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Abstract

Dobbertin (Construction of bent functions and balanced Boolean functions with high

nonlinearity, in: Fast Software Encryption, Lecture Notes in Computer Science, Vol. 1008,

Springer, Berlin, 1994, pp. 61–74) introduced the normality of bent functions. His work

strengthened the interest for the study of the restrictions of Boolean functions on k-

dimensional flats providing the concept of k-normality. Using recent results on the

decomposition of any Boolean functions with respect to some subspace, we present several

formulations of k-normality. We later focus on some highly linear functions, bent functions

and almost optimal functions. We point out that normality is a property for which these two

classes are strongly connected. We propose several improvements for checking normality,

again based on specific decompositions introduced in Canteaut et al. (IEEE Trans. Inform.

Theory, 47(4) (2001) 1494), Canteaut and Charpin (IEEE Trans. Inform. Theory). As an

illustration, we show that cubic bent functions of 8 variables are normal.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Normality was introduced by Dobbertin in [12]. Since this paper was mainly
devoted to the construction of new bent functions, normality was defined for
Boolean functions with an even number m of variables: such a function is normal if it
is constant on some flat of dimension m=2: In particular, Dobbertin proposed the
conjecture that any bent function is normal.
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The known classes of bent functions, which are explicitely constructed, are
normal. This leads to the main interest of normality concerning bent functions: a

bent function which is not normal does not belong to any known class of bent functions.
Since bent functions are not yet classified, normality appears as a relevant property.
Recently, few examples of non-normal bent functions were exhibited using a specific
algorithm. All these facts will be explained in forthcoming papers [6,11]. To find an
infinite class of non-normal bent functions remains today an open problem.

The terminology was later extended to the odd case. Throughout a lot of
observations and numerical results, it appears that normality is a property of a large
class of Boolean functions. However Carlet proved in [8] that, asymptotically, almost
all Boolean functions are not normal. Actually the general problem is to find k; the

larger dimension for an affine subspace such that a given function is constant on,
providing the concept of k-normality (see [8,13]). The complexity of any algorithm,
which checks this property for a given function, strongly depends on the method
which is used for the enumeration of all j-dimensional flats ð jpkÞ: Our aim, in this
paper, is to establish some suitable simplifications by means of the decompositions of
Boolean functions, a point of view that we developed with Canteaut et al. [4,5].

On the other hand we want to present and discuss some basic properties around
the concept of normality for Boolean functions. Elementary aspects are presented in
Section 2.2. The next section is devoted to the normality of any Boolean function
viewed by its Fourier transforms. Here we want to show which formulas must be
computed when checking the k-normality with respect to some flat (see Lemma 3).
We after focus on a special class of Boolean functions including bent functions and
almost optimal functions. Almost optimal functions provide classes of not normal
functions (Theorem 1). We apply our results to the case of resilient functions in
Section 3.1; we propose a sufficient condition, characterizing t-resilient functions
which are not affine when at most t þ 1 variables are fixed (Theorem 2). In Section
3.2 as well as in the last section, we come back to highly non-linear functions. In
accordance with our previous works, mainly in [4,5], we explain and develop the fact
that to study the normality of bent functions (even case) is to study the normality of
some almost optimal functions (odd case), notably by Propositions 5, 7 and 9.
Concerning the bent functions we show that to consider such a function and its dual
together should be more efficient (Proposition 6). We show that any cubic bent
function of 8 variables is normal (Proposition 8). At the end, as an illustration, we
treat the quadratic functions (in the Appendix).

Main notation:

* Bm is the set of Boolean functions of m variables;
* wtðxÞ denotes the Hamming weight of the vector x;
* fEABm is the indicator of E : fEðxÞ ¼ 13xAE;
* ‘‘�’’ is the usual scalar product with respect to the standard basis;
* ja: xAFm

2 /a � x; aAFm
2 ; denotes any linear function in Bm;

* Fð f Þ; Lð f Þ and Nð f Þ; are defined by (1) and (2);
* Da f is the derivative of f with respect to a (see (3)).
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2. Preliminaries

2.1. Boolean functions

We essentially use the same notation as [4,5]. A Boolean function of m variables is a
function from Fm

2 into F2; and we denote by Bm the set of all Boolean functions of m

variables. Any fABm can be expressed as a polynomial, called its algebraic normal

form (ANF):

f ðx1;y; xmÞ ¼
X
uAFm

2

lu

Ym
i¼1

xui

i

 !
; luAF2:

The degree of f ; denoted by degð f Þ; is the maximal value of wtðuÞ1 such that lua0:
Any Boolean function in Bm can also be identified with the binary codeword of
length 2m consisting of all values f ðxÞ; xAFm

2 : By convention, the weight of f (i.e.,

the weight of the corresponding codeword of f ) will be denoted by wtð f Þ: The usual
dot product between two vectors x and y is denoted by x � y: We denote by V> the
dual of any subspace VCFm

2 relatively to the usual scalar product:

V> ¼ fxAFm
2 j 8yAV ; x � y ¼ 0g:

For any aAFm
2 ; ja will denote the linear function in Bm : x/a � x: More generally,

an affine Boolean function has the ANF:Xm

i¼1

aixi þ e; aiAF2; eAF2:

Note that, by convention, such a function can be constant.
The Fourier transform of fABm in point a is denoted Fð f þ jaÞ and calculated as

aAFm
2 /Fð f þ jaÞ ¼

X
xAFm

2

ð
1Þ f ðxÞþjaðxÞ: ð1Þ

For convenience,Fð f Þ will denote the Fourier transform in a ¼ 0:Note that for any
function gABm:

FðgÞ ¼ 2m 
 2wtðgÞ:

The function g is said to be balanced if wtðgÞ ¼ 2m
1 or, equivalently, FðgÞ ¼ 0:
Note that g is constant if and only if FðgÞ ¼ 72m:

The values of the Fourier coefficients Fð f þ jaÞ form the Fourier spectrum of f :
The non-linearity Nf of f ; which is the minimum value wtð f þ jaÞ when a describes

Fm
2 ; is related to the Fourier transform via following expression:

Nf ¼ 2m
1 
Lð f Þ
2

where Lð f Þ ¼ max
aAFm

2

jFð f þ jaÞj: ð2Þ
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1The weight of any binary vector a ¼ ða1;y; anÞAFm
2 is the Hamming weight: wtðaÞ ¼

Pn
i¼1ai: The

vector u is written with the standard basis.
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When m is even, it is known that Lð f ÞX2m=2 with equality for functions whose

Fourier coefficients take the two values72m=2 only—the so-called bent functions. When

m is odd, any f satisfies 2m=2oLð f Þ: For odd m such that mo9; thenLð f ÞX2ðmþ1Þ=2

where equality holds for the so-called almost optimal functions (see Definition 6). It is a
long-standing open problem to determine the exact lower bound for mX9:

The auto-correlation function of fABm refers to the mapping from Fm
2 to the space

of Boolean functions, a/FðDa f Þ; where
Da f : x/f ðxÞ þ f ða þ xÞ ð3Þ

is the derivative of f with respect to any direction aAFm
2 :

Definition 1. The linear space of any Boolean function f is the linear subspace of
those elements a such that the function Da f is constant. Such nonzero a is called a
linear structure of f :

Let E be any subset of Fm
2 : We denote by fE the Boolean function in Bm whose

value on x is 1 if and only if xAE; it is called the indicator of E: For any two
functions f and g in Bm; the function fg corresponds to the usual product in Bm :
fgðxÞ ¼ 1 if and only if f ðxÞ ¼ gðxÞ ¼ 1: For any fABm; the function ffE is called
the restriction of f to E : ffEðxÞ ¼ 1 if and only if f ðxÞ ¼ 1 and xAE:When V is a k-
dimensional linear subspace of Fm

2 ; the restriction of f to V ; ffV ; can obviously be

identified with a function of k variables. More generally, for any coset b þ V of V ;
we identify ffbþV with fbABk as follows: fbðxÞ ¼ f ðx þ bÞ; xAV : Note that the

function fbABk is defined up to any translation x/x þ v; vAV : In general, the
properties studied in this paper are invariant under translations.

Definition 2. Let fABm and let V be a linear subspace of Fm
2 of dimension k: The

decomposition of f with respect to V is the sequence f fb; bAWg where V � W ¼ Fm
2

and fb ¼ ffbþV ; by identifying ffbþV to a Boolean function in Bk:

The following properties, describing the links between f and its restrictions, will be
intensively used in this paper. They are usually known; proofs can be found in [3, 4,
Section V; 5].

According to the previous definition, we have for any decomposition of f with
respect to some k-dimensional subspace V :X

vAV>

F2ð f þ jvÞ ¼ 2m
k
X
bAW

F2ð fbÞ; ð4Þ

where fb is the restriction of f to b þ V : The following properties are directly
deduced:

For all bAW ; Lð fbÞpLð f Þ; ð5Þ
X
bAW

F2ð fbÞpL2ð f Þ: ð6Þ
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On the other hand, let us denote by f 3tb; bAW ; the Boolean function in Bm defined
by f 3tbðxÞ ¼ f ðx þ bÞ: Then we have

X
vAV>

Fð f 3tb þ jvÞ ¼
X

vAV>

ð
1Þb�vFð f þ jvÞ ¼ 2m
kFð fbÞ: ð7Þ

For b ¼ 0; (7) is simply

X
vAV>

Fð f þ jvÞ ¼ 2m
k
X
xAV

ð
1Þ f ðxÞ ¼ 2m
kFð f0Þ; ð8Þ

where f0 denotes the restriction of f to V : Note that for simplicity (and if
there is no confusion about the choice of the decomposition), we will often
write the decomposition of f with respect to V as f ¼ ð f1;y; ftÞ; with fiABk

and t ¼ 2m
k:

2.2. Introduction of normality

The concept of normality was introduced by Dobbertin for even m [12]. Our
terminology here follows more recent works as [8,13]. Note that Jm=2n is equal to
m=2 for even m and to ðm þ 1Þ=2 for odd m: Recall that, by convention, an affine

function f is such that degð f Þp1:

Definition 3. A Boolean function fABm is said to be normal when it is constant on
an affine subspace U of Fm

2 of dimension Jm=2n: In this case f is said to be normal

with respect to U :
The function f is said weakly normal when it is affine, and not constant, on a flat U

of dimension Jm=2n:

The normality is connected with the problem of the determination of the highest
dimension of the affine space where f is constant.

Definition 4. A Boolean function fABm is said to be k-normal, kpm; if there exists a
k-dimensional flat on which f is constant. It is weakly k-normal if it is affine, and not
constant, on some k-dimensional flat.

Suppose that f is weakly normal with respect to U ; so the restriction of f to U can
be identified to some affine function cABJm=2n: Then there is v such that f þ jv is

normal on U—by choosing v such that the restriction of jv to U is either c or 1þ c:
Conversely, if f is constant on U then the function f þ jv is either constant or affine
on U for any v: More precisely, set U ¼ a þ V where V is a subspace of dimension
Jm=2n and aAFm

2 : Consider jvðxÞ ¼ v � x for xAa þ V ; the restriction of jv to a þ V

is not constant if and only if yAV/v � ða þ yÞ is not constant, i.e. y/v � y is not null

or, equivalently, veV>: We claim that f is normal if and only if some function of its
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spectrum is weakly normal and we precise which functions are weakly normal. This
result is obviously generalized as follows:

Lemma 1. Let fABm: Then f is k-normal with respect to U ; if and only if there is

vAFm
2 such that f þ jv is affine on U : When veV>; where V denotes the subspace

which has U as a coset, then f þ jv is affine and not constant on U :

It is important to notice that the property for a function of m variables to be

constant on some flat holds up to the automorphism group of the Reed–Muller code
of order one and length 2m: Indeed this automorphism group is the general affine

group, usually denoted by AGLðm; 2Þ: It is the group generated by the linear
permutations and by the translations on Fm

2 (we call translations the mappings

x/a þ x; aAFm
2 ). The set of the affine subspaces of F

m
2 is clearly invariant under all

these permutations.

Lemma 2. Let fABm: Denote by s any linear permutation on Fm
2 : If f is constant on

some affine subspace of Fm
2 then

* the functions of type f ðsðxÞ þ aÞ; x ¼ ðx1;y; xmÞ and aAFm
2 ; satisfy this property

too;
* the function f þ 1 satisfies this property too.

Throughout a lot of observations and numerical results, and as we will see in this
paper, it is easy to characterize infinite classes of normal functions while it is difficult
to prove that a function is not normal. As an illustration the following example leads
immediately to general results.

Example 1. Let fAB10; given by its ANF:

f ðxÞ ¼ x1x2x3x4x5 þ x6x7x8x9x10 þ x1x2 þ x3x4 þ x6x7 þ x8x9 þ x10:

Let V be the subspace of dimension 5, defined by x2 ¼ x4 ¼ x7 ¼ x8 ¼ x10 ¼ 0: Each
term of f contains at least one xi; iAf2; 4; 7; 8; 10g: This implies

f ðx1; 0; x3; 0; x5; x6; 0; 0; x9; 0Þ ¼ 0; 8x:

Then f is normal with respect to V ; since ffV ¼ 0:

Actually the previous example refers to an obvious property. Consider fABm

which has an ANF of the form

f ðx1;y; xmÞ ¼ x1A1 þ?þ xtAt; ð9Þ

where t ¼ m=2 for even m and t ¼ ðm 
 1Þ=2 for odd m and each Ai denotes the
ANF of some Boolean function of the m 
 1 variables fxjj1pjpm; jaig: Then f is
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normal with respect to V ; the subspace defined by

x1 ¼ ? ¼ xt ¼ 0:

This method can be applied more generally or, precisely, for quadratic
functions as we will see later (in the Appendix). There is actually a general
result which is easily deduced from the representation of a given Boolean function by
its ANF.

Proposition 1. Let us denote by k some integer in the range ½1;m
: Let fABm such that

its ANF is of the following form:

f ðx1;y; xmÞ ¼
X
uAFm

2

wtðuÞ4k

lu

Ym
i¼1

xui

i

 !
with luAF2:

Then f is k-normal, equal to zero, with respect to any subspace V defined by

xi1 ¼ ? ¼ xim
k
¼ 0 where 1pijpm:

Proof. Each term in the ANF of f is of degree strictly greater than k: So each term is
zero if at least m 
 k variables are zero. &

Example 2. Let m be odd and let the symmetric function

f ðx1;y; xmÞ ¼
X

u;wtðuÞ¼ðmþ3Þ=2

Ym
i¼1

xui

i

 !
:

According to Proposition 1 (with k ¼ ðm þ 1Þ=2), f is normal with respect to any
subspace V of dimension ðm þ 1Þ=2 defined by xi1 ¼ ? ¼ xiðm
1Þ=2 ¼ 0:

Clearly, any function whose ANF has no monomials of degree 1, 2 and 3 is constant
on a subspace of dimension 3. But more is known: for mX4 any Boolean function is

2-normal and for mX6 any Boolean function is 3-normal [2]. This result, is based on
the work of Dubuc [13] who proved:

Proposition 2. For mp7; any Boolean function of m variables is Im=2m-normal.

3. Normality and Fourier coefficients

In this section, our aim is to characterize normal functions, especially when these
functions are highly non-linear. We first use intensively the formulas of Section 2.1 in
order to state precisely what means k-normal, which properties could simplify
algorithms or allow us to obtain full results on special classes. We then propose a
general characterization which we apply to the class of resilient functions. The next
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sections are devoted to (almost) optimal functions. In the next lemma we distinguish
normality with respect to any subspace and normality with respect to any affine
subspace, for clarity.

Lemma 3. Let fABm and let V be any subspace of dimension k: Consider the sums:

Sa ¼
X

vAV>

Fð f þ jaþvÞ; aAW ; V> � W ¼ Fm
2 :

The function f is affine on V if and only if there is bAW such that Sb ¼ 72m: In this

case, SaAf0;72mg for all a and f þ jb is k-normal with respect to V (such b is

unique).
More generally, the function f is affine on c þ V ; ceV ; if and only if one of the

sums

Ta;c ¼
X

vAV>

ð
1Þc�vFð f þ jaþvÞ; aAW ; V> � W ¼ Fm
2 ;

say Tb;c; equals 72m: In this case, Ta;cAf0;72mg for all a and f þ jb is k-normal with

respect to c þ V :

Proof. Let us denote by h the restriction of f to V : According to (4), Sa ¼
2m
kFðh þ caÞ where ca is the restriction of ja to V : Note that

Fðh þ caÞ ¼
X
xAV

ð
1Þ f ðxÞþa�x where aeV>:

So we get here, when a describe W ; the 2k Fourier coefficients of h: But h is affine if

and only if one of these coefficients equals72k:More precisely, if h is affine only one

among these coefficients is 72k and any other is 0. The function f þ jb

corresponding to Fðh þ cbÞ ¼ 72k is constant on V :
The general case is obtained by applying (7)—i.e. f is affine on c þ V if and only if

the function x/f ðx þ cÞ is affine on V : &

The complexity of any algorithm checking if a given function is k-normal (or not)
strongly depends on the method which is used for the enumeration of all k-
dimensional flats. By the previous lemma, we only want to explain what must be
checked for any given subspace in order to establish some suitable simplifications.
Our method can be summarized as follows:

The function f is given by its Fourier-spectrum; notation is as Lemma 3.

For any k-dimensional subspace V

For any cAW 0; V � W 0 ¼ Fm
2 ;

For any a compute Ta;c;
If Ta;cef0;72mg then f is not affine on c þ V else

If Ta;c ¼ 72m then f is affine on c þ V and f þ ja is k-normal with respect to

c þ V :
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Now we focus on a special class of functions which includes highly non-linear
functions.

Theorem 1. Let fABm and let k be an integer such that m=2pkpm:

If f is k-normal (or weakly k-normal) then 2kpLð f Þ:
Assume that Lð f Þ ¼ 2k: Let us denote by V ; any subspace of dimension k and by

b þ V some coset of V : Then

* f is constant on b þ V if and only if

ð
1Þb�vFð f þ jvÞ ¼ e2k; 8vAV>; ð10Þ

where e is constant, equal either to 1 or to 
1;
* if f is such that jFð f Þjo2k then f is not k-normal;
* if f is constant on some coset of V then f is balanced on all other cosets of V :

Proof. The function f is k-normal if and only if some function of its spectrum is
weakly k-normal (according to Lemma 1). So we can assume that f is k-normal with
respect to U : Let h denote the restriction of f to U : According to (5) we have

LðhÞpLð f Þ where LðhÞ ¼ 2k; then 2kpLð f Þ:
From now on f is such that Lð f Þ ¼ 2k: According to (7), f is constant on b þ V if

and only ifX
vAV>

ð
1Þb�vFð f þ jvÞ ¼ 2m
kFð fbÞ ¼ 72m;

where fb denotes the restriction of f to b þ V : Since jFð f þ jvÞjp2k for all v; this

property holds if and only if the 2m
k terms in the sum above have the same value e2k

where e ¼ 1 if the sum is equal to 2m and e ¼ 
1 otherwise. Obviously, jFð f Þjo2k

contradicts (10).
Now, denote by f fa; aAWg the decomposition of f with respect to V ; where

V � W ¼ Fm
2 : If f is constant on b þ V ; for some b; thenF2ð fbÞ ¼ 22k and, applying

(6), we obtain

22kp
X
aAW

F2ð faÞp22k:

Thus Fð faÞ ¼ 0 for any aab; completing the proof. &

Remark 1. The property Lð f ÞX2k means that the non-linearity Nf of f satisfies

Nf p2m
1 
 2k
1; by definition of Nf : It is well-known that any fABm satisfies

Lð f ÞX2m=2; hence this bound is significant for kXm=2 only.
Note that the second result of Theorem 1 is obviously deduced but surprising,

since it provides non-normal functions. For instance, any balanced function f such

that Lð f Þ ¼ 2k is not k-normal. In particular, resilient functions are balanced and
can satisfy the hypothesis of Theorem 1.
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The third result implies that if f is neither constant nor balanced on V then f is not
constant on any coset of V :

3.1. On resilient functions

A function fABm is said to be t-resilient if Fð f þ jaÞ ¼ 0 for all a satisfying
wtðaÞpt: By convention, such a function is not affine. Moreover, in order to define
resilient functions, we assume that functions are represented by their ANF, after
fixing the standard basis. Actually the resiliency was first introduced as follows by
Siegenthaler [19]: f is said to be t-resilient if, by fixing any set of r variables, where
rpt; the function f ; considered as a function of m 
 r variables, is always a balanced
function. More precisely:

Definition 5. Let fABm which is expressed by its ANF with respect to the standard
basis. Let us define, for any aAFm

2 ; the subspace whose dimension is the weight wtðaÞ
of a:

Va ¼ fuAFm
2 j u%ag

where u%a means that uipai for all i—i.e. a covers u: Setting a ¼ ða1;y; amÞ; we
denote by %a the vector ða1 þ 1;y; am þ 1Þ:

The function f is t-resilient if for any a such that wtð %aÞpt every restriction of f to
every coset of Va is balanced.

We are going to examine the following problem: on which flat, defined by fixing
some variables, a given resilient function is (or not) affine?

Theorem 2. Let fABm be a t-resilient function ð1ptpm 
 3Þ which is not t þ 1-
resilient. For aAFm

2 ; set %a ¼ ða1 þ 1;y; am þ 1Þ; the subspace Va is explained by

Definition 5. We have:

(i) Assume that f is such that Fð f þ jvÞa0 for all v such that wtðvÞ ¼ t þ 1: Then

for all a such that wtð %aÞpt þ 1 f is not affine on any coset of the k-dimensional

subspace Va ðkXm 
 ðt þ 1ÞÞ:
(ii) More precisely, let a such that wtð %aÞpt þ 1: If Fð f þ jbþ %aÞa0 for some bAVa

satisfying wtðb þ %aÞ ¼ t þ 1 then f cannot be affine on any coset of Va:
Especially, when wtð %aÞ ¼ t þ 1 then f is not affine on any coset of Va if Fð f þ

j %aÞa0:

Proof. Note that wtð %aÞpt þ 1 means wtðaÞXm 
 ðt þ 1Þ; in this case the dimension
of Va is greater than or equal to m 
 ðt þ 1Þ: Clearly

V>
a ¼ fvjv% %ag ¼ V %a;
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for any a: Moreover we have here Va � V %a ¼ Fm
2 : We apply Lemma 3, considering

for any bAVa and for any cAV %a the sum

Tb;c ¼
X
v% %a

ð
1Þc�vFð f þ jbþvÞ:

Let a be such that wtðaÞXm 
 t 
 1; thus wtð %aÞpt þ 1: As f is t-resilient, we know
that Fð f þ jvÞ ¼ 0 for all v such that wtðvÞpt: In particular T0;c ¼ 0 for all c when

wtð %aÞpt: Suppose that there is bAVa such that wtðb þ %aÞ ¼ t þ 1 and Fð f þ
jbþ %aÞa0; providing for each cAV %a:

Tb;c ¼ ð
1Þc� %aFð f þ jbþ %aÞa0:

Note that for wtð %aÞ ¼ t þ 1 our hypothesis becomes Fð f þ j %aÞa0 (and b ¼ 0). As f

is not constant, we conclude that Tb;cef0;72mg; for all c: According to Lemma 3,

the proof of (ii) is completed and (i) is directly deduced. &

Many resilient functions fABm are effectively constructed by concatenating
several functions of Bk; kpm: The choice of these functions is important
considering other cryptographic properties. For instance the so-called Maiorana–
McFarland functions, which provide the largest known class of resilient functions
were introduced in [1] as concatenations of affine functions, by fixing some variables
(see, for instance, the recent papers [9], [10, Section 6]). The previous proposition has
concern with other kinds of resilient functions, especially when the order t of
resiliency is high (i.e. m 
 t is small).

Open problem 1. Construct t-resilient functions with t as high as possible satisfying, for

such a function f : Fð f þ jvÞa0 for all v such that wtðvÞ ¼ t þ 1:

Any t-resilient function f satisfies Lð f ÞX2tþ2 [18]. When Lð f Þ ¼ 2tþ2 then the
degree of f is as high as possible since it is exactly m 
 t 
 1 ( from the Siegenthaler’s

bound [19]); moreover the Fourier spectrum of f is f0;72tþ2g [20] (f is three-valued).
Such a t-resilient function is said to achieve the best nonlinearity [9]. Since it is
balanced, such a function is not ðt þ 2Þ-normal ( from Theorem 1). But these
functions could be affine on some k-dimensional flat. For instance, take t ¼
ðm 
 3Þ=2 with odd m and consider t-resilient functions with the best non-linearity.

Such a function f is of most interest since it is highly non-linear ðLð f Þ ¼ 2ðmþ1Þ=2Þ;
highly resilient and has an high degree m 
 t 
 1 ¼ ðm þ 1Þ=2: According to
Theorems 1 and 2, we express as follows the fact that by fixing at most ðm 
 1Þ=2
variables in the ANF of f we cannot obtain an affine function.

Corollary 1. Let fABm; m odd, be a ððm 
 3Þ=2Þ-resilient function such that Lð f Þ ¼
2ðmþ1Þ=2: Let us consider the subspaces

Va ¼ fuAFm
2 j u%ag; wtðaÞXðm þ 1Þ=2:

Assume that Fð f þ jvÞa0 for all v such that wtðvÞ ¼ ðm 
 1Þ=2: Then f is not affine

on any flat b þ Va; for all b and for all a: Therefore f is neither normal nor weakly
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normal with respect to any coset of Va such that wtðaÞ ¼ ðm þ 1Þ=2 (here the dimension

of Va is exactly ðm þ 1Þ=2).

Example 3. Set m ¼ 7; let fAB7 be a 2-resilient function. Then degð f Þp4 from
Siegenthaler’s bound. By definition, f is balanced on the subspaces

Va ¼ fuAFm
2 j u%ag; wtðaÞAf5; 6g

(of codimension 1 and 2) and on their cosets. Now suppose that Fð f þ jvÞa0 for
all v such that wtðvÞ ¼ 3: In accordance with Theorem 2, f is not affine on Va and on
its coset, for all a such that wtðaÞX4:

3.2. Almost optimal functions—for odd m

Theorem 1 is of most interest for functions such that Lð f Þ ¼ 2Jm=2n; since in this
case it has concern with the normality, as given by Definition 3. We will now focus on
these functions; we begin by recalling the definition of almost optimal functions; these
functions were extensively studied in [4].

Definition 6. The Boolean function fABm is said to be almost optimal if

* Lð f Þp2ðmþ2Þ=2; when m is even;
* Lð f Þp2ðmþ1Þ=2; when m is odd.

The function f is said to be three-valued almost optimal if its Fourier spectrum is

f0;72ðmþ2Þ=2g when m is even and f0;72ðmþ1Þ=2g when m is odd.

In this section, we treat the odd case; for almost optimal functions, our previous
results have immediate consequences.

Corollary 2. Let fABm; m odd, be an almost optimal function. Then:

(i) If f is balanced then f is not normal.

(ii) If Lð f Þo2ðmþ1Þ=2 then f þ jv is not normal, for any v:
(iii) Assume that Lð f Þ ¼ 2ðmþ1Þ=2: Let N be the number of v such that jFð f þ jvÞj ¼

Lð f Þ: If No2ðm
1Þ=2 then f þ jv is not normal, for any v:

Proof. It is important to notice that the hypothesis on f ; in each statement (ii) and
(iii), holds for any function f þ jv of the spectrum of f : So we need to prove these
results for f only.

If Lð f Þo2ðmþ1Þ=2; we know from Theorem 1 that f cannot be k-normal with
k ¼ ðm þ 1Þ=2: As ðm þ 1Þ=2 ¼ Jm=2n; this is to say ‘‘f is not normal’’. We suppose

now that Lð f Þ ¼ 2ðmþ1Þ=2: From Theorem 1 again (with k ¼ ðm þ 1Þ=2), if f is
balanced then it cannot be normal, so that (i) is proved. Assuming thatFð f Þa0; if f
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is normal then there are at least 2ðm
1Þ=2 functions f þ jv such that the absolute value

of Fð f þ jvÞ is equal to 2ðmþ1Þ=2 ( from (10)). This contradicts No2ðm
1Þ=2: &

There are important classes of almost optimal functions. We studied such a class in
the previous section (Corollary 1). Another example is the class of partially bent

functions2 which are almost optimal. Up to affine transformations on the variables,
such a function f has an ANF of the following form:

f ðx1;y; xmÞ ¼ gðx1;y; xm
1Þ þ jbðx1;y; xmÞ; ð11Þ

where g is a bent function of m 
 1 variables and jb is some linear function. When it
is quadratic, f is at least weakly normal (see Theorem 4). Otherwise, it is clear that
the normality of f is connected with the normality of the bent function g—another
general problem. Partially bent functions arise in the next proposition, a small
extension of Proposition 2. Note that the concept of linear structure is defined in
Section 2.1 (see Definition 1).

Proposition 3. For m ¼ 7; any function fAB7 which has a linear structure, say a; is

either weakly normal or normal; it is normal if the function Da f is null, especially when

f is not balanced.
In particular, any partially bent function which is almost optimal (i.e., of form (11))

is normal when it is not balanced and weakly normal otherwise.

Proof. Let fAB7 be such that the function Da f is constant for some a: Let H be an
hyperplane which does not contain a: Let f ¼ ðg; hÞ be the decomposition of f with
respect to H; with gðxÞ ¼ f ðxÞ and hðxÞ ¼ f ðx þ aÞ for xAH (see Definition 2).
Then, since Da f ðxÞ ¼ f ðxÞ þ f ðx þ aÞ; the decomposition of Da f with respect to H

is

Da f ¼ ðg þ h; g þ hÞ; with Da fAf0; 1g:

This implies that g ¼ h þ e where e ¼ 0 when Da f ¼ 0 and e ¼ 1 otherwise.
Therefore f ¼ ðg; g þ eÞ: As g can be identified to a Boolean function of 6 variables,
it is constant on some three-dimensional flat U : So f is either normal with respect to
U,ða þ UÞ; if e ¼ 0; or weakly normal with respect to U,ða þ UÞ otherwise. Note
that Da f ¼ 1 implies that f is balanced.

Now suppose that f is equivalent to a function given by (11), up to affine
transformations. Thus f has a linear structure, a ¼ ð0;y; 0; 1Þ; implying that f is

normal when it is not balanced. Moreover f is such that Lð f Þ ¼ 2ðmþ1Þ=2: So
according to Corollary 2, if f is balanced it is not normal, completing the proof. &

As we recall by the next example, there are functions satisfying the hypothesis of
Corollary 2(ii). There exist also functions which are almost optimal and not
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three-valued (see [14]), but we do not know any function satisfying the hypothesis of
Corollary 2(iii).

Open problem 2. Does it exist fABm; for odd m; such that Lð f Þ ¼ 2ðmþ1Þ=2 and

cardfvAFm
2 jFð f þ jvÞ ¼ 72ðmþ1Þ=2go2ðm
1Þ=2:

Example 4. Applying Corollary 2(ii), we can exhibit examples of functions which are
not normal. In [17], two functions f of B15 are given which satisfies:

Lð f Þ ¼ 216 while 2ðmþ1Þ=2 ¼ 28 ¼ 256:

Such a function is not normal as well as any function belonging to its spectrum.

Any three-valued almost optimal function fABm; m odd, has the following Fourier
spectrum (see a proof in [5]):

Fð f þ juÞ Number of uAFm
2

0 2m
1

2ðmþ1Þ=2 2m
2 þ ð
1Þ f ð0Þ2ðm
3Þ=2


2ðmþ1Þ=2 2m
2 
 ð
1Þ f ð0Þ2ðm
3Þ=2

We will see later that these functions are strongly connected with the bent
functions of m71 variables. More precisely we claim that any property concerning

three-valued almost optimal functions has concern with bent functions. Our interest is
here for normality and the main problem is:

Open problem 3. Characterize a class of three-valued almost optimal functions which

have no weakly normal function in their spectrum.

In this context, the set of u such that Fð f þ juÞ ¼ 0 could have suitable
combinatorial properties. For instance, the next proposition is simply deduced from

Theorem 1. Considering (10) for k ¼ ðm þ 1Þ=2; the dimension of V> is ðm 
 1Þ=2:
If f is normal with respect to some coset of V then Fð f þ jvÞa0; for all vAV>:

Suppose that an odd number of the coefficients Fð f þ jvÞ; vAV>; are zero. Then f

is not constant on any coset of V : More precisely, since f is three-valued almost
optimal, we have for any b:X

vAV>

ð
1Þb�vFð f þ jvÞ ¼ 7l2ðmþ1Þ=2;

where l is an odd integer, implying that the sum above cannot be zero. In accordance
with Lemma 3 we can conclude that f is not affine on any coset of V : This can be

seen more generally replacing V> by a coset of V> and applying Lemma 3 again.
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Proposition 4. Let fABm; m odd, be a three-valued almost optimal function; set

Zf ¼ fu jFð f þ juÞ ¼ 0g:

If for any subspace U of dimension ðm 
 1Þ=2 there exists a such that the cardinality of

Zf -ða þ UÞ is odd then f is neither normal nor weakly normal.

By computation, it appears that there are many three-valued almost optimal
functions; notably there is a class of such functions which can be decomposed into
two bent functions. It is clear that the concatenation of two bent functions of m 
 1
variables produces a three-valued almost optimal function of m variables.
Conversely if f is such that Dbf is balanced when b describes some hyperplane H;
then the restrictions of f to H and to the complement of H are bent functions [4,
Theorem V.2]. Recall that a three-valued almost optimal function which is balanced
is not normal.

Proposition 5. Let fABm; m odd, be a three-valued almost optimal function. Let

aAFm
2 and set H ¼ f0; ag>: Assume that f has a decomposition with respect to H of

the following form:

f ðx1;y; xmÞ ¼ ðg; hÞ where g and h are bent:

Thus all functions f þ jv; vAFm
2 ; have such a decomposition with respect to H:

Moreover the following statement are equivalent:

(i) either f is normal or f þ ja is normal;
(ii) g and h are both normal each on some coset of a same subspace of dimension

ðm 
 1Þ=2 which is contained in H:

Proof. As recalled above, f has such a decomposition if and only if Dbf is balanced
for all bAH: But Dbð f þ jvÞ ¼ Dbf þ b � v; implying that Dbð f þ jvÞ is balanced as
soon as Dbf is balanced. This shows that Dbð f þ jvÞ is balanced for all bAH;
completing the first part of the proof.

Note that f ¼ ðg; hÞ implies f þ ja ¼ ðg; h þ 1Þ; since H is the kernel of ja: Now,

we denote by %H the complement of H: Assume that either f or f þ ja is normal with
respect to U ; some flat of dimension ðm þ 1Þ=2: This flat is not included in H (or in
%H) since otherwise g (or h) would be k-normal with k ¼ 2ðmþ1Þ=2: According to

Theorem 1, this would implyLðgÞX2ðmþ1Þ=2 whileLðgÞ ¼ 2ðm
1Þ=2 because g is bent.

So V ¼ U-H and V 0 ¼ U- %H are flats of dimension 2ðm
1Þ=2: Clearly g is normal
with respect to V and h is normal with respect to V 0: The case gfV ¼ hfV 0

corresponds to ‘‘f is normal’’ while gfVahfV 0 corresponds to ‘‘f þ ja is normal’’.
Obviously, (ii) implies (i), completing the proof. &

Open problem 4. Construct two bent functions g and h which satisfy: if g and h are

normal with respect to U and U 0; respectively, then U and U 0 are not cosets of a same

subspace.
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4. On normal bent functions

Recall that fABm; m even, is said to be bent when its Fourier spectrum contains

two values only, 2m=2 and 
2m=2: The number of times these values occur is
respectively

2m
1 þ ð
1Þ f ð0Þ2m=2
1 and 2m
1 
 ð
1Þ f ð0Þ2m=2
1:

Since f is bent, one can define the dual function of f ; denoted by f̃:

Fð f þ jvÞ ¼ 2m=2ð
1Þ f̃ðvÞ; vAFm
2 :

Considering any restriction of f to some subspace, it is related with the restriction of

f̃ with the dual of this subspace. More precisely, let V be any subspace of dimension
k and let aAFm

2 : Then (a proof can be found in [5]):

Fððf̃ þ jaÞfV>Þ ¼ 2m=2
kFð ffaþV Þ: ð12Þ

For simplicity, in this section we identify gfE ; where E is any r-dimensional flat and
gABm; to a function of r variables (as explained in Section 2.1).

Now suppose that k ¼ m=2 and let aAFm
2 : Note that for bent functions we find

again (10) simply by remarking that for any vAV>:

ð
1Þa�vFð f þ jvÞ ¼ 2m=2ð
1Þ f̃ðvÞþa�v:

The bent function f̃ðvÞ þ a � v is constant on V> if and only if the term on the left is

constant when v describes V>: More precisely:

Proposition 6. Let m ¼ 2t and assume that fABm is bent. We denote by V any

subspace of dimension t: Then we have:

(i) f is normal with respect to V if and only if its dual function f̃ is normal with

respect to V>;
(ii) f is normal with respect to a þ V ; aeV ; if and only if f̃ þ ja is normal with

respect to V>;
(iii) f is normal with respect to a þ V ; aeV ; if and only if f̃ is weakly normal with

respect to V>:

Proof. Note that formula (12) becomes, for k ¼ t:

Fðð f̃ þ jaÞfV>Þ ¼ Fð ffaþV Þ:

Moreover f (resp. f̃ þ ja) is normal with respect to a þ V (resp. V>) if and only if

Fð ffaþV Þ ¼ 72t (resp. Fðð f̃ þ jaÞfV>Þ ¼ 72t). Thus (i) ( for a ¼ 0) and (ii) are

obviously deduced. Now, f̃ þ ja is normal with respect to V> if and only if there is v

such that f̃ þ jaþv is weakly normal with respect to V>: And these v are those which

are not in V : Indeed when aeV then the restriction of x/a � x to V> cannot be
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constant; it is of degree 1 exactly. Hence the function f̃ þ jaþa ¼ f̃ is weakly normal

with respect to V>: &

The previous proposition leads to an improvement when we want to check if any
bent function is normal (or not). Globally, for any V we have only to check f on V

and f̃ on V> as we precise now.

Corollary 3. Let fABm; m ¼ 2t; be a bent function and let f̃ its dual. Let V be a

subspace of dimension t: Then f is not normal with respect to any coset of V if and only

if f̃ is neither normal nor weakly normal with respect to V>:

On the other hand, any bent function is a concatenation of two almost optimal
functions whatever the decomposition we choose.

Theorem 3 (Canteaut [4, Theorem V.3]). Let fABm; m ¼ 2t; be a bent function. Let

H be any hyperplane of Fm
2 and let ð f1; f2Þ be the decomposition of f with respect to H:

Then f1 and f2 are three-valued almost optimal and for any linear Boolean function c
(where c can be the null function) of Bm
1; we have

F2ð f1 þ cÞaF2ð f2 þ cÞ

(i.e. F2ð f1 þ cÞ ¼ 2m if and only if F2ð f2 þ cÞ ¼ 0).

It apppears again that the normality of bent functions is strongly connected with
the normality of three-valued almost optimal functions (see Section 3.2). From now
on, f ¼ ð f1; f2Þ denotes any decomposition of f as defined in Theorem 3.

Proposition 7. Let fABm; m ¼ 2t; be a bent function. Let V be a subspace of

dimension t and let H be any hyperplane containing V : Let f ¼ ð f1; f2Þ be the

decomposition of f with respect to H:
Then f is normal with respect to some coset of V ; say a þ V ; if and only if either

aAH and f1 is normal with respect to a þ V (when Fð f1Þa0) or aeH and f2 is normal

with respect to a þ V (when Fð f2Þa0).

Proof. From Theorem 3, we know that F2ð f1ÞaF2ð f2Þ: So we can assume that
Fð f1Þa0 and Fð f2Þ ¼ 0; otherwise we consider the translated function g ¼ ð f2; f1Þ:
Recall that Lð f1Þ ¼ Lð f2Þ ¼ 2m=2:

Suppose that f is normal with respect to a þ V : Since VCH; either f1 or f2 is
constant on a þ V : As the dimension of V equals m=2 and fiABm
1; ‘‘constant’’
means ‘‘normal’’ here. But, according to Theorem 1, f2 cannot be normal since it is
balanced. Hence a þ V is included in H and f1 is normal. The inverse statement is
obvious. &

As an illustration, we can extend Proposition 3 to functions of 8 variables.
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Proposition 8. For m ¼ 8; any bent function which has at least one affine derivative is

normal. In particular, any cubic bent function of 8 variables is normal.

Proof. Let fAB8 be a bent function. Assume that there is at least one direction
a; aa0; such that Da f is affine. Thus Da f ¼ jb þ e for some b; eAf0; 1g: Note that

Da f cannot be constant since f is bent. Let H be the hyperplane f0; bg>: In this case
the decomposition of f with respect to H is as follows: f ¼ ð f1; f2Þ where Da f1 ¼
Da f2 þ 1 ¼ 0=1 (see more in [5]).

Actually f1 and f2 are almost optimal functions which have a linear structure; they
are partially bent. Moreover, either f1 or f2 is not balanced. Assuming that f1 is not
balanced, then f1 is normal while f2 is weakly normal only (according to Proposition
3). From Proposition 7, f is normal.

Cubic bent functions of eight variables were classified by Hou in [15]. It appears
that all these functions have an affine derivative.3 &

Open problem 5. Does it exist non-normal bent functions of 8 variables and degree 4?

Now consider any decomposition f ¼ ð f1; f2Þ with respect to H ¼ f0; bg> for
some b: Let V be a subspace of dimension t ¼ m=2 not included in H; so the
dimension of V 0 ¼ V-H equals t 
 1: If f is normal with respect to a þ V then f1
and f2 are ðt 
 1Þ-normal each with respect to a coset of V 0: Conversely, if f1 and f2
are ðt 
 1Þ-normal each with respect to some coset of V 0 then f is either normal or (if
the considered restrictions of f1 and f2 are not equal) weakly normal. So, in
accordance with Proposition 7, we can conclude

Proposition 9. Let fABm; m ¼ 2t; be a bent function which is neither normal nor

weakly normal. Let f ¼ ð f1; f2Þ be any decomposition of f with respect to some

hyperplane H: Then f1 and f2 are neither normal nor weakly normal. Moreover, if f1 is

ðt 
 1Þ-normal with respect to a coset of some subspace V 0 this property does not hold

for f2:

Open problem 6. Characterize fABm; m ¼ 2t 
 1; which is three-valued almost

optimal and not ðt 
 1Þ-normal.

Appendix

As an illustration, we study here the normality of quadratic Boolean functions. We
state that any quadratic function is constant on several flats and notice that only one
kind of such functions is not normal. Recall that any quadratic function fABm has a
unique representation, up to an affine transformation on the variables (see, for
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instance, [16, p. 438]). It is

f ðx1;y; xmÞ ¼
Xh

i¼1

x2i
1x2i þ
Xðm
eÞ=2

j¼hþ1

ðljx2j
1 þ mjx2jÞ
 !

þ nxm þ t; ðA:1Þ

where

* lj; mjAF2; tAf0; 1g;
* by convention ½h þ 1; ðm 
 eÞ=2
 is empty when h ¼ ðm 
 eÞ=2;
* e ¼ 0 for even m and e ¼ 1 for odd m;
* n ¼ 0 for even m and nAF2 for odd m:

It is well-known that the values of the Fourier spectrum of f are f0;72m
hg when

2hom and f72m=2g when h ¼ m=2—i.e., m is even and f is bent.

Theorem A.1. Let fABm; mX4; be any quadratic function with non-linearity

2m
h; 1ohpIm=2m: Then f is normal except when m is odd, h ¼ ðm 
 1Þ=2; and f

has the following form (up to equivalence):

f ðx1;y; xmÞ ¼
Xðm
1Þ=2

i¼1

x2i
1x2i þ xm þ t; tAf0; 1g: ðA:2Þ

In this case, f is not normal but weakly normal.

More generally, when hoIm=2m then f is k-normal, with k ¼ m 
 ðh þ 1Þ; with

respect to several k-dimensional flat.

Proof. We consider form (A.1) of f : We can assume t ¼ 0 without loss of generality.
We first suppose that hoðm 
 eÞ=2: Let V be the subspace of Fm

2 defined by

x2 ¼ x4 ¼ ? ¼ x2h ¼ 0 and
Xðm
eÞ=2

j¼hþ1

ðljx2j
1 þ mjx2jÞ þ nxm ¼ 0:

Clearly V has dimension k ¼ m 
 ðh þ 1Þ: Moreover f ðxÞ ¼ 0 for any xAV : Hence f

is k-normal with respect to V : Note that we can do other choices for the h equations
above on the left, completing the last part of the proof. Therefore f is normal with
respect to any affine subspace of V of dimension Jm=2n:

When m is even and h ¼ m=2 we define V ; for instance, by

x2 ¼ x4 ¼ ? ¼ x2h ¼ 0:

Thus f is normal with respect to V whose dimension is m=2: Now suppose that m is

odd and h ¼ ðm 
 1Þ=2: In this case f satisfies Lð f Þ ¼ 2ðmþ1Þ=2; its spectrum is

f0;72ðmþ1Þ=2g and its form is

f ðx1;y; xmÞ ¼
Xðm
1Þ=2

i¼1

x2i
1x2i þ nmxm:

ARTICLE IN PRESS
P. Charpin / Journal of Complexity 20 (2004) 245–265 263



Note that f is three-valued almost optimal (see Definition 6). Consider V ; the
subspace of dimension ðm þ 1Þ=2 defined by x2 ¼ x4 ¼ ? ¼ x2h ¼ 0: Clearly f is
either constant ðn ¼ 0Þ or linear ðn ¼ 1Þ on this subspace. When n ¼ 1; f is balanced
since for a ¼ ð0;y; 0; 1Þ

Da f ðxÞ ¼ xm þ ðxm þ 1Þ ¼ 1:

From Theorem 1, f is not normal. &
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