a = (0, ...,0, 1), implying that f is
normal when it is not balanced. Moreover f is such that 2(f)=20"*1/2 So
according to Corollary 2, if f is balanced it is not normal, completing the proof. [

As we recall by the next example, there are functions satisfying the hypothesis of
Corollary 2(ii). There exist also functions which are almost optimal and not

>The partially bent functions, introduced by Carlet [7], are notably studied in [4]. These functions are
three-valued and some are almost optimal.
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three-valued (see [14]), but we do not know any function satisfying the hypothesis of

Corollary 2(iii).

Open problem 2. Does it exist f € By, for odd m, such that Z(f) = 2"*V/% and
card{veFy | Z (f + ¢@,) = +£2m D2} <2m=D/2,

Example 4. Applying Corollary 2(ii), we can exhibit examples of functions which are
not normal. In [17], two functions f of %5 are given which satisfies:

L(f) =216 while 20mD/2 = 28 — 256,
Such a function is not normal as well as any function belonging to its spectrum.

Any three-valued almost optimal function f' € %4,,, m odd, has the following Fourier
spectrum (see a proof in [5]):

Z(f+ ¢,  Number of ueFs

0 2m—l
2(m+1)/2 om=2 (_l)f(o)z(m73)/2
—2(m+1)/2 Am-2 _ (_1).f(0)2(m73)/2

We will see later that these functions are strongly connected with the bent
functions of m+1 variables. More precisely we claim that any property concerning
three-valued almost optimal functions has concern with bent functions. Our interest is
here for normality and the main problem is:

Open problem 3. Characterize a class of three-valued almost optimal functions which
have no weakly normal function in their spectrum.

In this context, the set of u such that #(f + ¢,) =0 could have suitable
combinatorial properties. For instance, the next proposition is simply deduced from
Theorem 1. Considering (10) for k = (m + 1)/2, the dimension of V1 is (m — 1)/2.
If / is normal with respect to some coset of ¥ then Z(f + ¢,)#0, for all ve V'*.
Suppose that an odd number of the coefficients Z ( f + ¢,), ve V'*, are zero. Then f
is not constant on any coset of V. More precisely, since f is three-valued almost
optimal, we have for any b:

Z (—l)bby(f+ q)v) _ i/lz(erl)/Z,

velVt
where 4 is an odd integer, implying that the sum above cannot be zero. In accordance
with Lemma 3 we can conclude that f is not affine on any coset of V. This can be
seen more generally replacing ¥+ by a coset of ¥+ and applying Lemma 3 again.



P. Charpin | Journal of Complexity 20 (2004) 245-265 259

Proposition 4. Let f € %,,, m odd, be a three-valued almost optimal function; set
Zy ={ul| 7 (f + o,) =0}.

If for any subspace U of dimension (m — 1) /2 there exists a such that the cardinality of
Zyn(a+ U) is odd then f is neither normal nor weakly normal.

By computation, it appears that there are many three-valued almost optimal
functions; notably there is a class of such functions which can be decomposed into
two bent functions. It is clear that the concatenation of two bent functions of m — 1
variables produces a three-valued almost optimal function of m variables.
Conversely if f is such that D,f is balanced when b describes some hyperplane H,
then the restrictions of f to H and to the complement of H are bent functions [4,
Theorem V.2]. Recall that a three-valued almost optimal function which is balanced
is not normal.

Proposition 5. Let fe€%,,, m odd, be a three-valued almost optimal function. Let

aeF} and set H = {O,a}l. Assume that  has a decomposition with respect to H of
the following form:

f(x1, ..., xm) = (g,h) where g and h are bent.

Thus all functions f + ¢,, veFy, have such a decomposition with respect to H.
Moreover the following statement are equivalent:

(1) either f is normal or f + ¢, is normal,
(i1) g and h are both normal each on some coset of a same subspace of dimension
(m —1)/2 which is contained in H.

Proof. As recalled above, f has such a decomposition if and only if D,f is balanced
forall be H. But Dy(f + ¢,) = Dsf + b - v, implying that D(f + ¢,) is balanced as
soon as D,f is balanced. This shows that Dy(f + ¢,) is balanced for all be H,
completing the first part of the proof.

Note that f = (g, /) implies f + ¢, = (g,h + 1), since H is the kernel of ¢,. Now,
we denote by H the complement of H. Assume that either f or f + ¢, is normal with
respect to U, some flat of dimension (m + 1)/2. This flat is not included in H (or in
H) since otherwise g (or 4) would be k-normal with k = 2("*1)/2 According to
Theorem 1, this would imply £ (g) =2"+1/2 while #(g) = 20"~1)/2 because g is bent.
So V=UnH and V' = Un H are flats of dimension 2"~1/2 Clearly g is normal
with respect to ¥ and % is normal with respect to V’. The case g, = ho .
corresponds to “‘f is normal” while g¢, #h¢ - corresponds to “f + ¢, is normal”.
Obviously, (ii) implies (i), completing the proof. [

Open problem 4. Construct two bent functions g and h which satisfy: if g and h are
normal with respect to U and U’ respectively, then U and U’ are not cosets of a same
subspace.
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4. On normal bent functions

Recall that f € 4,,, m even, is said to be bent when its Fourier spectrum contains
two values only, 27/> and —2"/2. The number of times these values occur is
respectively

gm=1 + (_1)f(0)2m/271 and 21 _ (_l)f(O)zm/Zfl.
Since f is bent, one can define the dual function of f, denoted by f-
F(f +0,) = 2"*(~1)V) peFy,

Considering any restriction of ' to some subspace, it is related with the restriction of

/with the dual of this subspace. More precisely, let ¥ be any subspace of dimension
k and let aeF}'. Then (a proof can be found in [5]):

F(((+0)dr) = 2" F (fbary). (12)

For simplicity, in this section we identify g¢, where E is any r-dimensional flat and
g€ By, to a function of r variables (as explained in Section 2.1).

Now suppose that k = m/2 and let aeF5'. Note that for bent functions we find
again (10) simply by remarking that for any ve V'*:

(F“F( + ) = 2D,

The bent function f{v) + @ - v is constant on ¥ if and only if the term on the left is
constant when v describes V'+. More precisely:

Proposition 6. Let m =2t and assume that fe€RB,, is bent. We denote by V any
subspace of dimension t. Then we have:

() 1 is normal with respect to V if and only if its dual function f is normal with
respect to V*;

(1) f is normal with respect to a+V, a¢ V. if and only if f+ @, is normal with
respect to V+*;

(i) £ is normal with respect to a+ V, a¢V, if and only if f is weakly normal with
respect to V+.

Proof. Note that formula (12) becomes, for k = ¢:
F(([+0)dv1) = F ([ burv)-

Moreover f (resp. f -+ ¢,) is normal with respect to @ + V (resp. V1) if and only if
F(fbary) = £2" (resp. F((f+ @a)pyr) = +27). Thus (i) (for a = 0) and (ii) are
obviously deduced. Now, f+ ¢, is normal with respect to ¥+ if and only if there is v
such that f+ ®g., is weakly normal with respect to V'+. And these v are those which
are not in V. Indeed when a¢ V then the restriction of x+—a-x to V1 cannot be
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constant; it is of degree 1 exactly. Hence the function f + Ppia = f is weakly normal
with respect to V4. O

The previous proposition leads to an improvement when we want to check if any
bent function is normal (or not). Globally, for any V' we have only to check f on V'

and fon ¥+ as we precise now.

Corollary 3. Let f€%B,,, m =2t, be a bent function and letfits dual. Let V be a
subspace of dimension t. Then f is not normal with respect to any coset of V' if and only

if f is neither normal nor weakly normal with respect to V=*.

On the other hand, any bent function is a concatenation of two almost optimal
functions whatever the decomposition we choose.

Theorem 3 (Canteaut [4, Theorem V.3]). Let f €%B,,, m = 2t, be a bent function. Let
H be any hyperplane of F5' and let ( f1,/2) be the decomposition of f with respect to H.
Then f1 and f> are three-valued almost optimal and for any linear Boolean function £
(where ¢ can be the null function) of %,,—1, we have

FEA+OATFH o+ 1)
(ie. Z2(fi+¢) =2"if and only if F*(fo+ /) = 0).

It apppears again that the normality of bent functions is strongly connected with
the normality of three-valued almost optimal functions (see Section 3.2). From now
on, f = (fi,/f2) denotes any decomposition of f as defined in Theorem 3.

Proposition 7. Let fe€%,,, m =2t, be a bent function. Let V be a subspace of
dimension t and let H be any hyperplane containing V. Let f = (fi,f2) be the
decomposition of f with respect to H.

Then [ is normal with respect to some coset of V', say a+ V, if and only if either
a€ H and f, is normal with respect to a + V (when F ( f1) #0) or a¢ H and f; is normal
with respect to a+ V (when F ( f3)#0).

Proof. From Theorem 3, we know that #2(f1)#.%2(f3). So we can assume that
Z (f1)#0 and Z ( f) = 0; otherwise we consider the translated function g = (f3, /).
Recall that Z(f}) = Z(f>) = 2"/

Suppose that f* is normal with respect to « + V. Since V < H, either f] or f; is
constant on @+ V. As the dimension of V' equals m/2 and f;e %,_,, “‘constant”
means ‘“‘normal” here. But, according to Theorem 1, f; cannot be normal since it is
balanced. Hence a + V is included in H and f; is normal. The inverse statement is
obvious. [

As an illustration, we can extend Proposition 3 to functions of 8 variables.
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Proposition 8. For m = 8, any bent function which has at least one affine derivative is
normal. In particular, any cubic bent function of 8 variables is normal.

Proof. Let fe%s be a bent function. Assume that there is at least one direction
a, a#0, such that D, f is affine. Thus D, f = ¢, + ¢ for some b, ¢€{0, 1}. Note that

D, f cannot be constant since f is bent. Let H be the hyperplane {0, 5} L In this case
the decomposition of f* with respect to H is as follows: /' = (f1,/f2) where D, fi =
D,f>+1=0/1 (see more in [5]).

Actually f; and £, are almost optimal functions which have a linear structure; they
are partially bent. Moreover, either f] or f; is not balanced. Assuming that f) is not
balanced, then f; is normal while f; is weakly normal only (according to Proposition
3). From Proposition 7, f is normal.

Cubic bent functions of eight variables were classified by Hou in [15]. It appears
that all these functions have an affine derivative.® [

Open problem 5. Does it exist non-normal bent functions of 8 variables and degree 47

Now consider any decomposition /' = (f1,/3) with respect to H = {0,b}* for
some b. Let V be a subspace of dimension ¢ =m/2 not included in H; so the
dimension of V' =V H equals ¢t — 1. If f is normal with respect to @ + V' then f;
and f, are (¢ — 1)-normal each with respect to a coset of V. Conversely, if f; and f;
are (¢ — 1)-normal each with respect to some coset of ¥ then f"is either normal or (if
the considered restrictions of f; and f, are not equal) weakly normal. So, in
accordance with Proposition 7, we can conclude

Proposition 9. Let fe€%,,, m=2t, be a bent function which is neither normal nor
weakly normal. Let f = (f1,f2) be any decomposition of f with respect to some
hyperplane H. Then f| and f, are neither normal nor weakly normal. Moreover, if f} is
(t — 1)-normal with respect to a coset of some subspace V' this property does not hold

for f>.

Open problem 6. Characterize fe€RB,,, m =2t — 1, which is three-valued almost
optimal and not (t — 1)-normal.

Appendix

As an illustration, we study here the normality of quadratic Boolean functions. We
state that any quadratic function is constant on several flats and notice that only one
kind of such functions is not normal. Recall that any quadratic function f € %4,, has a
unique representation, up to an affine transformation on the variables (see, for

3This happens for m = 8 only, as proved Canteaut and Charpin later [5].
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instance, [16, p. 438]). It is

h (m—e)/2
S(xr, e xp) = Z Xj_1X2; + ( Z (Ajxoj—1 + ,uszj)> + X, + T, (A1)

i=1 Jj=h+1

where

® Jj, ek, te{0,1},

® by convention [+ 1, (m — ¢)/2] is empty when h = (m —¢)/2,

® ¢ =0 for even m and ¢ = 1 for odd m,

® y =0 for even m and veF, for odd m.

It is well-known that the values of the Fourier spectrum of f are {0, +2”~"} when
2h<m and {+2"/?} when h = m/2—i.e., m is even and f is bent.

Theorem A.l. Let fe€%,, m=4, be any quadratic function with non-linearity
2m=h 1 <h<|m/2|. Then f is normal except when m is odd, h = (m — 1)/2, and f
has the following form (up to equivalence):
(m=1)/2
S50 exm) = > Xaixai+xm+1, 1€{0,1}. (A2)
i1

In this case, [ is not normal but weakly normal.

More generally, when h<|m/2 | then f is k-normal, with k = m — (h+ 1), with
respect to several k-dimensional flat.

Proof. We consider form (A.1) of /. We can assume t = 0 without loss of generality.
We first suppose that i< (m —¢)/2. Let V' be the subspace of F}' defined by

(m—e)/2

Xy =X4= - =x, =0 and Z (AjX2j-1 + ,uszj) +vx,,;, = 0.

J=h+1
Clearly V" has dimension k£ = m — (h + 1). Moreover f(x) = 0 for any xe V. Hence f
is k-normal with respect to V. Note that we can do other choices for the / equations
above on the left, completing the last part of the proof. Therefore f is normal with
respect to any affine subspace of V' of dimension [ m/2].

When m is even and & = m/2 we define V', for instance, by

Xy =X4 = -+ = x93, = 0.

Thus f is normal with respect to ¥ whose dimension is m/2. Now suppose that m is
odd and h = (m—1)/2. In this case f satisfies Z(f) = 2"tD/2its spectrum is
{0, +£20m+1)/2} and its form is

(m—1)/2

f(xlv ~--7xm) = Z X2i—1X2i + VinXm-
i=1
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Note that f is three-valued almost optimal (see Definition 6). Consider V', the
subspace of dimension (m + 1)/2 defined by x; = x4 = -+ = x;, = 0. Clearly f is
either constant (v = 0) or linear (v = 1) on this subspace. When v = 1, f'is balanced
since for a = (0, ...,0,1)

D,f(x)=xpm+ (xm+1)=1

From Theorem 1, f is not normal. [
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