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Abstract. We study permutation polynomials of the shape F (X) =
G(X) + γ Tr(H(X)) over F2n . We prove that if the polynomial G(X) is
a permutation polynomial or a linearized polynomial, then the considered
problem can be reduced to finding Boolean functions with linear struc-
tures. Using this observation we describe six classes of such permutation
polynomials.
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1 Introduction

Let F2n be the finite field with 2n elements. A polynomial F (X) ∈ F2n [X ]
is called a permutation polynomial (PP) of F2n if the associated polynomial
mapping

F : F2n → F2n ,

x �→ F (x)

is a permutation of F2n . There are several criteria ensuring that a given poly-
nomial is a PP, but those conditions are, however, rather complicated, cf. [7].
PP are involved in many applications of finite fields, especiallly in cryptography,
coding theory and combinatorial design theory. Finding PP of a special type is
of great interest for the both theoretical and applied aspects.

In this paper we study PP of the following shape

F (X) = G(X) + γ T r(H(X)), (1)

where G(X), H(X) ∈ F2n [X ], γ ∈ F2n and Tr(X) =
∑n−1

i=0 X2i

is the polyno-
mial defining the absolute trace function of F2n . Examples of such polynomials
are obtained in [3],[6] and [9]. We show that in the case the polynomial G(X) is a
PP or a linearized polynomial the considered problem can be reduced to finding
Boolean functions with linear structures. We use this observation to describe six
classes of PP of type (1).
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2 A Linear Structure of a Boolean Function

A Boolean function from F2n to F2 can be represented as Tr(R(x)) for some
(not unique) mapping R : F2n → F2n . A Boolean function Tr(R(x)) is said to
have a linear structure α ∈ F

∗
2n if

Tr(R(x)) + Tr(R(x + α)) = Tr(R(x) + R(x + α))

is a constant function. We call a linear structure c-linear structure if

Tr(R(x) + R(x + α)) ≡ c,

where c ∈ F2. Given γ ∈ F
∗
2n and c ∈ F2, let Hγ(c) denote the affine hyperplane

defined by the equation Tr(γx) = c, i.e.,

Hγ(c) = {x ∈ F2n | Tr(γx) = c}.
Then α ∈ F

∗
2n is a c-linear structure for Tr(R(x)) if and only if the image set of

the mapping R(x) + R(x + α) is contained in the affine hyperplane H1(c).
The Walsh transform of a Boolean function Tr(R(x)) is defined as follows

W : F2n → Z, λ �→
∑

x∈F2n

(−1)Tr(R(x)+λx).

Whether a Boolean function Tr(R(x)) has a linear structure can be recognized
from its Walsh transform.

Proposition 1 ([2,8]). Let c ∈ F2 and R : F2n → F2n . An element α ∈ F
∗
2n is

a (c + 1)-linear structure for Tr(R(x)) if and only if

W(λ) =
∑

x∈F2n

(−1)Tr(R(x)+λx) = 0

for all λ ∈ Hα(c).

In [5] all Boolean functions assuming a linear structure are characterized as
follows.

Theorem 1 ([5]). Let R : F2n → F2n. Then the Boolean function Tr(R(x))
has a linear structure if and only if there is a non-bijective linear mapping L :
F2n → F2n such that

Tr(R(x)) = Tr
(
H ◦ L(x) + βx

)
+ c,

where H : F2n → F2n , β ∈ F2n and c ∈ F2.

Clearly, any element from the kernel of L is a linear structure of Tr(R(x))
considered in Theorem 1. Moreover, those are the only ones if the mapping
Tr(H(x)) has no linear structure belonging to the image of L. We record this
observation in the following lemma to refer it later.
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Lemma 1. Let H : F2n → F2n be an arbitrary mapping. Then γ ∈ F
∗
2n is a

linear structure of
Tr

(
H(x2 + γx) + βx

)

for any β ∈ F2n .

Next lemma describes another family of Boolean functions having a linear struc-
ture. Its proof is straightforward.

Lemma 2. Let F : F2n → F2n and α ∈ F
∗
2n . Then α is a linear structure of

Tr(F (x) + F (x + α) + βx) for any β ∈ F2n .

In general, for a given Boolean function it is difficult to recognize whether it
admits a linear structure. Slightly extending results from [4], we characterize all
monomial Boolean functions assuming a linear structure. More precisely, for a
given nonzero a ∈ F2n , we describe all exponents s and nonzero δ ∈ F2n such
that a is a linear structure for the Boolean function Tr(δxs).

Let 0 ≤ s ≤ 2n − 2. We denote by Cs the cyclotomic coset modulo 2n − 1
containing s:

Cs = {s, 2s, . . . , 2n−1s} (mod 2n − 1).

Note that if |Cs| = l, then {xs | x ∈ F2n} ⊆ F2l and F2l is the smallest such
subfield.

The next lemma is an extension of Lemma 2 from [4].

Lemma 3. Let 0 ≤ s ≤ 2n − 2, δ ∈ F
∗
2n be such that the Boolean function

Tr(δxs) is a nonzero function. Then a ∈ F
∗
2n is a linear structure of the Boolean

function Tr(δxs) if and only if

(a) s = 2i and a is arbitrary
(b) s = 2i + 2j (i 	= j) and (δa2i+2j

)2
n−i

+ (δa2i+2j

)2
n−j

= 0.

Proof. Let a ∈ F
∗
2n be a linear structure for Tr(δxs). Then

Tr(δ(xs + (x + a)s)) ≡ c (2)

holds for all x ∈ F2n and a fixed c ∈ F2. In [4] it is shown that in the case
|Cs| = n the identity (2) can be satisfied only if the binary weight of s does not
exceed 2. On the other side it is easy to see that for an s of binary weight 1 the
corresponding Boolean function Tr(δxs) is linear and thus any nonzero element
is a linear structure. If s = 2i + 2j, then

Tr(δ(x2i+2j

+(x + a)2
i+2j

)) = Tr

(

δa2i+2j

((x

a

)2i

+
(x

a

)2j ))

+ Tr
(
δa2i+2j

)

= Tr
((

(δa2i+2j

)2
n−i

+ (δa2i+2j

)2
n−j

) x

a

)

+ Tr
(
δa2i+2j

)
,
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implying (b). To complete the proof, we need to consider the case |Cs| = l < n.
Let n = lm. Then

Tr(δ(xs + (x + a)s)) = Tr(β(ys + (y + 1)s)),

where y = x/a and β = δas. We write i ≺ s if i 	= s and the binary representation
of i is covered by the one of s. Then

Tr(β(ys + (y + 1)s)) =
∑

i≺s

Tr(βyi) =
∑

k≺s, k is a coset repr.
Tr(βkyk).

Note that the exponents in the monomial summands Tr(βkyk) are from different
cyclotomy cosets. Hence to have

∑

k≺s, k is a coset repr.
Tr(βkyk) ≡ c

it is necessary that c = Tr(β) and Tr(βkyk) ≡ 0 for all k 	= 0. Consider k0 ≺ s
such that k0 = s − 2i. Lemma 3 of [1] implies that |Ck0 | = n, and therefore
Tr(βk0y

k0) ≡ 0 holds only if βk0 = 0. Further βk0 = β + β2l

+ . . . β2l(m−1)
=

Trn
l (β), where Tru

v denotes the trace function from F2u onto its subfield F2v .
Hence necessarily Trn

l (β) = Trn
l (δas) = asTrn

l (δ) = 0, and thus the Boolean
function

Tr (δxs) = Trl
1 (xsTrn

l (δ))

is the zero function. ��
Observe that δ = a−(2i+2j) satisfies condition (b) of Lemma 3.

3 Permutation Polynomials

In this section we study permutation polynomials of the shape

F (X) = G(X) + γ T r(H(X)),

where G(X), H(X) ∈ F2n [X ], γ ∈ F2n . Firstly we observe the following neces-
sary property of G(X).

Claim. Let G(X), H(X) ∈ F2n [X ] and γ ∈ F2n . If

F (X) = G(X) + γ T r(H(X))

is a PP of F2n , then for any β ∈ F2n there are at most 2 elements x1, x2 ∈ F2n

such that G(x1) = G(x2) = β.

Proof. Suppose there are different x1, x2, x3 with G(x1) = G(x2) = G(x3) = β.
Then F cannot be a PP, since F (xi) ∈ {β, β + γ} for i = 1, 2, 3. ��
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Proposition 2. Let G(X), H(X) ∈ F2n [X ] and γ ∈ F2n . Then

F (X) = G(X) + γ T r(H(X))

is a PP of F2n if and only if for any λ ∈ F
∗
2n it holds

∑

x∈F2n

(−1)Tr(λG(x)) = 0 if Tr(γλ) = 0 (3)

∑

x∈F2n

(−1)Tr(λG(x)+H(x)) = 0 if Tr(γλ) = 1. (4)

Proof. Recall that F (X) is a PP if and only if
∑

x∈F2n

(−1)Tr(λF (x)) = 0

for all λ ∈ F
∗
2n , cf. [7]. Since

Tr(λF (x)) = Tr(λG(x)) + Tr(H(x))Tr(γλ) = Tr(λG(x) + H(x)Tr(γλ)),

it must hold

∑

x∈F2n

(−1)Tr(λF (x)) =
{∑

x∈F2n
(−1)Tr(λG(x)) = 0 if Tr(γλ) = 0

∑
x∈F2n

(−1)Tr(λG(x)+H(x)) = 0 if Tr(γλ) = 1.

��
Next we consider polynomials F (X) = G(X) + γ T r(H(X)), where G(X) is a
PP or a linearized polynomial.

3.1 G(X) Is a Permutation Polynomial

Firstly we establish a connection of the considered problem with the Boolean
functions assuming a linear structure.

Theorem 2. Let G(X), H(X) ∈ F2n [X ], γ ∈ F2n and G(X) be a PP. Then

F (X) = G(X) + γ T r(H(X)) (5)

is a PP of F2n if and only if H(X) = R(G(X)), where R(X) ∈ F2n [X ] and γ is
a 0-linear structure of the Boolean function Tr(R(x)).

Proof. Since G(X) is a PP, condition (3) is satisfied. Let G−1 be the inverse
mapping of the associated mapping of G. Then condition (4) is equivalent to

∑

x∈F2n

(−1)Tr(λG(x)+H(x)) =
∑

y∈F2n

(−1)Tr(λy+H(G−1(y))) = 0

for all λ ∈ F2n with Tr(γλ) = 1. Proposition 1 completes the proof. ��
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From Theorem 2 it follows that any PP of type (5) is obtained by substituting
G(X) into a PP of shape X + γT r(R(X)). The next theorem describes two
classes of such polynomials.

Theorem 3. Let γ, β ∈ F2n and H(X) ∈ F2n [X ].

(a) Then the polynomial

X + γ T r
(
H(X2 + γX) + βX

)

is PP if and only if Tr(βγ) = 0.
(b) Then the polynomial

X + γ T r (H(X) + H(X + γ) + βX)

is PP if and only if Tr(βγ) = 0.

Proof. (a) By Theorem 2 the considered polynomial is a PP if and only if γ is a
0-linear structure of Tr

(
H(x2 + γx) + βx

)
. To complete the proof note that

Tr
(
H((x + γ)2 + γ(x + γ)) + β(x + γ)

)
+ Tr

(
H(x2 + γx) + βx

)
= Tr(βγ).

(b) The proof follows from Lemma 2 and Theorem 2 similarly to the previous
case. ��
Our next goal is to characterize all permutation polynomials of shape X +
γ T r(δXs + βX). Firstly, observe that if s = 2i, then Theorem 2 yields that
X + γ T r(δX2i

+ βX) is a PP if and only if Tr(δγ2i

+ βγ) = 0. The remaining
cases are covered in the following theorem.

Theorem 4. Let γ, β ∈ F2n and 3 ≤ s ≤ 2n − 2 be of binary weight ≥ 2. Let
δ ∈ F2n be such that the Boolean function x �→ Tr(δxs), x ∈ F2n , is not the zero
function. Then the polynomial

X + γ T r(δXs + βX)

is PP if and only if s = 2i + 2j, (δγ2j

)2
n−i

+ (δγ2i

)2
n−j

= 0 and Tr(δγ2i+2j

+
βγ) = 0.

Proof. By Theorem 2 the polynomial X+γ T r(δXs+βX) defines a permutation
if and only if γ is a 0-linear structure of Tr(δxs + βx). Then Lemma 3 implies
that the binary weight of s must be 2. Note that for s = 2i + 2j it holds

Tr(δ(x + γ)2
i+2j

+ β(x + γ)) + Tr(δx2i+2j

+ βx)

= Tr(δx2i

γ2j

+ δx2j

γ2i

+ δγ2i+2j

+ βγ)

= Tr
((

(δγ2j

)2
n−i

+ (δγ2i

)2
n−j )

x
)

+ Tr(δγ2i+2j

+ βγ).

Thus γ is a 0-linear structure of Tr(δxs + βx) if and only if (δγ2j

)2
n−i

+
(δγ2i

)2
n−j

= 0 and Tr(δγ2i+2j

+ βγ) = 0. ��
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As an application of Theorem 4 we get the complete characterization of PP of
type Xd + Tr(Xt).

Corollary 1. Let 1 ≤ d, t ≤ 2n − 2. Then

Xd + Tr(Xt)

is PP over F2n if and only if the following conditions are satisfied:

– n is even
– gcd (d, 2n − 1) = 1
– t = d · s (mod 2n − 1) for some s such that 1 ≤ s ≤ 2n − 2 and has binary

weight 1 or 2.

Proof. By Claim 3 the considered polynomial defines a permutation on F2n only
if Xd does it, which forces gcd(d, 2n−1) = 1. Let d−1 be the multiplicative inverse
of d modulo 2n−1. Then Xd+Tr(Xt) is PP if and only if X +Tr(Xd−1·t) is PP.
Theorems 2 and 4 with γ = δ = 1 and β = 0 imply that the later polynomial
is PP if and only if d−1 · t = 2i + 2j (mod 2n − 1) with i ≥ j and Tr(1) = 0.
Finally note that Tr(1) = 0 if and only if n is even. ��

3.2 G(X) Is a Linearized Polynomial

Let G(X) = L(X) be a linearized polynomial over F2n . In this subsection we
characterize elements γ ∈ F2n and polynomials H(X) ∈ F2n [X ] for which
L(X) + γ T r(H(X)) is PP. By Claim 3 the mapping defined by L must nec-
essarily be bijective or 2- to -1. Since the case of bijective L is covered in the
previous subsection, we consider here 2- to -1 linear mappings.

Lemma 4. Let L : F2n → F2n be a linear 2- to -1 mapping with kernel {0, α}
and H : F2n → F2n . If for some γ ∈ F2n the mapping

N(x) = L(x) + γ T r(H(x))

is a permutation of F2n, then γ does not belong to the image set of L. Moreover,
for such an element γ the mapping N(x) is a permutation if and only if α is a
1-linear structure for Tr(H(x)).

Proof. Note that if γ belongs to the image set of L, then the image set of N is
contained in that of L. In particular, N is not a permutation. We suppose now
γ does not belong to the image set of L. It holds

N(x) =
{

L(x) if Tr(H(x)) = 0
L(x) + γ if Tr(H(x)) = 1,

and for all x ∈ F2n we have

N(x) + N(x + α) = γ T r(H(x) + H(x + α)).
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Thus, if N is a permutation, then Tr(H(x) + H(x + α)) = 1 for all x, i.e., α is
a 1-linear structure for Tr(H(x)). Conversely, assume that

Tr(H(x) + H(x + α)) = 1 for all x ∈ F2n . (6)

Let y, z ∈ F2n be such that N(y) = N(z). If Tr(H(y) + H(z)) = 0 then

N(y) + N(z) = L(y + z) = 0,

and hence y + z ∈ {0, α}. Further, (6) forces y = z. To complete the proof,
observe that Tr(H(y) + H(z)) = 1 is impossible, since it implies

N(y) + N(z) = L(y + z) + γ = 0,

which contradicts the assumption that γ is not in the image set of L. ��
Lemmas 1, 2 in combination with Lemma 4 imply the following classes of PP.

Theorem 5. Let L ∈ F2n [X ] be a linearized polynomial, defining a 2- to -1 map-
ping with kernel {0, α}. Further let H ∈ F2n [X ], β ∈ F2n and γ ∈ F2n be not in
the image set of L.

(a) The polynomial

L(X) + γ T r
(
H(X2 + αX) + βX

)

is PP if and only if Tr(βα) = 1.
(b) The polynomial

L(X) + γ T r (H(X) + H(X + α) + βX)

is PP if and only if Tr(βα) = 1.

Remark 1. To apply Theorem 5 we need to have a linearized 2- to -1 polynomial
with known kernel and image set. An example of such a polynomial is X2k

+
α2k−1X where 1 ≤ k ≤ n − 1 with gcd (k, n) = 1 and α ∈ F

∗
2n . The kernel of its

associated mapping is {0, α} and the image set is Hα−2k (0). Moreover, any linear
2- to -1 mapping with kernel {0, α} (or image set Hα−2k (0)) can be obtained as
a left (or right) composition of this mapping with an appropriate bijective linear
mapping.

The next result is a direct consequence of Lemmas 3 and 4.

Theorem 6. Let L ∈ F2n [X ] be a linearized polynomial defining a 2- to -1 map-
ping with kernel {0, α}. Let β, γ ∈ F2n and γ do not belong to the image set of
L. If 3 ≤ s ≤ 2n − 2 is of binary weight ≥ 2, then the polynomial

L(X) + γ T r(δXs + βX)

is PP if and only if s = 2i + 2j, (δα2j

)2
n−i

+ (δα2i

)2
n−j

= 0 and Tr(δα2i+2j

+
βα) = 1.
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Theorem 6 yields the complete characterization of PP of type X2k

+X+Tr(Xs).

Corollary 2. Let 1 ≤ k ≤ n − 1 and 1 ≤ s ≤ 2n − 2. Then

X2k

+ X + Tr(Xs)

is PP over F2n if and only if the following conditions are satisfied:

– n is odd
– gcd (k, n) = 1
– s has binary weight 1 or 2.

Proof. Firstly observe that the polynomial X2k

+X has at least two zeros, 0 and
1. Hence from Claim 3 it follows that if X2k

+X +Tr(Xs) is PP then necessarily
the mapping L(x) = x2k

+ x is 2- to -1. This holds if and only if gcd (k, n) = 1.
Further note that the image set of such an L is the hyperplane H1(0). Hence
γ = 1 does not belong to the image set of L if and only if Tr(1) = 1, equivalently
if n is odd. The rest of the proof follows from Lemma 4 and Theorem 6 with
α = δ = 1 and β = 0. ��
Remark 2. Some results of this paper are valid also in the finite fields of odd
characteristic. In a forthcoming paper we will report more accurately on that.

References

1. Bierbrauer, J., Kyureghyan, G.: Crooked binomials. Des. Codes Cryptogr. 46, 269–
301 (2008)

2. Dubuc, S.: Characterization of linear structures. Des. Codes Cryptogr. 22, 33–45
(2001)

3. Hollmann, H.D.L., Xing, Q.: A class of permutation polynomials of F2n related to
Dickson polynomials. Finite Fields Appl. 11(1), 111–122 (2005)

4. Kyureghyan, G.: Crooked maps in F2n . Finite Fields Appl. 13(3), 713–726 (2007)
5. Lai, X.: Additive and linear structures of cryptographic functions. In: Preneel, B.

(ed.) FSE 1994. LNCS, vol. 1008, pp. 75–85. Springer, Heidelberg (1995)
6. Laigle-Chapuy, Y.: A note on a class of quadratic permutations over F2n . In: Boztaş,
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